
1

Grammars on the hexagonal array

会沢邦夫
(Kunio Aizawa)

DepartInent Applied Mathematics, Faculty ofEngineering, Hiroshima University

Higashi-Hiroshima, 724, JAPAN

Abstract

In this paper, we will define array grammars on the hexagonal grid. One of the

advantages obtained from using the hexagonal grid is that each point has only one kind of

neighbor. It is shown that the class of the context-free array grammars on the hexagonal grid

includes the class of the rectangular ones even if their languages are restricted to the pictures

connected on the rectangular grid. It is also shown that, in the monotonic case, they own

same class of languages jointly.

1. Introduction

Array grammars were defined as the two-dimensional extensions of usual string

grammars. The languages of these array grammars are embedded to the rectangular grid. In

the processes to generate these languages, there is a shearing effect as the rows or columns of

the host array must be stretched or shrunk by varying amounts in order to accommodate the

array rewriting rules. To avoid the problem, a restriction called isomenic’ is usually inserted

to each production rule. Both-hand sides of an “isometric“ production rule are geometrically

identical. So the growth of an array can only happen along the border of the array by

replacing the blank symbols (i.e., $\#s$) with other symbols.

In this paper, we will define array grammars on the hexagonal grid. Since the

definitions of the isometric array grammars are independent from the structures of arrays in

1

数理解析研究所講究録
第 695巻 1989年 1-10

2

which they are embedded, the isometric grammars on the hexagonal array can be defined

almost same as in the case of the rectangular grid. The hexagonal grid was defined fornally in

Mylopoulos and Pavlidis [1] and Rosenfeld [2] by making use of Abelian groups. For

example, in [1], the rectangular grid is defined as a free Abelian group with two generators

“go left”, “go above”, and their inverses “go right”, “go below”. The hexagonal grid is

defined as an Abelian group with three generators and their inverses. One of the advantages

obtained from using the hexagonal grid is that each point has only one kind of neighbor. This

property is very useful to study topological properties of digital pictures. So introducing aIray

grammars on the hexagonal array may shed light on the relationships between array grammars
and digital pictures.

In Section 3 of this paper, we will compare the generative powers of the grammars on
the hexagonal grid and the rectangular gnid. It is shown that the class of the context-free array
grammars on the hexagonal grid includes the class of the rectangular ones even if their

languages are restricted to the pictures connected on the rectangular grid. It is also shown that,

in the monotonic case, they own same class of languages jointly.

We assume the reader to be familiar with the theory of two-dimensional languages

(otherwise please see, e.g., [3]).

2. Def\ddagger nitions and notations

We here will review some definitions and notations of the hexagonal grid. Then we
will define two-dimensional grammars of the hexagonal array. At first, we review the

definitions of discrete space and hexagonal array. We will use almost the same definitions and

notations in Mylopoulos and Pavlidis [1].

Definition 1. A discrete space is a finitely presented abelian group $\Gamma=(X/D)$, where X

has $2n$ generators $s_{1},$ $s_{2},$ $\ldots,$ $s_{n},$
$s_{1^{- 1}},$ $s_{2^{- 1}},$

$\ldots,$

s_{n}^{-1} , and D contains all relations other than

the commutativity ($s_{i^{S}j^{S}i^{- 1_{S}}j^{- 1_{=1)}}}$ and the inverse iterations $(s_{i}s_{i^{- 1}}=1)$.

Definition 2. The hexagonal array is a discrete space described by a group Γ generated

by the following relative directions: $s_{1}=(right),$ $s_{2}=$ ($above$ right), $s_{3}=$ ($above$ left), $s_{1^{- 1_{=}}}$

(left), $s_{2^{- 1_{=}}}$ (below left), $s_{3^{- 1_{=}}}$ (below right), and $D=\{s_{1^{S}3^{S}2^{- 1_{=1}}}\}$.

2

Note that Γ defined above is not a free group because (right)(above left)(below left)

retums one to the original point. Hence D contains the relation $s_{1}s_{3}s_{2^{- 1}}=1$. See Fig. 1 for a

graphical image of the hexagonal grid and its generators.

Now, we review the definitions of some basic notions of discrete space. Let

$X’=Xu\{s_{0}\}$, where s_{0} is the group identity.

Definition 3. For a given point x of $\Gamma=(X/D)$, a direct neighbor of x is any point $y\in\Gamma$

such that $y=xg$ for some $g\in X^{1}$. The set of all direct neighbors of x is denoted by ND(x), i.e.,

ND(x)$=\{xg^{1}g\in X^{I}\}$.

.
Note here that ND(x) contains x itself. The set of direct neighbors of x excluding x is

denoted as ND*(x), i.e., ND*(x)$=ND(x)-\{x\}$.

Definition 4. The neighborhood of a point x , denoted as $N(x)$, consists of

(1) ND(x) and

(2) all points z such that there exist $y,$ $y’\in ND^{*}(x)$ with the property that the shortest path

from y to $y’$ not passing through z passes through z .

Again $N^{*}(x)=N(x)-\{x\}$.

Definition 5. A direct-path (d-path) between two points w_{1} and w_{2} of Γ is an ordered

sequence of points $w_{1}=x_{1},$ $x_{2},$ $\ldots x_{n- 1},$ $x_{n}=w_{2}$ such that $x_{i+1}\in ND^{*}(x_{i})$, for $1\leq i\leq n- 1$. A

path is an ordered sequence of points such that $x_{i+1}\in N^{*}(x_{i})$, for $1\leq i\leq n- 1$. The length of a
$(d-)path$ is defined as the number of points in the path. A shortest $(d-)path$ between two

points is a (d-)path with minimum length.

Definition 6. Two points w_{1} and w_{2} of a finite subset F of Γ are $(d-)connected$ in F if

and only if there exists a (d-)path between them in F.

The relation ”connected” defined above is obviously equivalence relation. Thus it
partitions Γ into equivalence classes.

3

Definition 7. The $(d-)components$ of Γ are the equivalence classes of “(d-)connected”

relation.

The isometric grammars on the hexagonal array can be defined almost same as in the

case of the rectangular array since their definitions are independent from the structures of

arrays in which they are embedded.

$Def\ddagger nition8$. An isometric grammar on the hexagonal array, denoted as IAG_{h} , is a
construct $G=<V,$ $T,$ $P,$ $S,$ $\#$, where V is a finite nonempty set of nonterminals, T is a finite

nonempty set of terminals $(V\cap T=\emptyset),$ S is an element of V (the starting symbol), $\#$ is a symbol

not contained in VuT (the blank symbol), and P is a finite nonempty set of productions each

of which is of the form $xarrow y$. These x and y are geometrically identical arrays over $VuTu\{\#\}$

and satisfy the following conditions:

(1) If the non-#s of x do not touch the border of x , then the non-#s of y must be connected

(and nonempty).

(2) Otherwise,

(a) every connected component of non-#s in y must contain the intersection of

some component of non-#s in x with the border of x ;

(b) conversely, every such intersection must be contained in some component of

non-#s in y .

For the case of the rectangular array, it is shown in [3] that if conditions (1) and (2)

defined above hold, applying the rule $xarrow y$ does not disconnect or eliminate the non-#s. For

the case of the hexagonal array, the same property can be shown in similar way.

Definition 9 Let W and Z are arrays over $VuTu\{\#\}$. For a given IAG_{h} , the array W

directly derives array Z in G , denoted as $W\Rightarrow G^{Z}$, if there exists a production $xarrow y$ in $P,$ W

contains x as a subarray, and Z is identical to W except that the subarray x is replaced with the

array y . $\Rightarrow G^{*}$ is defined as the reflexive and transitive closure $of\Rightarrow G$. The language of G ,

denoted as $L(G)$, is defined by $L(G)=\{W$ I W is an array over T and $S\Rightarrow G^{*w\}}$.

4

5

An IAG_{h} is called monotonic, denoted as MAG_{h} , if $\#s$ are never created by any rule.

We can also define context-free array grammar on the hexagonal array, denoted as $CFAG_{h}$, if

G is an MAG_{h} and, for all rules $xarrow y$ of $G,$ x consists of a single nonterminal symbol and

(possibly) of $\#s$. Note here that all grammars defined above have 6-connectedness instead of

4-connectedness since each point of the hexagonal array has at most six direct neighbors.

3. Generative power of grammars on the hexagonal array

In this section, we will compare the generative power of grammars on the hexagonal

and on the usual rectangular arrays. Because of the differences between the hexagonal and the

rectangular arrays, it is difficult to compare these grammars directly. Thus we need an
interpretative transformation between those two different arrays. Intuitively, if we regard the

hexagonal array as a kind of brick array (see Fig 2) and slide each row to left (see Fig. 3), then

we get a rectangular array. Namely the generator $s_{2}=$(above right) is regarded as $s_{2}’=(above)$.

Stipulation 1. An array Σ on the hexagonal array, described by $\Gamma=(s_{1},$ $s_{2},$ $s_{3},$ s_{1} s_{2} .$- 1$ $- 1$

$s_{3^{- 1}}/s_{1^{S}3^{s}2^{- 1_{=1)}}}$, and an array Σ on the discrete space $\Gamma’=(s_{1},$ $s_{2}’,$ $s_{3},$
$s_{1^{-1- 1}’},$$s_{2}’ s_{3^{-}}$

$1/s_{1}s_{3}s_{2^{-1}}’=1)$ are said to be equivalent under Stipulation 1, denoted as $\Sigma=1^{\Sigma}’$, if $\Sigma=\Sigma$

when the generators $s_{2}=$(above right) and $s_{2}=$($below$ left) of Γ are regarded as $s_{2}’=(above)$

and $s_{2}’=(below)$, respectively.

Note that the discrete space $r’=(s_{1},$ $s_{2}’,$ $s_{3},$
$s_{1^{- 1}},$ $s_{2^{-1}’}’ s_{3^{- 1}}/s_{1^{S}3^{s}2^{-1_{=1)}}}’$ defines

slightly different array from usual rectangular array, i.e., the discrete space Ξ generated by
$s_{1^{=(right),s_{2}=(above),s_{1}^{-1_{=(1eft),s_{2}’}- 1_{=(below)}}}}$, since each point of Γ

’ has six (not four)

direct neighbors other than itself (see Fig. 4). Moreover it is different from the original

hexagonal array since each point of Γ
’ has eight neighbors other than itself.

The class of IAG_{h} is obviously not equal to that of IAG even if we use the stipulation

for there exist the languages of IAG_{h} whose elements are not d-connected under $–$. In fact,

even if we consider only the languages whose elements are d-connected under the discrete

space Ξ , there exists $CFAG_{h}G$ such that $L(G)$ is not contained in $\mathcal{F}(CFAG)$.

Lemma 1. There exists a language of $CFAG_{h}$ which is d-connected under the discrete

s

6

space Ξ and is not contained in $\mathcal{F}(CFAG)$.

Proof Let $G=<\{S, A, B, C\},$ $\{a\},$ $P,$ $S,$ $\#>be$ a $CFAG_{h}$, where P consists the following

production rules on the hexagonal array:

$\#^{\#_{\#^{\#^{S}}arrow a^{a_{A^{a^{a}}}^{a}}}^{\#}}$

A $\#^{\#_{\#}}arrow aa^{a}A$

A
$\#^{\#^{\#_{arrow aa^{a^{B}}}}}$

$\#_{B}arrow C_{a}$

$\#^{\#C}arrow a^{a}$ a

$\#\#Carrow C$ a a
An example of derivation steps of G is shown in Fig. 5. It is not so difficult to see that each

element of $L(G)$ is d-connected under the discrete space Ξ . Assume here that there exists a
CFAG G ’ which generates the language of G. Since G

’ generates arrays embedded in the

discrete space Ξ , each elemem of $L(G’)$ is of the form represented in Fig. 6. The top

horizontal part of an element of $L(G’)$ must be generated independently from the rightmost

vertical run (see Fig. 7). In general, the top horizontal part can be arbitrary long, then G ’ must

use at least one nonterminal symbol more than once (see Fig. $8a$). Thus, if G ’ generates the

elements of $L(G),$ G ’ also generates arrays which are not contained in $L(G)$ (see Fig. $8b$). It

is a contradiction.

On the other hand, we will show that tape-bounded array acceptors accepts the class of

languages of MAG_{h} which are d-connected under Ξ . A Turing array acceptor is a Turing

machine defined on two-dimensional input tapes. If it “bounce off‘ $\#s$, it is called tape-

bounded (denoted as TBAA). It is known that the languages generated by MAGs are the same
as the languages accepted by TBAA. For detail definitions and proofs, see, e.g., Rosenfeld

[3].

Lemma 2. For any $MAG_{h}G$ generating hexagonal arrays which are d-connected under the

discrete spac$e\Xi$, there exists a tape-bounded Turing array acceptor A such that $L(A)=L(G)$.
Proof. Given an MAG_{h} , the definition of a TBAA that accepts exactly $L(G)$ is almost same

6

7

as that of TBAAs for the languages of MAGs. So, given an array Σ in the $tem\dot{u}nal$ alphabet T

of G , embedded in an infinite array of $\#s$, A moves around nondeterministically, starting at

some point of Σ , and rewrites each non-# symbol p into $(p, \#)$. Finally, at some step, A

rewrites some p as (p, S) ; this can happen only once . After it happens, A begins to simulate

rules of G on the second terms of pairs. A problem arises with the TBAA if G has a rule $xarrow y$

whose non-#s of right-hand sides are not d-connected under Ξ . These disconnected

productions may raise disconnected parts on Σ (from the assumption, of course, Σ is d-

connected as a whole). A must across the disconnected part in order to apply the rule.

Suppose that A is located at position (i, j) and wants to across the position $(i’, j’)$, then the

absolute values of the differences li-i’l and j-j’l are equal to 1 and both points are on the same

border of Σ . To find the point $(i’,j’)$, A marks (i,j) , follows the border of Σ, and keeps track

of its net up, down, left, right moves. If A retums to (i, j) without finding the point $(i’, j’)$,

the rul$exarrow y$ cannot apply to the part. Otherwise A can continue its simulation.

It is obvious that the class of the languages of $CFAG_{h}(MAG_{h})$ includes the class of

the languages of CFAG (MAG, respectively) in the sense of Stipulation 1. So it is not so
difficult to see the following theorem:

Theorem (1) The class of the languages of $CFAG_{h}s$ which are d-connected under the

discrete space Ξ includes the class of the languages of CFAGs properly in the sense of

Stipulation 1.

(2) The class of the language of $MAG_{h}s$ which are d-connected under the discrete space Ξ

is equal to the class of the languages of MAGs in the sense of Stipulation 1.

5. Concluding Remarks

In this paper, we have shown the generative powers of some array grammars
generating hexagonal pattems. The hexagonal array used in this paper is also defined as a near
abelian partial path group of degree 6 (see [2]). Graph grammars using path controlled

embedding, PCE grammars, can define the structure of their language by making use of partial

path group. So it seems to be interesting to consider the PCE grammars which generate

hexagonal array languages.

7

8

References

[1] Mylopoulos, J.P., and T. Pavlidis: On the topological properties of quantized spaces,
J. ACM, 18, pp.239-254, 1971

[2] Rosenfeld, A.,: Partial path groups and parallel graph constructions, in G. Rozenberg

and A. Salomaa (eds.), The Book ofL, Springer-Verlag, pp.369-382, 1986.
[3] Rosenfeld, A.,: Picture Languages, Academic Press, 1979

Figure 1. The hexagonal array and its generators.

S_{2}

(a) (b)

Figure 4. (a) Generators of Γ ‘; (b) the direct neighbors of an arbitrary point in Γ ‘.

8

∂

Figure 2. The btick array.

Figure 3. The rectangular array.

a a a
a a aa a a

S \Rightarrow \Rightarrow \Rightarrow

$a^{a}A$ $a^{a}aa^{a}A$ $a^{a}aa^{a}aa^{a}A$

a
a

$*$ a B
\Rightarrow a a a a a

a a a a a a a a a

a
a C a a

\Rightarrow^{*} a a
a a a a a

a a a a a a a a a

a
a a a a a

\Rightarrow
a a a

a a a a aa a a a a a a a a

Figure 5. An example of derivations of G .

q

10

a
a a a a a
a a a
a a a a a
a a a a a a a a a

Figure 6. An example of elements of $L(G’)$. Figure 7. An example of generation of $G’$.

\nearrow \nearrow

$\ovalbox{\tt\small REJECT} \mathscr{C}_{\ovalbox{\tt\small REJECT}:^{::}\vec{\mathscr{B}}^{\hat{d}}\mathscr{A}^{j}\dot{\mathfrak{X}}^{\mathscr{B}_{\mathscr{C}}.\mathscr{J}}}^{\backslash .\wedge\wedge-\aleph*}\mathscr{D}\grave{\Psi}’\dot{*}\infty..$

.

(a)

\nearrow

(b)

\nearrow
– Same symbol appears at these points.

Figure 8. (a) An element of $L(G’)$ which is also in $L(G)$, and
(b) an element of $L(G’)$ which is not in $L(G)$.

$/0$

