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1 Introduction

In this paper, we consider the learning problem for a restricted family of matrix languages
called strongly bounded equal matrix languages. The languages consist of strings of the form
$a_{1}^{n_{1}}\cdots a_{m}^{n_{m}}$ , where each $a_{i}$ is a symbol and $n_{i}$ is a nonnegative integer, and are defined in terms
of certain parallel rewriting grammars called equal matrix grammars. Also, the languages
closely related to semilinear subsets of the Cartesian product of nonnegative integers. The
family contains a language which is not context-free and does not contain any context-free
languages.

We show that (1) the family of strongly bounded equal matrix languages is not learnable
from positive examples, while there exists a meaningful subfamily which is learnable from
positive examples, (2) given any teacher called an ideal teacher, who presents elements of
any language $L$ for the question whether $L\subseteq L(G)$ for any grammar $G$ and eventually gives
sufficient examples for learning, the subfamily is learnable in polynomial time of the size of
inputs.

2 Preliminaries

Let $\Sigma$ be an alphabet, i.e., a finite set of symbols and $\Sigma^{*}$ be the set of all strings over $\Sigma$

containing the null string $\lambda$ . For each string $w,$
$w^{0}=\lambda$ and $w^{i}=w^{i-1}w$ for each integer

$i\geq 1$ , and $w^{*}=\{w^{i}|i\geq 0\}$ . A language over $\Sigma$ is a subset of $\Sigma^{*}$ .

Definition A language over an alphabet $\Sigma$ is said
$\cdot$

to be strongly bounded if and only if
$L\subseteq a_{1^{*}}\cdots a_{k^{*}}$ where, $\Sigma=\{a_{1}, \ldots, a_{k}\}$ .

*This is. a part of the work in the major R&D of the Fifth Generation Computer Project, conducted
under program set up by MITI.
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Definition An equal matrix grammar (abbreviated $EMG$) of order $k$ is a 4-tuple $G=$

$(N, \Sigma, \Pi, S)$ , where

1. $S$ is the initial symbol.

2. $N$ is a finite nonempty set consisting of k-tuples $(A_{1}, A_{2}, \ldots, A_{k})$ , called a nonterminal,
such that for any pair $(A_{1}, A_{2}, \ldots, A_{k})$ and $(B_{1}, B_{2}, \ldots, B_{k})$ of $N,$ $\{A_{1}, A_{2}, .. , , A_{k}\}\cap$

$\{B_{1}, B_{2}, \ldots, B_{k}\}=\emptyset$ .

3. $\Pi$ is a finite nonempty set consisting of the following types of matrix rules;

(a) $[Sarrow w_{1}A_{1}w_{2}A_{2}\cdots w_{k}A_{k}]$ ,

(b) $[A_{1}arrow w_{1}B_{1}, A_{2}arrow w_{2}B_{2}, \ldots A_{k}, arrow w_{k}B_{k}]$ ,

(c) $[A_{1}arrow w_{1}, A_{2}arrow w_{2}, , . ., A_{k}arrow w_{k}]$ ,

where $S$ is the initial symbol, and $(A_{1}, A_{2}, \ldots , A_{k}),$ $(B_{1}, B_{2}, \ldots, B_{k})$ are nonterminals,
$w_{1},$ $w_{2},$ $\ldots,$

$w_{k}\in\Sigma^{*}$ .

An equal matrix grammar is an $EMG$ of any finite order $k$ .

We denote $\Sigma\cup N\cup\{S\}$ by $V$ .
Let $G=(N, \Sigma, \Pi, S)$ be an $EMG$ of order $k$ . We define the $relation\Rightarrow between$ strings in

$V^{*}$ . For any $x,y\in V^{*},$ $x\Rightarrow y$ if and only if either (1) $x$ is the initial symbol $S$ and the initial
matrix rule $[Sarrow y]$ is in $\Pi$ or (2) there exist strings $u_{1},$ $\ldots,$ $u_{k},$ $v_{1},$ $\ldots,$

$v_{k}$ over $\Sigma$ such that
$x=u_{1}A_{1}v_{1}\cdots u_{k}A_{k}v_{k},$ $y=u_{1}z_{1}v_{1}\cdots u_{k}z_{k}v_{k}$ , and the matrix rule $[A_{1}arrow z_{1}, \cdots, A_{k}arrow z_{k}]$ is
in $\Pi$ . $\Rightarrow^{*}$ denotes the reflexive and transitive closure $of\Rightarrow$ .

The language generated by $G$ , denoted $L(G)$ , is the set $L(G)=\{w\in\Sigma^{*}|S\Rightarrow^{*}w\}$ .

Definition A language $li$ is said to be an equal matrix language (abbreviated $EML$) if
and only if there exists an $EMGG$ such that $L=L(G)$ holds.

In this paper, we consider the learning problem for a strongly bounded equal matrix lan-
guage (abbreviated SBEML). The family of SBEMLs contains context-sensitive languages.
For example, the context-sensitive language $\{a^{n}b^{n}c^{n}|n\geq 1\}$ is an SBEML. Also, there ex-
ists a context-free language which is not an SBEML. For example, the context-free language
$\{a^{n}b^{n}|n\geq 1\}^{*}$ is not an SBEML (Ibarra [3]).

3 Algebraic Characterization
Let $\mathcal{N}$ denote the nonnegative integers. For each integer $k\geq 1$ , let $N^{k}=\mathcal{N}\cross\cdots\cross \mathcal{N}(k$

times) and for each $n\in \mathcal{N},$ $n^{k}=(n, \ldots, n)$ ( $k$ times). We regard $\mathcal{N}^{k}$ as a subset of the
vector space of all k-tuples of rational numbers over the rational numbers.
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Given an element $c$ and a subset $P$ of $\mathcal{N}^{k}$ , let $Q(c, P)$ denote the set

$Q(c,P)=\{q|q=c+n_{1}p_{1}+\cdots+n_{r}p_{r}, n_{i}\in \mathcal{N}, p_{i}\in P\}$ .

$c$ is called the constant and each $p_{i}$ is called a period of $Q(c, P)$ .
A subset $Q$ of $\mathcal{N}^{k}$ is said to be linear if and only if there exist an element $c$ and a finite

subset $P$ of $\mathcal{N}^{k}$ such that $Q=Q(c, P)$ . $Q$ is said to be semilinear if and only if $Q$ is the
union of a finite number of linear sets. Furthermore, a subset $Q=Q(c, P)$ of $\mathcal{N}^{k}$ is said to
be simple if and only if the elements of $P$ are linearly independent. A subset $Q$ is said to be
semi-simple if and only if $Q$ is a finite disjoint union of simple sets.

We note that any linear set has more than one description in terms of constants and
periods, and so does any $s$ emilinear set. Therefore, we distinguish between a semilinear set
$Q$ and a description $Q(c_{1}, P_{1})\cup\cdots\cup Q(c_{n}, P_{n})$ of $Q$ .

Definition A description $Q(c, P)$ of a linear set is said to be canonical if and only if each
period is not linear sum of the other periods. Also, description $Q(c_{1}, P_{1})\cup\cdots\cup Q(c_{n}, P_{n})$

of a semilinear set is said to be canonical if and only if each description $Q(c_{i}, P_{i})$ of a linear
set is canonical.

Note that for any linear subset $Q$ of $\mathcal{N}^{k}$ , a canonical description $Q(c, P)$ is unique because
$c\in \mathcal{N}^{k}$ and $P$ is a finite subset of $\mathcal{N}^{k}$ . We also note that for any linear set $Q$ , a canonical
description is effectively found from a description of $Q$ . However, there exists a semilinear
subset such that a canonical description is not unique.

The Parikh mapping defined as follows connects EMLs with semilinear subsets of $\mathcal{N}^{k}$ .

Definition Let $\Sigma=\{a_{1}, \ldots, a_{k}\}$ be an alphabet. The Parikh mapping $\psi_{(a_{1},\ldots,a_{k})}$ or
$\psi$ when $(a_{1}, \ldots, a_{k})$ is understood, is the function from $\Sigma^{*}$ into $\mathcal{N}^{k}$ defined by $\psi(w)=$

$(\# a_{1}(w), \ldots\# a_{k}(w))$ , where $\#_{a}.(w)$ is the number of occurrences of $a_{i}$ in $w$ .

We call $\psi(L)=\{\psi(w)|w\in L\}$ the Parikh set of an $EMLL$ .
The following theorem is due to Siromoney [4]:

Theorem 3.1 (Siromoney) Let $\Sigma=\{a_{1}, \ldots, a_{k}\}$ be an alphabet. For any strongly bounded
language $L$ over $\Sigma,$ $L$ is generated by an $EMGG$ of order $k$ if and only if the Parikh set of $L$

is a semilinear subset $Q$ of $\mathcal{N}^{k}$ . Moreover, an $EMGG$ is effectively found from a description
of $Q$ and vice versa.

For any semilinear set $Q$ , an $EMGG$ which generates an SBEML is effectively constructed
from a description of $Q$ in the following manner: It is enough to show the case that $Q$ is a
linear set. Let $Q(c, \{p_{1}, \ldots, p_{r}\})$ be a description of the linear set $Q$ . Also, let $c=(c_{1}, \ldots, c_{k})$

and $p_{i}=(p_{i}^{1}, \ldots,p_{i}^{k})$ . $Then_{(}G=(N, \Sigma, \Pi, S)$ where $\Sigma=\{a_{1}, \ldots, a_{k}\},$ $N=\{(A_{1}, \ldots, A_{k})\}$ ,
and $\Pi$ consists of the following matrix rules:

$[Sarrow a_{1}^{c_{1}}A_{1}\cdots a_{k^{k}}^{c}A_{k}],$ $[A_{1}arrow\lambda, \ldots, A_{k}arrow\lambda]$
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$[A_{1}arrow a_{1^{1}}^{p_{*}}A_{1}, \ldots, A_{k}arrow a_{k}^{p^{k}}A_{k}]$ for each $i$

From Theorem 3.1, we may regard the learning problem for SBEMLs as the learning
problem for semilinear sets.

From these, we can consider meaningful subfamilies of SBEMLs:

Definition For each positive integer $n$ , an SBEML $L$ is $s$aid to be n-linears SBEML if
and only if $\psi(L)$ is a union of exactly $n$ linear $s$ ets and there is no $i<n$ such that $\psi(L)$ is a
union of $i$ linear sets.

Thus, a l-linear SBEML is an SBEML whose Parikh set is a linear set.

4 Learnabilities from Positive Examples

On learning of formal languages, Angluin [1] presented a necessary and sufficient condition
for languages to be learnable from positive examples.

Condition 1 An indexed family of nonempty languages satisfies Condition 1 if and only if
there exists an effective procedure which on any input $i\geq 1$ enumerates a set of strings $T_{i}$

such that (1) $T_{i}$ is finite, (2) $T_{i}\subseteq L_{i}$ , and (3) for all $j\geq 1$ , if $T_{i}\subseteq L_{j}$ then $L_{j}$ is not a proper
subset of $L_{i}$ .

The next theorem shows that Condition 1 is a necessary and sufficient condition for a
family of languages to be learnable from positive examples.

Theorem 4.1 (Angluin) An indexed family of nonempty recursive languages is learnable
from positive examples if and only if it satisfies Condition 1.

The following condition is simply Condition 1 with the requirement of effective enumer-
ability of $T_{i}$ dropped.

Condition 2 We say an indexed family of nonempty recursive languages $L_{1},$ $L_{2},$ $L_{3},$
$\ldots$ ,

satisfies Condition 2 provided that, for every $i\geq 1$ , there exists a finite set $T_{i}\subseteq L_{i}$ such
that for every $j\geq 1$ , if $T_{i}\subseteq L_{j}$ then $L_{j}$ is not a proper subset of $L_{i}$ .

Theorem 4.2 (Angluin) If $L_{1},$ $L_{2},$ $L_{3},$
$\ldots$ , is an indexed family of recursive languages that

is learnable from positive examples, then it satisfies Condition 2.

This theorem may be used to show that a family of languages is not learnable from positive
examples..

We note that the Angluin’s results described above are concerned with only the recur-
siveness of languages. Hence, all of them are applicable to the learning problem for recursive
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sets, straightforwardly. In the sequel, we apply them to the problem for semilinear subsets
of $\mathcal{N}^{k}$ .

Let $\preceq$ be the relation on $\mathcal{N}^{k}$ defined by $u\preceq v$ for elements $u=(u_{1}, \ldots, u_{k})$ and $v=$

$(v_{1}, \ldots, v_{k})$ if and only if $u_{i}\leq v_{i}$ for each $i$ . The $relation\preceq is$ a partial order on $\mathcal{N}^{k}$ .

Definition Let $Q$ be a linear subset of $\mathcal{N}^{k}$ and $Q(c, \{p_{1}, \ldots, p_{r}\})$ be a canonical descrip-
tion of $Q$ . Then, a chamcteristic set of $Q$ is the finite $s$et

$C(Q)=\{c\}\cup\{c+p_{i}|1\leq i\leq r\}$ .

We note that, given the characteristic set $C(Q)$ of a linear set $Q$ , a canonical description
of $Q$ is effectively found. That is, the constant $c$ is the unique minimum element of $C(Q)$

with respect $to\preceq and$ then the set of periods is $\{p_{i}|q_{i}-c, q_{i}\in C(Q)-\{c\}\}$ .
Let $Q((c_{1}, \ldots, c_{k}), P)$ be a description of a linear subset of $\mathcal{N}^{k}$ . Then, for each element

$q=(q_{1}, \ldots, q_{k})$ of $Q$ , we denote $(q_{1}-c_{1})^{2}+\cdots+(q_{k}-c_{k})^{2}$ by $|q|_{c}$ . The next lemma
immediately follows from definitions $Q$ and $C(Q)$ :

Lemma 4.3 Let $Q$ be a linear subset of $\mathcal{N}^{k},$ $Q(c, P)$ be a canonical description of $Q$ , and
$C(Q)$ be the characteristic set of Q. For any element $q$ of $Q$ such that $q\not\in C(Q)$ , there exist
periods $p_{1},$ $\ldots,$

$p_{m}\in P$ such that for each $i,$ $|q|_{c}>|p_{i}|_{c}$ and $q=c+n_{1}p_{1}+\cdots+n_{m}p_{m}$ ,
where each $n_{i}\geq 1$ .

Lemma 4.4 Let $Q$ be a linear subset $of\mathcal{N}^{k}$ and $C(Q)$ be the characteristic set of Q. Then,

for any linear subset $Q’$ of $\mathcal{N}^{k}$ , if $C(Q)\subseteq Q’$ then $Q\subseteq Q’$ .

Proof. Let $Q=Q(c, P)$ be a linear subset of $\mathcal{N}^{k}$ and $C(Q)$ the characteristic set of $Q$ .
Suppose that $Q’=Q(c‘, \{p_{1}’, \ldots, p_{r}’\})$ is a linear subset of $\mathcal{N}^{k}$ such that $C(Q)\subseteq Q’$. Since
$C(Q)\subseteq Q’$ , for each % of $C(Q),$ $q_{j}=c‘+n_{1}^{j}p_{1}’+\cdots+n_{r}^{j}p_{r}’$ . Therefore, for each period
$p_{i}$ of $Q,$ $p_{i}=q_{i}-c=(n_{1}^{i}-n_{1}^{c})p_{1}’+\cdots+(n_{r}^{i}-n_{r}^{c})p_{r}’$. Hence, for each $q\in Q$ , there exist
$m_{1},$ $\ldots$ , $m_{r}\in \mathcal{N}$ such that $q=c’+m_{1}p_{1}’+\cdots+m_{r}p_{r}’$ . $\square$

Lemma 4.5 The family of linear subsets of $\mathcal{N}^{k}$ is learnable from positive examples.

Proof. Let $Q(c_{1}, P_{1}),$ $Q(c_{2}, P_{2}),$ $Q(c_{3}, P_{3}),$
$\ldots$ , be an effective enumeration of all descrip-

tions of linear sets. It is obvious that there exists an effective procedure which on any input
$i\geq 1$ enumerates a characteristic $s$ et $C_{i}$ of a linear set $Q(c_{i}, P_{i})$ . By definition of charac-
teristic sets of linear sets, $C_{i}$ is finite and $C_{i}\subseteq Q(c_{i}, P_{i})$ . Moreover, by Lemma 4.4, for all
$j\geq 1$ , if $C_{i}\subseteq Q(c_{j}, P_{j})$ then $Q(c_{j}, P_{j})$ is not a proper subset of $Q(c_{i}, P_{i})$ . Therefore, the
family satisfies Condition 1 and by Theorem 4.1 the proof is completed. $\square$

Corollary 4.6 The family of simple subsets of $\mathcal{N}^{k}$ is learnable from positive examples.
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Since for each $Q(c_{i}, P_{i})$ there exists an effective enumeration $\psi_{i1},$ $\psi_{i2},$ $\psi_{i3},$
$\ldots$ , of all Parikh

mapping, by an obvious dovetailing, $L_{11},$ $L_{21},$ $L_{21},$
$\ldots,$

$L_{ij},$
$\ldots$ , is an indexed family of l-linear

SBEMLs, where $Q(c_{i}, P_{i})=\psi_{ij}(L_{ij})$ . Therefore, from Theorem 3.1 and Lemma 4.5, we have
the following theorem.

Theorem 4.7 The family of l-linear SBEMLs is learnable from positive examples.

On the other hand, for $n\geq 2$ , the family of n-linears SBEMLs is not learnable from
positive examples, as shown in the followings:

Lemma 4.8 The family of semilinear subsets of $\mathcal{N}^{k}$ consisting of two linear sets is not
learnable from positive examples.

Proof. Consider the semilinear set $Q=Q_{1}\cup Q_{2}$ , where $Q_{1}=Q((0,0),$ $\emptyset$ ) and $Q_{2}=$

$Q((1,1),$ $\{(1,0), (0,1)\})$ . Let $T=\{q_{1}, \ldots, q_{n}\}$ be any nonempty finite subset of $Q$ . Consider
the $s$emilinear $s$et $Q^{T}=Q_{1}^{T}\cup Q_{2}^{T}$, where

$Q_{1}^{T}$ $=$ $Q((1,1),$ $\{q_{i}-(1,1)|q_{i}=(1, m)\in T\})$

$Q_{2}^{T}$ $=$ $Q((0,0),$ $\{qJ\in T|q_{j}=(n_{1}, n_{2}), n_{1}\neq 1\})$ .

Clearly, $T\subseteq Q^{T}$ and it is easy to verify that $Q^{T}\subseteq Q$ . For each $q_{i}\in T$ let $q_{i}=(n_{1}^{i}, n_{2}^{i})$ . Let
$n_{1}^{m}$ be the maximum integer of $n_{1}^{1},$

$\ldots,$
$n_{1}^{n}$ . Then, $q_{n}=(n_{1}^{m}+1,1)$ is in $Q$ but not in $Q^{T}$ , so

$Q^{T}$ is a proper subset of $Q$ . Thus Condition 2 fails. $\square$

The following lemma is proved by the trivial extension of the proof of Lemma 4.8.

Lemma 4.9 For each $n\geq 2$ , the family of semilinear subsets of $\mathcal{N}^{k}$ consisting of $n$ linear
sets is not leamable from positive examples.

Proof. Let $n$ be an integer greater than 2. Consider the semilinear subset $Q=Q_{1}\cup\cdots\cup Q_{n}$

of $\mathcal{N}^{2}$ , where for $l(1\leq l\leq n-1),$ $Q_{l}=Q((I-1,0),$ $\emptyset$ ) and $Q_{n}=Q((n-1,1),$ $\{(1,0), (0,1)\})$ .
Let $T$ . $=\{q_{1}, \ldots , q_{n}\}$ be any nonempty finite subset of $Q$ . Consider the semilinear set
$Q^{T}=Q_{1}^{T}\cup\cdots\cup Q_{n}^{T}$ , where

$Q_{l}^{T}$ $=$ $Q((l-1,0\}, \emptyset)$ for $1\leq l\leq n-2$

$Q_{n-1}^{T}$ $=$ $Q((n-1,1),$ $\{q_{i}-(n-1, l)|q_{i}=(n-1, m)\in T\})$

$Q_{n}^{T}$ $=$ $Q((n-2,0),$ $\{q_{i}\in T|q_{i}=(n_{1}, n_{2}), n_{1}\neq n-1\})$

From the proof of Lemma 4.8, it is easy to verify that $T\subseteq Q^{T}$ and $Q^{T}$ is a proper $s$ubset of
$Q$ . Thus Condition 2 fails. $\square$

The next theorem follows from Theorem 3.1 and Lemma 4.9.

Theorem 4.10 For each $n\geq 2$ , the family of n-linears SBEMLs is not learnable from
positive examples.

Corollary 4.11 The family of SBEMLs is not learnable from positive examples.
$($
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Procedure $IDI$

Input: A positive presentation $s_{1},$ $s_{2},$ $s_{3},$ $\ldots$ , of a l-linear SBEML $L$ .
Output: Asequence $G_{1},$ $G_{2},$ $G_{3},$

$\ldots$ , of EMGs.

Let $E_{0}:=\emptyset$ and $Q_{0}:=Q(0^{k},\emptyset)$ ;
For each $i\geq 1$ do

Read $(+,w_{i})$ ;
$E_{i}$ $:=E_{i-1}\cup\{\psi(w_{i})\}$ ;
If $Q_{i-1}$ is con$s$istent with $E_{i}$

then $G_{i}$ $:=G_{i-1},$ $Q_{i}$ $:=Q_{i-1}$ , output $G_{i}$ and go to $i+1$ step;
If found a unique minimum element $q$ of $E_{i}$ with respect $to\preceq$

then $1etqbeaconstantofQ_{i}$

else let $0^{k}$ be a constant of $Q_{i}$ ;
While $Q_{i}$ is not consistent with $E_{i}$ do

find $q\in E_{i}$ such that $q\not\in Q_{i}$ and $|q|_{c}$ is minimum;
add new period q–c to $Q_{i}$ ;

Construct an $EMGG_{i}$ from $Q_{i}$ and output $G_{i}$ ;
go to $i+1$ step;

Figure 1: The learner $IDl$

5 A Simple Learning Method for l-linear SBEMLs

Let $L$ be an unknown l-linear SBEML over an alphabet $\Sigma$ . As described in the previous
$s$ections, if the characteristic set of a linear set $\psi(L)$ is found, then an $EMG$ which generates
$L$ is effectively found. Therefore, the learner $IDI$ , illustrated in Figure 1, tries to find the
characteristic set from the given examples. $IDI$ outputs the same $EMG$ as a conjecture
while it is consistent with the given examples. When a conjecture is not consistent with the
examples, $IDI$ constructs a new conjecture.

Definition Let $L$ be a l-linear SBEML. A representative sample $R(L)$ of $L$ is a finite
subset of $L$ such that $\psi(R(L))$ contains the characteristic set of the linear set $\psi(L)$ .

Lemma 5.1 Let $L$ be a l-linear SBEML. Given a representative sample of $L$ , the learner
$IDI$ constructs an $EMGG$ which generates $L$ .

Proof. We shall show that, given a representative sample of $L,$ $IDl$ constructs a description
of a linear set $Q=\psi(L)$ . Since $\psi(R(L))$ contains the characteristic set of $Q,$ $IDI$ finds
a unique minimum element of it with respect to $\preceq$ , which is precisely a constant $c$ of a
description of $Q$ . Also, Lemma 4.3 and the construction of $IDl$ ensure that $IDI$ finds each
period $p_{i}$ of a canonical description of $Q$ in order of smaller size of $|p_{i}|_{c}$ . $\square$
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Since for any positive presentation $\sigma=s_{1},$ $s_{2},$ $s_{3},$ $\ldots$ , there exists a positive integer $i$

such that the set of strings appearing in $s_{1},$ $s_{2},$ $\ldots,$
$s_{i}$ is a representative sample of $L$ , by

Lemma 5.1, we have the following theorem:

Theorem 5.2 The learner $IDl$ identifies any l-linear SBEML in the limit from positive
examples.

Unfortunately, $IDI$ uses membershipness of examples, which is an NP-complete problem,
so $IDI$ is time-consuming. If there is a polynomial-time algorithm to solve the problem of
finding a canonical description of a linear set consistent with the given examples, then we
could have a learner which makes a conjecture in polynomial time for each time and identifies
any l-linear SBEML in the limit. However, we give $s$ome partial evidence for the difficulty
of the case.

Theorem 5.3 If $P\neq NP_{f}$ then there is no polynomial-time algorithm to solve the following
problem: given a finite subset $E$ of $\mathcal{N}^{k_{f}}$ find a canonical description $Q(c, P)$ of a linear
subset of $\mathcal{N}^{k}$ which contains all elements of $E$ .

Proof. Suppose that there exists an algorithm $A$ that runs in polynomial time and is
such that for any subset $E$ of $\mathcal{N}^{k},$ $A$ on input $E$ outputs a canonical description $Q(c, P)$

of a linear subset of $\mathcal{N}^{k}$ which contains all elements of $E$ . We $s$hall use $A$ to construct a
polynomial-time algorithm to decide whether $q\in Q(c, P)$ for an arbitrary element $q\in N^{k}$

and a canonical description $Q(c,P)$ . Since this latter problem is NP-complete, this will
imply $P=NP$, proving the theorem.

Let $q$ be an element in $N^{k}$ and $Q(c, P)$ be a canonical description of a linear subset of
$\mathcal{N}^{k}$ . We may construct the characteristic set $C$ of $Q(c, P)$ in polynomial time. Run $A$ on
input $C\cup\{q\}$ and denote the output by $Q(c’, P’)$ . Since a canonical description is unique
for any linear set, if c’ $=c$ and $P=P’$ then $q\in Q(c, P)$ , otherwise, $q\not\in Q(c,P)$ . We may
test whether $c=c’$ and $P=P’$ in polynomial time, we complete the proof. $\square$

Thus, as far as based on linear sets, it seems that the learning problem for l-linear
SBEMLs is computationally intractable.

Remark It is easy to verify that all processes of $IDI$ other than the consistency check are
done in polynonial time of the size of inputs.

Consider the family of SBEMLs such that the Parikh sets of any language in the family
is a simple $s$et. This family is also learnable from positive examples by Corollary 4.6. Since
the membership problem of simple sets is solvable in polynomial time, for each time $i,$ $IDI$

constructs an $EMG$ in polynomial time of $i,$ $k$ , and $m$ . Therefore, from the above remark,
we have the following:
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Procedure IDIS
Input: A positive presentation $s_{1},$ $s_{2},$ $s_{3},$ $\ldots$ , of a l-linear SBEML $L$ .
Output: A sequence $G_{1},$ $G_{2},$ $G_{3},$

$\ldots$ , of EMGs.

Let $E_{0}$ $:=\emptyset$ and $Q_{0}$ $:=Q(0^{k}, \emptyset)$ ;
For each $i\geq 0$ do

Construct an $EMGG_{i}$ from $Q_{i;}$

Ask the ideal teacher whether $L\subseteq L(G_{i})$ ;
If the teacher replies yes
then output $G_{i}$ and halt
Read $(+,w_{i})$ ;
$E_{i}$ $:=E_{i-1}\cup\{\psi(w_{i})\}$ ;
If found a unique minimum element $q$ of $E_{i}$ with respect $to\preceq$

then let $q$ be a constant of $Q_{i}$

else let $0^{k}$ be a constant of $Q_{i}$ ;
For each element $q$ in $E_{i}$ do

let q–c be a new period of $Q_{i;}$

go to $i+1$ step;

Figure 2: The learner IDIS

Theorem 5.4 For the family of SBEMLs such that the Parikh set of any language in the
family is a simple set, there exists a learner which, for each time $i(i\geq 1)$ , constructs an
$EMGG$ in polynomial time of $i,$ $k$ and $m$ , where $k$ is the cardinality of $\Sigma$ and $m$ is the
maximum length of the given examples.

6 Learning l-linear SBEMLs with an Ideal Teacher

In the previous section, we had no assumption on presentations of examples. In this time,
we assume that there exists a teacher who can answer questions of a learner and the learner
get informations from the teacher.

Let $L$ be an unknown SBEML. An ideal teacher gives informations to a learner on the
following conditions: (1) for any question whether $L\subseteq L(G)$ , the ideal teacher answers yes
if $L\subseteq L(G)$ and $no$ otherwise. In addition, if the answer is $no$ , the teacher gives an element
$s\in L-L(G)$ to the learner. (2) Eventually, the set of examples given by the ideal teacher
constitutes a representative sample of $L$ . Note that an ideal teacher gives only positive
examples.

For each time $i(i\geq 0)$ , the learner IDIS, illustrated in Figure 2, asks whether $L\subseteq L(G_{i})$

to the teacher. If the answer is yes, then IDIS outputs $G_{i}$ and halts. Otherwise, IDIS reads
a new example and reconstructs a description from the given examples.

The learner $IDI$ constructs a new conjecture only if a current conjecture is not consistent
with the examples, while the learner IDIS does so each time when an ideal teacher gives a

9
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new example. IDIS constructs a conjecture in the same way as $IDI$ does. Therefore, as we
have shown in Section 5, given a representative sample of $L$ , IDlS constructs an $EMGG$

which generates $L$ . Therefore, when all given examples consists of a representative sample
of $L$ , the teacher should answer yes, so the learner halts. From these observations, we have
the following theorem.

Theorem 6.1 Given any ideal teacher, then for any l-linear SBEML $L_{f}$ IDlS eventually
outputs an $EMGG$ such that $L=L(G)$ and halts.

We note that an identified description of a linear set is not always canonical.
The condition (2) on an ideal teacher is crucial. If examples are provided by a teacher

satisfying only the condition (1), IDIS might not identify a linear set. For example, consider
a linear subset $Q((0,0),$ $\{(1,0), (0,1)\})$ of $\mathcal{N}^{k}$ . If the teacher always gives examples from the
set $\{(n, 1)|n>0\}$ , then IDIS never identifies the linear set.

Next, we show the time complexity of learning. As we have remarked in Section 5, all
processes of $IDI$ other than the consistency check are done in polynomial time of $i,$ $k$ , and
$m$ , where $i$ is a time, $k$ is the cardinality of $\Sigma$ , and $m$ is the maximum length of the given
examples. Since the learner IDIS never checks whether a conjecture is consistent with the
examples, we have the following theorem.

Theorem 6.2 Given any ideal teacher, then for any l-linear SBEML, the total running
time of IDIS is bounded by a polynomial in $k,$ $n$ , and $m_{f}$ where $k$ is the cardinality of an
alphabet $\Sigma_{f}n$ is the number of all examples given by the teacher, and $m$ is the maximum
length of the examples.

7 Concluding Remarks

Intrinsically, our methods are based on semilinear subsets of $\mathcal{N}^{k}$ . Therefore, we could apply
the methods to families of languages other than SBEMLs, which have the same properties as
SBEMLs on the Parikh mappings, and also to families of objects closely related to semilinear
sets such as Presburger formulas, Petri nets, and so on.
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