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ABSTRACT

We determine formulas for the numbers of s-bases of Boolean functions (bases con-
sisting solely of symmetric functions) containing only n-ary functions under six kinds of
functional constructions besides ordinary composition. This is done on the basis of the
classification and basis enumeration results of the functional completeness theory.

1. Introduction

In the synthesis of switching circuits the set of given gates should construct any switch-
ing function. Such a set of logical functions is called a base. Due to practical reasons
elements of a base are usually selected from symmetric functions. Thus, bases consisting
of symmetric functions (so called s-bases) are of special interest.

$\rho$

The notion of s-base was introduced systematically first in [Tos72] under ordinary
composition and respective formulas for the numbers of s-bases consisting solely of n-ary
functions and solely of up-to n-ary functions (denoted by $N^{n}$ and $N\leq n$ respectively) were
given there. In the present paper we survey the same topic under known six different
ways of composition besides ordinary one and obtain similar formulas $N^{n}$ (or $N^{\leq n}$ ) for
each composition. This is done according to the following scheme.

Assume that sets of functions, called classes, are indexed by $i$ . Define n-profile $p_{n}(i)$ of
a class $i$ by the number of n-ary symmetric functions in the set. Let us call the number
of functions of a base the rank of a base and let $N_{r^{n}}$ denote the number of s-bases of rank
$r$ consisting solely of n-ary functions. Then $N^{n-}$ is determined in the following way.

1. Using the result of the classification of Boolean functions, we divide the set of all
symmetric functions into classes and determine n-profile $p.(i)$ of each class $i$ .

2. We enumerate all s-bases up-to equivalence, i.e. each s-base class (assume its rank r)
is represented by classes of functions as $\{i_{1}, i_{2}, \ldots, i_{r}\}$ . Then the number of s-bases
consisting of n-ary functions in the s-base class is equal to $p_{n}(i_{1})\cross p_{n}(i_{2})\cdots\cross p_{n}(i_{r})$ .
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3. Summing these numbers for all s-base classes for a rank $r$ we obtain corresponding
data $N_{r^{n}}$ . Finally, $N^{n}= \sum_{r=1}^{\max r}N_{r}^{n}$ equals the number of s-bases consisting solely of
n-ary functions. Similarly, $N\leq n$ can be obtained using up-to profile of a class which
is defined by the sum of the profile up to $n$ , i.e., $\sum_{j1}^{n_{=}}p_{j}(i)$ .

In 2 and 3 we need symbolic calculation (in some case sums of more than a hundred
terms), which is done by using the computer algebraic system Reduce [MSTM89].

2. Subsets of Boolean symmetric functions

Let $E=\{0,1\}$ and let $P_{2}$ denote the set of all logical functions, i.e. the union of all
functions $f$ : $E^{n}arrow E$ for $n=1,2,$ $,$ $..$ . The operation of. superposition (or composition)
of functions is defined formally in the following way (cf. [Ros77]): If $f,$ $g$ are m-ary and
n-ary functions from a set $F\subseteq P_{2}$ , then each function obtained from $f$ by permuting and
identifying variables and the $(m+n-1)$-ary function $h$ defined by setting

$h(x_{1}, \ldots, x_{m+n-1})$ $:=f(g(x_{1}, \ldots, x_{n}), x_{n+1}, \ldots, x_{m+n-1})$

is a superposition. Note that neither delays nor loop-structure are allowed for the compo-
sition; we will consider situations where several conditions are posed on the composition
in Sections 3, 4 and 5. So this composition we refer as ordinary one.

From the functional completeness theory we know that we can partition $P_{2}$ into equiv-
alence classes and can discuss “bases” in terms of these classes instead of individual
functions. We also know that the classes coincide with non-empty intersections of all
maximal sets. Such a class is conveniently represented by a binary m-string ( $m$ the num-
ber of maximal sets), called a characteristic vector, $a_{1}\ldots a_{m}$ , where $a_{i}=0$ if $f\in H_{i}$ and
$a_{i}=1$ otherwise, for maximal sets $H_{i},$ $1\leq i\leq m$ . All functions $f$ having the same
characteristic vector form a class offunctions. All bases with the same set of classes form
a class of bases [Miy88].

A function $f(x_{1}, \ldots, x_{n})$ is said to be symmetric if $f(x_{1}, \ldots, x_{n})=f(x_{\pi(1)}, \ldots, x_{\pi(n)})$

holds for all $x_{1},$ $\ldots,$
$x_{n}\in E$ and every permutation $\pi$ on $\{1, \ldots, n\}$ . Let us denote the so-

called fundamental symmetric function by $s_{r}^{n}$ , which takes the value 1 if and only if its $r$ out
of all $n$ arguments assume the value 1. For given $n$ , there exist exactly $n+1$ fundamental
symmetric functions: $s_{0}^{n},$ $s_{1}^{n},$

$\ldots,$
$s_{n}^{n}$ . Each symmetric function can be uniquely represented

as a disjunction of fundamental symmetric functions [Sha49]. This gives a notation for
symmetric functions, setting $(n\geq 1):s_{r_{1},\ldots,r_{1}}^{n}$ $:=s_{r_{1}}^{n}\vee\ldots\vee s_{r_{l}}^{n}$ . For example, the n-ary
constant-valued functions $c_{0}^{n}$ and $c_{1}^{n}$ are symmetric functions, which correspond to $s_{\phi}^{n}$ and
$s_{0,1,\ldots,n}^{n}$ , respectively. Hence, the number of n-ary symmetric functions in $P_{2}$ is 2$n+1$ and
the number of up-to n-ary symmetric functions is $2^{n+2}-4$ . Let $R=\{r_{1}, \ldots , r_{l}\}$ and let
$s_{R}^{n}=s_{r_{1},\ldots,r_{1}}^{n}$ . We assume further that $0\leq r_{1}<\ldots<r_{l}\leq n$ . Let $x_{1}+x_{2}+\ldots+x_{n}$ denote
the number of l’s in the vector $(x_{1}, \ldots, x_{n})$ . Thus $s_{R}^{n}(x_{1}, \ldots, x_{n})=1\Leftrightarrow x_{1}+\ldots+x_{n}\in R$ .

We denote by $H^{s}$ the set of symmetric functions from $H\subseteq P_{2}$ . Also we denote the
intersection of the sets $H_{1},$

$\ldots$ , $H_{i}$ by $H_{1}\ldots H_{i}$ and the complement set of $H$ by $\overline{H}$ , i.e.,
$\overline{H}=P_{2}\backslash H$ . Hereafter, $x+y(mod 2)$ and $xy(mod 2)$ are denoted by $x+y$ and $xy$ ,
respectively.
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Definition 2.1. (see $e.g$ . [MSHMF88])

1) Functions preserving zero: $T_{0}=\{f|f(0, \ldots, 0)=0\}$ .
$T_{0}^{s}=\{s_{R}^{n}|0\not\in R\}$ . $|T_{0^{S}}(n)|=2^{n}$ .

2) Functions preserving one: $T_{1}=\{f|f(1, \ldots,\dot{1})=1\}$ .
$T_{1^{S}}=\{s_{R}^{n}|n\in R\}$ . $|T_{1^{S}}(n)|=2^{n}$ .

3) Monotone increasing functions: $M=$ { $f|f(x_{1},$
$\ldots,$

$x_{n})\leq f(y_{1},$
$\ldots,$

$y_{n})$ if $x_{i}\leq y_{i}$ for all $i$}.
$M^{s}=\{c_{0}^{n}=s_{\phi}^{n}, s_{n}^{n}, s_{n-1,n}^{n}, \ldots, s_{1,2,\ldots,n}^{n}, c_{1}^{n}=s_{0,1,\ldots,n}^{n}\}$ . $|M^{s}(n)|=n+2$ .

4) Selfdual functions: $S=\{f|f(x_{1}, \ldots, x_{n})=f(\overline{x_{1}}, \ldots, \overline{x_{n}})\}$ ,
$S^{s}=$ { $s_{R}^{n}|i\in R$ if and only if $n-i\not\in R$ for an $i=0,$ $\ldots,$ $(n-1)/2,$ $n$ odd}.
$|S^{s}(n)|=2^{(n+1)/2}$ for $n$ odd and $0$ for $n$ even.

5) Linear functions: $L=$ { $f|f(x)=a_{0}+a_{1}x_{1}+\ldots+a_{n}x_{n}$ for some $a_{i}\in E$}.
$L^{s}=\{c_{0}^{n}, c_{1}^{n},x_{1}+\ldots+x_{n},1+x_{1}+\ldots+x_{n}\},$ $|L^{s}(n)|=4$ .

6) Conjunctions: $C=[\{c_{0}^{n}, c_{1}^{n}, \wedge(conjunction)\}]$ .
$C^{s}=\{c_{0}^{n}, c_{1}^{n}, s_{n}^{n}=x_{1}\ldots x_{n}\}$ . $|C^{s}(n)|=3$ .

7) Disjunctions: $D=$ [$\{c_{0}^{n},$ $c_{1}^{n},$ $\vee$ (disjunction)}].
$D^{s}=\{c_{0}^{n}, c_{1}^{n}, s_{1,2,\ldots,n}^{n}=x_{1}\vee\ldots\vee x_{n}\}$. $|D^{s}(n)|=3$ .

8) l-clique functions (l-side intersecting functions): [PMN88]
$N_{0}=$ { $f|$ if $f(x)=f(y)=1$ then $x_{i}=y_{i}=1$ for some $i$}.
$N_{0^{s}}=$ { $s_{R}^{n}|2r_{1}>n$ , where $r_{1}$ is the smallest in $R$}.
$|N_{0}^{s}(cn)|=2^{n/2}$ for $n$ even and $2^{(n+1)/2}$ for $n$ odd.

9) O-clique functions (O-side intersecting functions):
$N_{1}=$ { $f|$ if $f(x)=f(y)=0$ then $x_{i}=y_{i}=0$ for some $i$}.
$N_{1^{S}}=$ { $s_{R}^{n}|2r<n$ , where $r$ is the greatest in $\{0,1,$

$\ldots,$
$n\}\backslash R$ }.

$|N_{1}^{s}(n)|=2^{n/2}$ for $n$ even and $2^{(n+1)/2}$ for $n$ odd.
10) Functions exchanging zero and one: $X=\{f|f(x, \ldots , x)=\overline{x}\}$ . $s$

$X^{s}=\{s_{R}^{n}|0\in R, n\not\in R\}$ . $|X^{s}(n)|=2^{n-1}$ .
11) Monotone decreasing functions: $M’=$ { $f|f(x)\geq f(y)$ if $x_{i}\leq y_{i}$ for all $i$}.

$M^{J^{S}}=\{c_{0}^{n}, s_{0}^{n}, \ldots, s_{0,1,\ldots,n-1}^{n}, c_{1}^{n}\}$ . $|M^{\prime S}(n)|=n+2$ .
12) Functions uniting zero and one:

$K=\{f|f(0, \ldots, 0)=f(1, \ldots, 1)\}$ .
$K^{s}=$ { $s_{R}^{n}|0,$ $n\in R$ or $0,n\not\in R$} . $|K^{s}(n)|=2^{n}$ .

Note that there exist no symmetric functions in $S$ for $n$ even $[ArH63]$ (this is the reason
why our formulas have two different forms depending on whether $n$ is even or odd).

Lemma 2.1. $M^{s}(n)\subseteq N_{0}^{s}\cup N_{1^{s}}$ .

Lemma 2.2. For $n\geq 2_{f}L^{s}(n)\cap M^{s}(n)=L^{s}(n)\cap M^{\prime s}(n)=L^{s}(n)\cap C^{s}(n)=L^{s}(n)\cap D^{s}(n)$

$=C^{s}(n)\cap D^{s}(n)=M^{s}(n)\cap M^{JS}(n)=\{c_{0}^{n}, c_{1}^{n}\}$ .
And

$M^{\prime s}(n)\cap N_{0}^{s}(n)=L^{s}(n)\cap N_{0^{s}}(n)=c_{0^{f}}^{n}M^{rs}(n)\cap N_{1^{S}}(n)=L^{s}(n)\cap N_{1^{S}}(n)=c_{1}^{n}$.

Corollary 2.1. $L^{s}(n)\backslash \{c_{0}^{n}, c_{1}^{n}\}\subseteq(S^{s}\cup\overline{S}^{s})\overline{N_{0}}^{s}\overline{N_{1}}^{s}\overline{M}^{s}\overline{M^{\prime^{S}}}$

Lemma 2.3. Forn even $S^{s}(n)=\phi$ . For $n$ odd, $S^{s}(n)\cap L^{s}(n)=\{a+x_{1}+\ldots+x_{n}|a=0,1\}_{f}$

$S^{s}(n)\cap M^{s}(n)=S^{s}(n)\cap N_{0}^{s}(n)=S^{s}(n)\cap N_{1^{s}}(n)=N_{0}^{s}(n)\cap N_{1^{S}}(n)$

$=S^{s}(n)\cap M^{s}(n)\cap N_{0}^{s}(n)\cap N_{1^{S}}(n)=\{s_{(n+1)/2,\ldots,n}^{n}\}_{f}$

and $S^{s}(n)\cap M^{\prime s}(n)=\{s_{0,1,\ldots,(n-1)/2}^{n}\}$ .

$N_{0^{s}}(n)\cap M^{s}(n)=\{x(n=1), c_{0}^{n}, s_{m,m+1,\ldots,,n}^{n}|m>n/2\}$ ,
Lemma 2.4.

$N_{1}^{s}(n)\cap M^{s}(n)=\{x(n=1), c_{1}^{n}, s_{m,m+1,\ldots,n}^{n}|m<n/2+1\}$ .
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Table 1: Profile of the classes of symmetric functions under ordinary composition.

Corollary 2.2. $N_{0}N_{1}M=\{\begin{array}{l}\phi\{x(n=1),s_{(n+1)/2,(n+1)/2+1,\ldots,n}^{n}\}\end{array}$ $nnoddeven$
,

$N_{0^{s}}(n)\cap C^{s}(n)=\{c_{0}^{n}, s_{n}^{n}=x_{1}\wedge\cdots\wedge x_{n}\}$ ,
Lemma 2.5.

$N_{1^{S}}(n)\cap D^{s}(n)=\{c_{1}^{n}, s_{1\ldots,n}^{n_{)}}=x_{1}\vee\cdots\vee x_{n}\}$ .

The following theorem on the completeness under ordinary composition and the clas-
sification of Boolean functions are well-known.

Theorem 2.1. [Pos21] $P_{2}$ has exactly the following 5 maximal sets under ordinary com-
position: $T_{0},$ $T_{1},$ $S,$ $L$ and $M$ .

The 15 classes of functions and 42 classes of bases of $P_{2}$ are well-known [Jab52, INN63,
Krn65]. It is also well-known that each from these classes contains symmetric functions,
and hence classes of s-bases coincide with classes of bases. We list the profile of each class
from [Tos72] which will be used in Section 4. For example, the functions in class 3 are:
$s_{0,r_{1},\ldots,r_{1}}^{n},$ $n>2$ except the constant function $c_{1}^{n}$ . The function $x_{1}+\ldots+x_{n}+1$ is also
excluded for $n$ even.

The number $N^{n}$ of s-bases of $P_{2}$ under ordinary composition consisting of n-ary $(n>1)$
functions is $2^{n}+4^{n-1}-n-4$ if $n$ is even and $2^{(n-1)/2}+4^{n-1}+3\cdot 8^{(n-1)/2}+2^{n-1}-6$

otherwise [Tos72]. The similar formulas for $N\leq n$ are also given there.
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3. S-bases under r-line and 2-line fixed codings

r-line coding

Freivalds [Fre68] introduced the notion of completeness under r-line coding (which he
called up to coding completeness). In this construction every primary input and primary
output of a network consists of “r-lines” and signals $0$ or 1 are feeded to each input or
taken out from the output as a binary code word with the length $r$ . Two completeness
notions were introduced there: one under r-line coding and the other under fixed r-line
coding.

Lemma 3.1. [Fre68] There are 3 maximal sets under r-line coding: $L,$ $C$ and $D$ .
The classes of $P_{2}$ under r-line coding are given in [MIS85]. There is a symmetric

representative in each class. Thus, classes of s-bases coincide with those of bases.

Theorem 3.1. There exist exactly 5 classes of symmetric functions and 4 classes of
s-bases under r-line coding.

The classes and their profiles are shown in Tables 2, 3, respectively. The classes of
s-bases are: rank 1: (5); rank 2 : $(2,3),(2,4),$ $(3,4)$ .

Table 2: Classes of symmetric functions under r-line coding completeness.

Table 3: Profiles and up-to profiles of the classes under r-line coding.

Theorem 3.2. The number of s-bases consisting only ofn-ary functions $(n\geq 2)$ under r-
line coding is: $N_{1}^{n}=2^{n+1}-6$ $($Sheffer symmetric $functions)_{f}N_{2^{\mathcal{R}}}=p_{n}(2)p_{n}(3)+p_{n}(2)p_{n}(4)$

$+p_{n}(3)p_{n}(4)=2\cdot 1+2\cdot 1+1\cdot 1=5$ . Thus there are $N^{n}=2^{n+1}-1$ s-bases. Similarly
from Table 3 we have the number $N^{\leq n}$ of the s-bases consisting of up-to n-ary functions:
$N\leq n=2^{n+2}+5n^{2}-14n+1$ .

5
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2-line fixed coding

The completeness problem under a 2-line fixed coding: $0arrow 01$ and $1arrow 10$ (this is
so called “double rail logic”) was solved by Ibuki [Ibu68]. Karunanithi and Friedman
$[KaF78]$ also considered this completeness independently. This notion is also related with
SP-algebra considered in [Cej69].

Lemma 3.2. There are 6 maximal sets under 2-line fixed coding: $N_{0},$ $N_{1},$ $S,$ $L,$ $C$ and $D$ .

The following 12 classes is due to [Ibu68]. There is a symmetric representative in each
class. Hence classes of s-bases and classes of bases coincide under 2-line fixed coding.

Theorem 3.3. There are exactly 12 classes of symmetric functions of $P_{2}$ under 2-line
fixed coding (Table 4). Their profiles are given in Tables $5_{J}6$.

Table 4: Classes of symmetric functions under 2-line fixed coding.

There are 28 classes of bases under 2-line fixed coding [Ibu68]: 1 of rank 1, 22 of rank
2 and 5 of rank 3.

Theorem 3.4. The formula $N^{n}$ for the number of s-bases under 2-line fixed coding is
given in Table 7.

4. S-bases under compositions with delayed functions

In this section we treat three compositions defined over functions with a unit delay, i.e.
here each primitive function is assumed to have a unit time delay for its computation.
These constructions are closely related each others (the difference lies in the treatment of
constant functions).

$\sim$

Uniform composition
Kudryavcev initiated the theory of uniform composition [Kud60] The following lemma

is proved in [Kud60], and explicit statement in this form is due to Nozaki [Noz78].

6
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Table 5: Profiles of the classes under 2-line fixed coding.

Table 6: Up-to profiles of the classes under 2-line fixed coding.

Table 7: Number of s-bases consisting of n-ary functions under 2-line fixed coding.

7
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Table 8: Classes of symmetric functions under uniform compositions.

Lemma 4.1. [Kud60] There are 8 maximal sets under uniform composition: $T_{0_{f}}T_{1}$ , $S$ ,
$L,$ $M,$ $MLX$ and $K$ .

Theorem 4.1. There are exactly 118 classes of s-bases under uniform composition. The
corresponding $N^{n}$ is indicated in Table 11.

Ibuki and Inagaki constructions
Ibuki and Inagaki constructions give 7 and 6 maximal sets which coincide with above

sets except $K$ and $K,$ $X$ , respectively. Although the classes coincide in all three cases,
bases are different due to the extra coordinate. There are 93 and 82 classes of bases in
Ibuki [Ibu68] and Inagaki [Ina82] cases, respectively. These observations are also valid
for s-bases since there is a symmetric representative in each class. The corresponding
formulas $N^{n}$ for Ibuki and Inagaki constructions are indicated in Tables 12,13.

Table 9: Profiles of the classes under uniform composition.

$\star$
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Table 10: Up-to profiles of the classes under uniform delay compositions.

Table 11: Number of s-bases consisting of n-ary functions under uniform composition.

Table 12: Number of s-bases consisting of n-ary functions (Ibuki construction).

Table 13: Number of s-bases consisting of n-ary functions (Inagaki construction).

9
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Table 14: Classes of symmetric functions under s-completeness.

6.

5. S-bases under sequential circuit composition

Compositions allowing loops by using unit delay primitives and the notion of s-completeness
are introduced by Nozaki [Noz84] (s-for sequential circuit).

Lemma 5.1. [Noz84] There are exactly the following 6 maximal sets under s-completeness: $N_{0},$ $N_{1},$ $S,$ $L,$ $M$

and $M’$ .

The classification of $P_{2}$ -functions in this case was given in [MIS85]. There are exactly
16 $P_{2}$-classes, however, in class $\overline{N}_{0}\overline{N}_{1}\overline{SL}M\overline{M’}$ (16th) there is no symmetric function (for
example, non-symmetric function $x_{1}x_{2}\vee x_{3}x_{4}$ belongs to this class and there is no such
example for $n<4$).

Lemma 5.2. There is no symmetric representative in the above class 16.

This is the only case we have observed so far that the classes of symmetric functions
and those of all functions of $P_{2}$ do not coincide (however, in $P_{3}$ there exist no symmetric
function in 12 among 406 classes under ordinary composition [Sto87]).

Theorem 5.1. There are 15 classes of symmetric functions under s-completeness (Table
14) and their profiles are given in Tables 15,16.

Theorem 5.2. There are exactly 50 classes of s-bases under s-completeness. The corre-
sponding formula for $N^{n}$ is indicated in Table 17.

1
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Table 15: Profiles of the classes under s-completeness.

Table 16: Up-to profiles of the classes under s-completeness.

Table 17: Number of s-bases consisting of n-ary functions under s-completenss.

11
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Table 18: Numbers of s-bases consisting solely of n-ary symmetric functions under several construction.

6. Concluding remarks

We have given the profile of each class for each of the known 7 constructions. By this we
have given formulas for the number of s-bases consisting solely of n-ary functions. $T^{he}$

numerical data for the small numbers of $n$ are given in table 18. The rapid growth of
uniform composition is mainly due to the existence of rank 3 s-bases each of which is
consist of 3 classes each having $O(2^{n-1})$ profile. By the given data of up-to profiles of the
classes we can calculate the formula $N\leq n$ for the number of s-bases consisting of up to
n-ary functions.

Classification and base consideration for another modification of algebra of logic $\phi^{o}$

proposed by Cejtlin [Cej69] was done in [Tos81]. Several other modifications of propo-
sitional algebras are considered in [Gin85]. The profiles of the functions (not symmetric
functions) of the classes are not known except some of them [Krn65], because explicit for-
mulas for the numbers of n-ary monotone or clique functions [PMN88] are not known. For
many-valued cases, the problem is not yet considered except symmetric Sheffer functions
for 3-valued case [Sto89].
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