
108

Complexity of the Optimum Join Order Problem

in Deductive Databases

京都大学工学部 ・ 宇野 裕之

(Yushi UNO, Faculty of Engineering, Kyoto University, Kyoto, Japan)

京都大学工学部・茨木 俊秀

(Toshihide IBARAKI, Faculty of Engineering, Kyoto University, Kyoto, Japan)

1 Introduction

The roll of inference in a deductive database system is to generate new facts from given
rules and facts. These rules and facts constitute a database (knowledge base). In the practical
applications, it is important to execute the inference process efficiently. A main cause of ham-
pering inference efficiency is that the size of intermediate data may explode before the answer is
derived. Therefore, it is important to carry out inference process so that the size of intermediate
data is kept small.

Now, assume that the rules are represented by Horn clauses, as used in Prolog. In this case,
each predicate can be considered as a relation, and given facts are explicitly kept in the form
of extensional relational tables (i.e., extensional database). Other predicates are determined by
the inference procedures based on the given rules and extensional tables. [1, 2, 7, 10]. In other
words, the inference procedure can be understood as executing operations of relational databases
on many relational tables. Among these operations applied to databases, the join operation is
most important in the sense that it consumes most of the computational time. Therefore, this
paper will concentrate on the join operations and evaluate the size of the intermediate data
generated by them.

Define a graph, called a query graph, by denoting each relational table by a node and by
connecting two nodes to be joined by an edge. Theoretically, a query graph can be an arbitrary
graph, but in practice it is often a tree. The amount of intermediate data generated by join
operations relies on the execution order of join operations. If we use merge-scan method to
execute join operations, determining a join order that minimizes the sum of the intermediate
data sizes is equivalent to find an optimum selection order of all edges in the query graph.

In this paper, we examine the computational complexity of this problem, and show that the
problem is NP-hard even if query graphs are restricted to be trees. This fact suggests that no
algorithm can compute an optimum join order in polynomial time in the size of query trees.

数理解析研究所講究録
第 695巻 1989年 108-114

A $U\cup$

However, it is also observed that, if we further restrict query trees to be certain special types of
trees, relatively efficient polynomial time algorithms exist.

2 Definitions

2.1 Relational Tables and Selectivity Factors

Join is an operation which constructs a new relational table from two given relational tables.
The size of the resulting table is determined by the sizes of original tables and the selectivity
factor between them. The computing cost is also determined by the size of the resulting table,
as will be discussed in the next section.

When we execute join operations, the size of each relational table and the selectivity factor
between two relational tables to be joined determine its computational time. Introduce the
following definitions.

R; : the i-th relational table,
N_{i} : the size of R_{i} . i.e., the number of lines which are stored in R_{i} ,
f_{ij} : the selectivity factor between R_{i} and R_{j} .

The join operation on an attribute a of a relation R_{i} and b of R_{j} , where a and b have the same
domain, produces the relation that has all attributes in R_{i} and R_{j} , and contains a concatenation
of aline in \mathfrak{X} and aline in R_{j} if and only if these lines have the same value in a and b , respectively.
We denote this operation

$R_{i}.$ a $NR_{j}.b$.

The size of the new relational table is denoted by $f_{ij}N_{i}N_{j}$. i.e., this is the definition of selectivity
factor.

2.2 Query Graph and Query Tree

Queries which are given to a deductive database can be answered by executing operations of
relational algebra such as projection, selection, join, sum of sets and difference of sets in some
order. Among these operations, the join operation is the most important in the sense that it
requires a dominating computational time. In view of this, we pay attention in the following
discussion only to the join operations.

When we are asked to execute a set of join operations on relational tables $R_{1},$ $R_{2},$
$\cdots,$

R_{n} ,
denote each relational table R_{τ}. as a node \mathfrak{X} and connect two nodes R_{η}

. and R_{j} by an edge
(R_{i}, R_{j}) if they are to be joined. The resulting graph is called a query graph. Associate with
each node \grave{R}_{i} its size N_{i} , and with each edge (R_{i}, R_{j}) its selectivity factor f_{ij} . When a query
graph is a tree, it is called a query tree. As we encounter only query trees in most of the
applications, we consider query trees in the rest of this paper.

2

11U

3 Definition of OPTJOIN

3.1 Computational Cost of a Join Operation

As efficient methods of joining two relationa[l tables, two methods using sorting technique
and using hashing technique are known. Operation $R_{i}.aN$ Rj.b by the first method proceeds
as follows.

\bullet Sort au lines in R_{η}
. by the values of attribute a , and R_{j} by the values of attribute b .

\bullet Scan the lines in both relations in ascending order while outputting the join results.

These steps respectively require the computational time

. $O(N;\log Ni+N_{j}\log N_{j})$,
$\bullet O(N;+N_{j}+f_{ij}N_{i}N_{j})$.

The latter method of hashing proceeds as follows.

. Construct the hash table of the values of attribute b in R_{j} .. Scan the lines in R_{i} , while examining the existence of lines in R_{j} that have the same value
of attribute b as the current value of attribute a , by making use of the hash table, and
output the join results.

These steps respectively require the average computational time

. $O(N_{i}+N_{j})$,. O (N_{i} 十 N_{j} 十 $f_{ij}N_{i}N_{j}$).

In either nethod, $O(f_{ij}N_{i}N_{j})$ is dominant in most cases. Also this value is important because
it gives the size of the resulting relational table. For this reason, we define the cost $c(e)$ needed
for joining an edge $e=(R, R_{j})$ by

$c(e)=f_{ij}N_{i}N_{j}$.

3.2 Merge-Scan Method and OPTJOIN

In addition to the straightforward method [9], called nested-scan, there are two known meth-
ods of executing join operations in more efficient manner; nested-loops method [4], and the
merge-scan method [9]. For the nested-loops method applied to a given query, a polynomial
time algorithm is known to determine an optimal execution order of joins that minimizes com-
putational cost of join operations [4]. Therefore, we concentrate here on the merge-scan method.

The merge-scan method repeats the operation of selecting an edge in a query tree and joins
its end nodes (i.e., the corresponding relational tables) until all the edges disappear. The join
of two relational tables connected by an edge is executed by an appropriate method, as will be

3

$]_{--}1_{i_{\vee}}$

discussed later, and the new relational table is explicitly constructed. The final relational table
obtained by joining all the edges in the query tree is the desired result.

The problem of finding an optimal join order for a given query tree (i.e., finding an optimal
order of edges), which minimizes the total computational cost of the merge-scan method, is
stated as follows.

OPTJOIN
Input: a query tree $T=(V, E),$ $V=\{R_{1}, R_{2,}R_{n}\},$ $E=\{e_{1}, e_{2}, \cdots, e_{m}\}(m=$

$n-1)$, size N_{i} of each node R_{i} , and selectivity factor f_{*j} of each edge $e=(R, R_{j})$.
Output: a permutation $\pi=(e_{i_{1}}, e_{i_{2}}, \cdots, e:_{m})$ of all edges in E that minimizes cost
$C(\pi)$, where $C(\pi)=\sum_{k}c_{\pi}(e;_{k})$ and $c_{\pi}(e_{i_{k}})$ is the computational cost of joining two
end nodes of $e;_{k}$.after having joined edges $e_{i_{1}},$ $e_{i_{2}},$ $\cdots,$ $e_{i_{k-1}}$.

4 NP-hardness of OPTJOIN

In order to show that a problem A is NP-hard, we have to indicate that an already known
NP-complete problem B is (polynomially) reducible to $A[3]$, i.e.,

$B\prec A$.

Here, $B\prec A$ means that an arbitrary problem instance Q of B can be transformed into a
problem instance P of A in polynomial time in the size of Q , such that P and Q have the same
answer.

In our discussion, we employ 0-1 KNAPSACK in the place of B , and show that

0-1 $KNAPSACK\prec OPTJOIN$.

0-1 KNAPSACK is defined in the following.

0-1 KNAPSACK
Input: positive integers $a_{0},$ $a_{1},$ $\cdots,$ a_{n} (without loss of generality, we assume $a_{0}\geq$

$a_{i},$ $i=1,2,$ $\cdots,$ n).
Output: YES if there exist $x_{i}\in\{0,1\},$ $i=1,2,$ $\cdots,$ n , such that $a_{0}+ \sum_{i=1}^{n}a_{i}x_{i}=$

$A/2+1$, where $A= \sum_{i=0}^{n}a;$; otherwise NO.

Theorem 1 OPTJOIN i_{S} NP-hard. 口

proof See [8].

4

112

5 Special Query Trees

Even if there is no polynomial time algorithm to compute optimum join orders for arbitrary
query trees, there may exist such algorithms for special query trees. Some possible restrictions
are;

(1) restrict the depth of a query tree less than k from an appropriate root node,
(2) restrict the degree of each node less than k .

However, restriction (1) does not make OPTJOIN easier, because the query trees in the proof
of NP-hardness (Section 4) have depth $k\leq 2$.

Moreover, we can state the following theorem.

Theorem 2 OPTJOIN with restriction (2) under the condition that $k\leq 3$ is NP-hard. \square

proof See also [8].

6 Query Trees Solvable in Polynomial Time

As a result of previous sections, it became clear that query trees must be severely restricted
to have polynomial time algorithms. Here, we give polynomial time algorithms to the following
two kinds of query trees.

6.1 Stars

A star is a tree which has one center node to which all the other nodes are connected, as
shown in Fig.1. Node weights N_{i} and edge weights fo: are also given in the figure, where they
satisfy $0<f_{0i}\leq 1$ and $Ni\geq 1$.

Let $M_{i}=f_{0i}N_{i}(i=1,2, \cdots, m)$, and denote the edge with selectivity factor f_{0i} by $e;$.
Furthermore, suppose $M_{i}<M_{j}$ for $i<j$ without loss of generality. Now consider an arbitrary
join order π :

$7\Gamma=$ $(e_{i_{1}}, \cdots, e_{i_{a}}, \cdots, e_{i_{b}}, \cdot. ., e_{i_{n}})$.

Here, if $i_{a}>i_{b}$ holds in 7Γ , construct the corresponding join order $\pi’$ obtained by exchanging $e_{i_{a}}$

and $e_{i_{b}}$ in π :

$\pi’=(e_{i_{1}}, \cdots, e_{i_{b}}, \cdots, e_{i_{a}}, \cdots, e_{i_{n}})$,

Then their costs c_{π} and $c_{\pi’}$ become

$c_{\pi}=N_{0}$ ($M_{i_{1}}+\cdots+M_{i_{1}}\cdots M$;。$+\cdots+M;_{1}\cdots M_{i_{a}}\cdots M_{i_{b}}+$ 砥 1 $M_{i_{a}}\cdots\sim M_{i_{b}}\cdots M_{i_{n}}$),

$c_{\pi’}=N_{0}$ ($M_{i_{1}}+,$ $..+M_{i_{1}}\cdots M_{i_{b}}+\cdots+M_{i_{1}}\cdots M_{i_{b}}\cdots M;_{a}+$砥 1.. $M_{i_{b}}\cdots M_{i_{a}}\cdots M_{i_{n}}$).

and obviously satisfy $c_{\pi’}<c_{\pi}$. This shows that joining the edges in the increasing order of $f_{0i}N_{i}$

is optimum.
The computational time of this algorithm is $O(n\log n)$ for sorting $f_{0i}N_{i},$ $i=1,2,$ $\cdots,$ n .

5

113

62 Chains

A chain is a tree, in which each node has degree less than or equal to 2, as shown in Fig.2.
In this case, we can apply the following algorithm based on dynamic programming.

First of all, we define H_{ij} by

$H_{ij}= \prod_{k=i}^{j-1}f_{kk+1}\prod_{k=i}^{j}N_{k}$, $0\leq i<j\leq n$.

Each H_{ij} denotes the weight of the node when $R;,$ $R_{i+1},$ $\cdots,$ R_{j} are joined into one node. Then,
denoting the minimum cost of joining all nodes between R_{τ}. to $R_{j},$ $i<j$, by c_{ij} , the following
recursion holds.

$c_{ii}=0$, $i=1,2,$ $\cdots,$ n ,

$c_{ij}=\underline{\min_{0\leq k\leq ji-1}}[c_{i,i+k}+c_{i+k+1,j}+H_{ij}]$, for all i,j such that $1\leq i<j\leq n$. (6.1)

The above formulas expresses that the cost c_{ij} of joining a subtree from R_{i} to R_{j} into one node
is computed by regarding that the last edge to be joined connects N_{i+k} and N_{i+k+1} . Since the
break point k is not known in advance, minimum is taken over all k . Finally, the optimal total
cost c^{*} for computing joins of a chain of length n is given by

$c^{*}=c_{0n}$.

Formulas (6.1) can be solved by computing c_{ij} in the nondecreasing order of $|j-i|$. As there
are $n(n-1)/2$ possible pairs of i and j , the computational time of this algorithm is $o(n^{2})$.

$N_{0}N_{1}Nrightarrow^{Z}$ 凡-2 N襲-l N_{\hslash}

f_{01} fiz $f_{n\cdot 2n- 1}$ $f_{\hslash- 1n}$

Fig 2 A chain.

Fig. 1Astar.

6

114

7 Conclusion

In this paper, we showed that OPTJOIN is NP-hard for general query trees, but can be solved
in polynomial time for some special query trees. As 0-1 KNAPSACK is used in this paper to
prove that OPTJOIN is NP-hard, OPTJOIN may be only weakly NP-hard. Therefore, there
may exist polynomial time approximation schemes for OPTJOIN by modifying those proposed
for 0-1 KNAPSACK (e.g., [5]).

References

[1] Bayer, R., “Database Technology for Expert Systems”, International GI-Kongress, 85, Wis-
senbasiete Systeme, hformatik Fachberichte 112, pp.1-16, 1985.

[2] Ceri, S., Tanca, L., “optimization of Systems of Algebraic Equations for Evaluating Datalog
Queries”, Proceeding of the 13th VLDB Conference, Brighton 1987.

[3] Garey, M. R., Johnson, D. S., “Computers and Intractability : A Guide to the Theory of
NP-Completeness“, W. H. Freeman and Company, San Fransisco, 1979.

[4] Ibaraki, T., Kameda, T., “On the Optimal Nesting Order for Computing N-Relational
Joins“, ACM Transaction on Database System, Vol.9, No.3, pp.482-502, 1984.

[5] Ibarr a, O. H., Kim, C. E., “Fast Approximation Algorithms for the Knapsack and Sum of
Subset Problems”, J. ACM, Vol.22, No.4, pp.463-468, 1975.

[6] Knuth, D. E., “The Art of Computer Programmings, Vol.2“, Addison-Wesley, Reading,
Mass., 1975.

[7] Ullman, J. D., “Implementation of Logical Query Languages for Databases”, ACM Trans-
action on Database System, Vol.10, No.3, pp.289-321, 1985.

[8] Uno, Y., Ibaraki, T., “Complexity of the Optimal Join Order Problem”, IEICE Technical
Report, COMP88-81, 1989.

[9] Won, K., “A New Way to Compute the Product and Join of Relations”, ACM SIGMOD,
1980.

[10] Zaniolo, C., “Safety and Compilation of Non-Recursive Horn Clauses”, 1st International
Conference on Expert Database Systems, pp.167-178, 1986.

7

