
169

Topological Sorting の NLOG 完全性について
-The Complexity of Topological Sorting Algorithms-

正代 隆義

Takayoshi Shoudai
Department of Mathematics, Kyushu University

We consider the following problem: Given a directed acyclic graph G and vertices

s and t , is s ordered before t in the topological order generated by a given topological

sorting algorithm? For known algorithms, we show that these problems are log-space

complete for NLOG. It also contains the lexicographically first topological sorting

problem. The algorithms use the result that NLOG is closed under conplementation.

1. Introduction

The topological sorting problem is, given a directed acyclic graph $G=(V, E)$, to find

a total ordering of its vertices such that if (v, w) is an edge then v is ordered before w .

It has important applications for analyzing programs and arranging the words in the

glossary [6]. Moreover, it is used in designing many efficient sequential algorithms,

for example, the maximum flow problem [11].

Some techniques for computing topological orders have been developed. The

algorithm by Knuth [6] that computes the lexicographically first topological order

runs in time $O(|E|)$. Tarjan [11] also devised an $O(|E|)$ time algorithm by employ-

ing the depth-first search method. Dekel, Nassimi and Sahni [4] showed a parallel

algorithm using the parallel matrix multiplication technique. Ruzzo also devised a

simple NL^{*}-algorithm as is stated in [3]. Hence this problem is in NC^{2} . However,

any completeness result does not seem to be known as to the exact complexity of the

topological sorting problem.

数理解析研究所講究録
第 695巻 1989年 169-177

In this paper, we consider the decision problems for the orders generated by topo-

logical sorting algorithms. We show that the problems for the above four algorithms

are all NLOG-complete. But it is not known whether all possible topological sorting

problems are NLOG-complete. Immermann [5] and Szelepcs\’enyi [10] showed that

NLOG is closed under complementation. By using this result, we can give NLOG-

alogrithms computing the Iexicographically first toplogical sort and other problems.

It should be noted that the “lexicographically first” property often makes some prob

lems P-complete [7,8,9]. But the topological sorting with this property remains in

NLOG.

2. Topological sort

We classify the known topological sorting algorithms into the following four types.

Let $G=(V, E)$ be a directed acyclic graph, where $V=\{1, \ldots, n\}$ and $|E|=m$.
(K) Knuth [6]: For each vertex $v\in V$, we assume an adjacency list $adj[v]$ of ver-

tices linked by an edge from v and an integer $count[v]$ for the number of predecessors

of v . The vertices whose count has been reduced to zero but which have not yet been

ordered are stored in a heap [11]. Two operations insert and deletemin are possible

on a heap. The algorithm is as follows. Initially the heap h is empty.

begin

for $v:=1$ to n do

if $count[v]=0$ then insert(v, h);

for $i:=1$ to n do

begin

v :=deletemin(h); $order[i]:=v$

for each $u\in adj[v]$ do

begin

$count[u]:=count[u]-1$;

if $count[u]=0$ then insert(u, h);

2

end

end

end.

Since deletemin and insert take $O(\log n)[11]$ and each operation executes n

times, this algorithm has an $O(n\log n+m)$ time bound. This algorithm generates

the lexicographically first topological order on G . We call this order l ft-order for

short.

(T) Tarjan [11]: We assume an adjacency list which is ordered lexicographcally.

The depth-first serch is executed to make a forest. Then we order the vertices in

decreasing order as they are unstacked. This algorithm runs in $O(n+m)$ time.

(D) Dekel, Nassimi and Sahni [4]: We assume an adjacency matrix. By using

matrix multiplication, we can compute the length of the longest path from any vertex

with no predecessors to each vertex. Then vertices are sorted in nondecreasing order

of their lengths. This is an NC^{2}-algorithm.

(R) Ruzzo (Cook [3]): We compute the transitive closure of an adjacency matrix.

This gives the number of predecessors of each vertex by summing the columns. Then

we sort vertices by these numbers.

Generally the problem $TS(A)$ is defined as follows: Given a directed acyclic graph

$G=(V, E)$ and two distinguished vertices s and t , determine whether s ordered before

t in the order generated by a given topological sorting algorithm A . We define the

lexicographically first topological sorting problem (LFTS) as TS(K).

3. Topological sortings are NLOG-hard

We will show that the problem LFTS is NLOG-hard. The topological sorting prob-

lems for the other algorithms mentioned in Section 2 can also be shown NLOG-hard

in a similar way.

We identify the vertices with its numbers. For $u,$ $v\in V,$ $uarrow^{*}v$ denote the

existence of a path from u to v , and $uarrow+v$ denote the fact $u\neq v$ and $uarrow^{*}v$. In

3

172

addition, $u\prec v$ denote the fact that u is ordered before v in the lft-order. For the

l ft-order of any directed acyclic graph, the following lemma holds.

Lemma 3.1. For any $u,$ $v\in V,$ $u\prec v$ if and only if either $u\sim^{+}v$ or there exists a

vertex x such that $u\prec x_{f}xarrow^{*}v$ and $x>u$.

Proof. If $u\prec v$ and $u\star^{+}v$, let x be the rightmost vertex in the $order\prec such$ that

$u\prec x$ and $xarrow*v$. Its vertex may be v . If $x<u$, it contradicts the fact that $\prec is$

the lexicographically first order. Thus $x>u$. Conversely, it is easy to see $u\prec v$ if

the condition holds. \square

Corollary 3.2. Suppose u is the largest vertex in V. Then $u\prec v$ if and only if

$uarrow^{+}v$.

Proof. Straightforward by Lemma 3.1. \square

Theorem 3.3. $TS(A)$ is NLOG-hard for $A=K,$ $T,$ D , R.

Proof. The monotone graph accessibility problem (MGAP) is described as follows:

Given a directed acyclic graph G and vertices s and t , then $\det^{\backslash }ern\dot{u}ne$ whether t

is reachable froms . It is known that MGAP is NLOG-complete. We first give a

reduction from MGAP to LFTS $(TS(K))$. For an instance (G, s, t) of MGAP, we

renumber the vertices so that s has the largest number of V . If there exists a path

from s to $t,$ s must be ordered before t in any topological order. Conversely if s is

ordered before t in the l ft-order, Corollary 3.2 implies that there exists a path from

s to t . It is clear that this reduction is computable in log-space.

Reductions from MGAP to the other problems are $si_{1}nilar$. For TS(T), we renum-

ber vertices so that shas the smallest number. Then s is the root of the first tree in

the depth-first forest. If t is reachable from s , this tree contains t . Otherwise, t is in

one of the other trees. For TS(D) and TS(R), we attach a new directed n-chain by

identifying the sink of the n-chain with the vertex s where $n=|V|$. Then s has the

larger key than that of any vertex which is not reachable from s . \square

4

17 d

4. NLOG-algorithms for the TS problems

In this section, we will present an NLOG-algorithm for LFTS $(TS(K))$ and describe

NLOG-algorithms for $TS(A)(A=T, D, R)$. The class NLOG is closed under com-

plementation $[5,10]$. Hence NLOG contains the complement of MGAP $(cc\succ MGAP)$.

We use the MGAP and its complement to see reachabilities between vertices.

For $u\in V,$ $R(u)$ denote the se$t\{v\in V|varrow^{*}u\}$. We consider a sequence

$u_{1},$ $u_{2},$ $\cdots,$ u_{p} of vertices defined as follows:

u_{1} $:=$ $\max R(s)\cap R(t)$.
u_{i} $:=$ $\max\{v\in R(s)\cap R(t)|u_{i-1}arrow^{+}v\}(i=2,3, --)$.

We assume that the set function \max returns zero if the argument is empty. Let

u_{p} be the last vertex whose value is positive.

Lemma 4.1. For any $u\in R(s)\cap R(t),$ $u_{i}\prec u$ if and only if $u_{i}arrow^{+}u(i=1,2, \cdots,p)$.

Proof. The proof is by induction on i . Suppose $u_{1}\prec u$ for $u\in R(s)\cap R(t)$. If

$u_{1}\star^{+}u$, there exists a vertex x in $R(s)\cap R(t)$ which is larger than u_{1} by Lemma

3.1. This contradicts the definition of u_{1} . Thus $u_{1}arrow^{+}u$. Suppose $u_{i}\prec u$. If $u_{i}\star^{+}u$,

there exists a vertex x such that $u_{i}\prec x,$ $xarrow^{*}u$ and $x>u_{i}$. So $x\in R(s)\cap R(t)$.

Therefore $u_{i-1}\prec u_{i}$ and $u_{i}\prec x$ imply $u_{i-1}\prec x$. By the induction hypothesis,

$u_{i-1}arrow+x$. This contradicts the definition of $u..\square$

Corollary 4.2. If $u_{p}\prec w$, then $w\not\in R(s)\cap R(t)$.

Proof. Straightforward by Lemma 4.1. \square

Lemna 4.3. We assume that th$eree$xists $i(1\leq i\leq p)$ such that $w’<u_{i}$ for any

$w’\in R(s)-R(t)$. Then for any $w\in R(s)-R(t)_{f}u_{t}\prec w$ if and only if u. $arrow^{+}w$.

Proof. If $u_{i}\prec w$ and $u_{i}\star^{+}w$, then there exists x which satisfies $u_{i}\prec x$ and $x>u.$.

Thus, by the assumption, $x\in R(s)\cap R(t)$. This contradicts the definition of u_{k} since

$u_{i}arrow^{+}x$ by Corollary 4.2. \square

5

$\perp lq$

Lemma 4.4. For $w\in R(s)-R(t)$, if either $w>u_{1}$ or there exists $i(2\leq i\leq p)$

such that $u_{i-1}\prec w$ and $w>u_{i}$, then $u_{p}\prec w$.

Proof. Suppose $w\prec u_{p}$. Since $w\star^{+}u_{p}$, there exists a vertex x which is in

$R(s)\cap R(t)$. This fact and $u_{i-1}\prec w$ (if $i\geq 2$) imply $u_{i}\prec x$. This contradicts the

definition of u_{i} . \square

From now on, we assume that there does not exist a path between s and t . Let

$v_{s}= \max\{v\in R(s)-R(t)|u_{p}\prec v\}$ and $v_{t}= \max\{v\in R(t)-R(s)|u_{p}\prec v\}$. (If

$R(s)\cap R(t)=\phi$, let $v_{s}= \max R(s)$ and $v_{t}= \max R(t).)$

Lemma 4.5. $v_{s}<v_{t}$ if and only if $s\prec t$.

Proof. Suppose $v_{t}\prec s$. By Lemma 3.1, there exists a vertex x such that $v_{t}\prec x$,

$xarrow*s$ and $x>v_{t}$. Since $u_{p}\prec v_{t},$ $u_{p}\prec x$. Thus $x\in R(s)-R(t)$ by Corollary 4.2

and $xarrow^{*}s$. It contradicts the fact $v_{s}<v_{t}$. So $s\prec v_{t}$, thus, $s\prec t$. Conversely, if

$s\prec t$, then $v_{s}\prec t$. By Lemma 3.1, there exists a vertex which is 1arger than v_{s} . Thus

$v_{s}<v_{t}$. \square

When we can verify that there exists $i(2\leq i\leq p)$ such that $u_{i-1}>w$ for any

$w\in R(s)-R(t)$, if $u:-1arrow^{+}w$ and $u_{i}<w$, then $u_{p}\prec w$ by Lemma 4.3 and Lemma

4.4. Therefore, under this assumption, v_{s} equals to $\max\{v\in R(s)-R(t)|u_{i-1}arrow^{+}v\}$

if this value is larger than u_{i} .

Theorem 4.4. LFTS is NLOG-complete.

Proof. The following algorithm can decide in NLOG whether $s\prec t$. We can decide

the reachability and unreachability by using the MGAP and co-MGAP.

begin

if $sarrow^{+}t$ then accept

else if $tarrow^{+}s$ then reject;

v_{s} $:=naxR(s)-R(t);v_{t}$ $:= \max R(t)-R(s);u:=\max R(s)\cap R(t)$;

6

1 $/i$)

while true do

begin

if $u<v_{s}$ or $u<v_{t}$ then

if $v_{s}<v_{t}$ then accept else reject;

v_{s} $:= \max\{v\in R(s)-R(t)|uarrow^{+}v\}$;

v_{t} $:= \max\{v\in R(t)-R(s)|uarrow^{+}v\}$;

u $:=nax\{v\in R(s)\cap R(t)|uarrow^{+}v\}$;

end

end.

The variable u is stored the value $u_{i}(i=1,2, \cdots)$. It is easy to see that this

algorithm correctly decide the order between s and t by Lemma 4.3, Lemma 4.4 and

Lemma 4.5. The reachability between vertices is computed in NLOG by enumerating

all vertices and employing the MGAP and co-MGAP. \square

TS(R) is dso NLOG-complete since the number of predecessors can be computed

in nondeterministic log-space by using Reach.

For computing the length of the longest path, we use the following problem:

Given a directed acyclic graph G , vertices s and t and a nonnegative integer l , decide

whether there exists a path whose lengt h is longer then l . This problem is solved

in NLOG. By employing it and its complement, we can construct the function for

computing the length of the longest path. This implies an NLOG-algorithm for

TS(D).

TS(T) uses the depth-first search method, but this seaching is not known to be

in NLOG [1]. However, we can solve TS(T) in NLOG for a directed acyclic graph.

For any vertex v , the root of the tree which contains v is the smallest vertex such

that v is reachable from it. This root can be found in NLOG by using Reach. We

compute the roots for s and t , respectively. Then the root of s is larger than that of

t if and only if s is ordered before t . If they are identical, we find the new root for

7

$\perp lO$

s (resp. t) such that it is one of the children of the current root and the subtree at

the new root contains s (resp. t). Then we compare them. These roots also can be

found in NLOG. We iterate this process until they are not identical.

5. Concluding Remarks

Cook [3] illustrates a taxonomy of problems in parallel computations. The class

NLOG locates between NC^{1} and NC^{2} . The sorting problem is solvable by circuits

of depth $O(\log n)$ with polynomi$a1$ gates [2]. On the other hand, we have shown that

the known topological sorting problems are all NLOG-complete. Since it seems that

NLOG differs from NC^{1} , there nay exist no NC^{1}-algorithms computing one of the

four types topological sorting problems. But it is an open question whethe r there is

an NC^{1} topologic$a1$ sorting algorithm.

Acknowledgement. The author would like to thank Prof. S. Miyano for many

helpful discussions and much thoughtful criticism.

$\ovalbox{\tt\small REJECT}\yen X\mathbb{B}$

[1] A. Aggarwal and R.J. Anderson, A random NC algorithm for depth first search,

Proc. 19th ACM Symp. Theory of Comput. (1987) 325-334.

[2] M. Ajtai, J. Koml\’os and E. Szemer\’edi, An $O(n\log n)$ sorting network, Proc.

15th ACM Symp. Theory of Comput. (1983) 1-9.

[3] S.A. Cook, A taxonomy of problems with fast parallel algorithms, Inform. Contr.

64 (1985) 2-22.

[4] E. Dekel, D. Nassimi and S. Sahni, Parallel matrix and graph algorithms, SIAM

J. Comput. 10 (4) (1981) 657-675.

[5] N. Immermann, Nondeterministic space is closed under complement, Technical

Report, Department of Computer Sicence, Yale University, July (1987).

8

[6] D. Knuth, ((The Art of Computer Programming,” Vol.1, Addison-Wesley, Read-

ing, Mass. (1968).

[7] S. Miyano, The lexicographically first maximal subgraph problems: P-

completeness and NC algorithms, Proc. 13th ICALP (Lecture Notes in Comuter

Science 267) (1987) 425-434.

[8] S. Miyano. A parallelizable lexicographicaly first maximal edge-induced sub-

graph problem, $Info_{\wedge}rm$, Process. Lett. 27 (1988) 75-78.

[9] J.H. Reif, Depth-first search is inherently sequential, Inform. Process. Lett. 20

(1985) 229-234.

[10] R. Szelepcs\’enyi, The method of forcing for nondeterministic automata, Bulletin

of the EATCS 33 (1987) 96-100.

[11] R.E. Tarjan, “Data Structures and Network Algorithms,” CBMS-NSF Region$a1$

Conference Series in Applied Mathematics 44, SIAM, Philadelphia, Pennsylva-

nia (1983).

9

