
253

On Design Verification
between Different Levels of Abstraction

Using Regular Temporal Logic
Kiyoharu Hamaguchi, Hiromi Hiraishi and Shuzo Yajima

口 清治 平石 裕実 矢島 脩三
Department of Information Science

Faculty of Engineering, Kyoto University

1 Introduction

The progress of VLSI technology makes it a pressing need to establish
methods for verifying the correctness of logic design. In order to verify

whether a designed system satisfies a specification for it, formal verffi-
cation methods have been developed.

In logic design, hierarchical design methodology is adopted to man-
age complex legic systems. Our main concern is to develop a formal
verification method applicable to hierarchical design.

We consider formal verification of sequential machines in this paper.
As a language for describing specffication, we adopt infinitary regular
temporal logic $(\infty RTL)[1]$ which is an extension of ϵ-free RTL proposed
by Hiraishi et al. [2]. While traditional temporal 10gic or computation
tree logic(CTL) cannot characterize finite state machines $[3,4]$, ∞RTL is
powerful enough to express regular sets and ω regular sets.

In hierarchical design, specifications and implementations are often
given at different levels of abstractions. For example, a specification at
register transfer level (a higher level) and an implementation at gate level
(a lower level) can be given. In order to verify whether the lower-level im-
plementation satisfies the higher-level specffication, we must determine
some formal relation and bridge the gap between the two levels.

In this paper, we propose a formal $fi:amework$ based on ∞RTL to
explicitly describe relations between two different levels. We regard the

1

数理解析研究所講究録
第 695巻 1989年 253-262

254

relation as a part of an implementation and show a verification method
for a lower-level implementation (i.e., a lower-level sequential machine
and a relation) and a higher-level specification described in ∞RTL .

This paper is organized as follows: Chapter 2 introduces ∞RTL .
Chapter 3 discusses a formal $fi:ame$work for describing relations between
different levels and shows a design verification method considering two

different levels. Chapter 4 summarizes this paper.

2 Regular Temporal Logic

The empty word $\epsilon,$

Σ^{*} and Σ^{+} are defined as in the usual way. An omega
word over an alphabet Σ is an infinite-length sequence of symbols from
Σ . Σ^{ω} is the set of all omega words over Σ . $\Sigma^{\infty}def=\Sigma^{*}\cup\Sigma^{\omega}$.

The class of infinitary regular sets is the union of regular sets [5] and
ω regular sets [6].

For $\sigma\in\Sigma^{\infty}-\{\epsilon\},$ $|\sigma|$ denotes the length of σ , i.e., the number of
symbols in σ (If σ is in Σ^{ω} , then we denote $|\sigma|=\omega$) . $\sigma(i)$ denotes the ith
symbol of σ . In the case that $|\sigma|\geq i,$

σ^{i} denotes the suffix sub-sequence
of a starting from $\sigma(i)$.

2.1 Definition of Regular Temporal Logic

Definition 1 Syntax

An ∞RTL formula is simply called an RTL formula. RTL formulas are
defined inductively as follows. Let AP be a set of atomic propositions.
If $p\in AP$, and η and ξ are RTL formulas, then so are $(p),$ $(\neg\eta),$ $(\eta\vee\xi)$,
$(O\eta),$ $(\eta:\xi)$ and $($: $\eta)$. \square

Definition 2 Model and semantics

$M=(\Sigma, I)$ is a linear model, where Σ is a set of states and I : \Sigmaarrow

2^{AP} is an interpretation function.

2

$d\mathfrak{J}5$

Let $\sigma\in\Sigma^{\infty}-\{\epsilon\}$. $M,$ $\sigma|=\eta$ denotes that an RTL formula η holds
along the sequence σ with respect to a linear model M . If there is no
confusion, M is omitted like $\sigma\models\eta$. Let p be an atomic proposition, η

and ξ be RTL formulas. The relation $|=is$ defined inductively as follows:

1. $\sigma\models p$ iff $p\in I(\sigma(1))$.
2. $\sigma\models(\neg\eta)$ iff $\sigma\#\eta$.
3. $\sigma\models(\eta\vee\xi)$ iff $\sigma\models\eta$ or $\sigma\models\xi$.
4. $\sigma\models(O\eta)$ iff $|\sigma|\geq 2$ and $\sigma^{2}\models\eta$.
5. $\sigma\models(\eta:\xi)$ iff

there exist $\sigma_{I}\in\Sigma^{+}$ and $\sigma_{2}\in\Sigma^{\infty}-\{\epsilon\}$

such that $\sigma=\sigma_{1}\sigma_{2},$
$\sigma_{1}\models\eta$ and $\sigma_{2}\models\xi$

or
$|\sigma|=\omega$ and $\sigma\models\eta$.

6. $\sigma\models(:\eta)$ iff
there exist $\sigma_{i}\in\Sigma^{+}(i=1, \ldots, m-1)$ and $\sigma_{m}\in\Sigma^{\infty}-\{\epsilon\}$

such that $\sigma=\sigma_{1}\sigma_{2}\ldots\sigma_{m}$ and $\sigma_{i}\models\eta$ for all i

or
there exist an infinite number of finite sequences $\sigma_{i}\in\Sigma^{+}$

such that $\sigma=\sigma_{1}\sigma_{2}\ldots$ and $\sigma_{i}\models\eta(i=1,2, \ldots)$

\square

In the following, $‘\wedge,$ V_{T} and V_{F} represent conjunction, tautology

and ‘invalid ‘ respectively. Unary operators have higher precedence than
binary operators. If there is no ambiguity, ‘ (’ and ‘)’ are omitted.

Finite RTL is defined as a subclass of ∞RTL , whose semantics do-
main is restricted to Σ^{+} . Finite RTL is exactly the same as ϵ-free RTL[2].

2.2 Regular Temporal Logic and Regular Sets

First, we introduce several notations. $Len1$ holds along a set of se-
quences whose length is 1. ‘

$C\rangle$ (sometime’) and ‘
\square (always’) correspond

to the temporal operators used traditionally in other temporal logic. Inf

and Fin represent infinite sequences and finite sequences respectively.

3

\bullet Lenl $def=$
$\neg OV_{T}$.

$\bullet\langle\rangle\eta$
$def=$

$\eta\vee(V_{T}:\eta)$. $\bullet\square \eta$

$def=$
$\neg C\rangle_{\neg\eta=\eta\wedge\neg(V_{T}:\neg\eta)}$

\bullet Inf $def=$ $(V_{T} : V_{F})$. \bullet Fin $def=$ $\neg Inf=\neg(V_{T} : V_{F})$.

In order to discuss the relation between ∞RTL and regular sets, we
define $L\langle\Sigma,$ I } $(\eta)def=\{\sigma|\sigma\in\Sigma^{\infty}-\{\epsilon\}, \sigma\models\eta\},$ $L_{f}\langle\Sigma,$ I } $(\eta)def=\{\sigma|\sigma\in$

$\Sigma^{+},$ $\sigma\models\eta$ } and $L_{\omega}\{\Sigma,$ $I\rangle$ $(\eta)def=\{\sigma|\sigma\in\Sigma^{\omega}, \sigma\models\eta\}$.
If there is no confusion, $L(\eta)$ etc. are used, omitting $\langle\Sigma, I\rangle$.

Theorem 1 For an arbitrary RTL formula η and an arbitrary model
$(\Sigma, I),$ $L\{\Sigma, I\}(\eta)$ is an ϵ -free infinitary regular set. Conversely, for an
arbitrary ϵ -free infinitary regular set R over Σ , we can co nstruct an RTL

formula η such that $L\{\Sigma, I\}(\eta)=R$, by introducing, for each state $s\in\Sigma$,
an atomic proposition p_{s} such that $I(s)=\{p_{s}\}$.

This theorem is proved in [1].

Corollary 1 $L_{f}(\eta)$ and $L_{\omega}(\eta)$ are an ϵ -free regular set and an omega
regular set respectively.

From the definition of $L(\eta),$ $L_{f}(\eta)$ and $L_{\omega}(\eta)$, we can see that an
RTL formula η can be used to specify some property of sequences, and
$L(\eta)$ is a set of the sequences that have the property.

3 Formal Verification between Two Different Levels

3.1 Formal Framework for Describing Relations between Two
Different Levels

In this section, we provide a formal framework to explicitly describe
relations between the two different levels. We assume two different lev-
els, that is, a higher levet for a specification and a lower level for an
implementation.

4

257

As an implementation to be verified, we consider a Mealy type deter-
ministic sequential machine M with n binary input signals $x_{1},$ $x_{2},$ $\ldots,$

x_{n}

and m binary output signals $z_{1},$ $z_{2},$ $\ldots,$
z_{m} . Let $ilT=(X, Z, S, \delta, \lambda, s_{0})$

be a Mealy type determministic sequential machine with an initial stat e ,

where $X,$ Z , and S are finite, nonempty sets of binary input signals, bi-

nary output signals, and states, respectively. $s_{0}\in S$ is the initial state.
δ : $2^{X}\cross Sarrow S$ is the state transition function (We assume that at least
one next stat e is defined for each state in S). λ : $2^{X}\cross Sarrow 2^{Z}$ (We
assume that the λ is defined so long as δ is defined).

A poss\’ible input-output sequence of the sequential machine M is an

infinite or finite sequence ρ over $2^{X\cup Z}$ such that $x_{i}\in\rho(k)$ iff $x_{1}=1$

at the kth input and $z_{j}\in\rho(k)$ iff $z_{j}=1$ at the kth output, where
$i=1,2,$ $\ldots,$ $n,$ $j=1,2,$ $\ldots,$

m and $k=1,2,$ $\ldots,$
$|\rho|$.

We can regard the behavior of the machine as the set of all of its pos-
sible input-output sequences. Furthermore, we can identify a possible
input-output sequence with a sequence of states of ∞RTL , by introduc-
ing atomic propositions $p_{x;}$ and $p_{z_{j}}$ associated with input signal x_{i} and
output signal $z_{j}re$spectively, such that $p_{x_{i}}$ is true iff $x_{i}=1$ and $p_{z_{j}}$ is
true iff $z_{j}=1$. From Theorem 1 and Corollary 1, we can specify the
behavior of the sequential machine in finite RTL or ∞RTL .

In [2], specifications are described for $fini_{j}te$ possible input-output se-
quences by using finite RTL. While finite RTL can express any behavior
of sequential machines, fairness constraints[4], which are important in
describing input constraints, cannot be described. In this paper, we
(1) adopt ∞RTL to describe specifications and
(2) focus our attention to only infinite possible input-output sequences.

When we describe a specification at the higher level, we assume that
there are possible input-output sequences at the level, even if there does
not exist a realized machine, and we specify the property of the sequences

5

258

by an RTL formula. In describing relations between two different lev-

els formally, we should pay attention to higher-level and lower-level se-
quences of states of ∞RTL . We formalize the relations as mappings from

lower-level sequences to higher-level ones.
The fiiamework for describing the relation of two state sequences

of ∞RTL is formalized by the following the transformation rule and

abstraction mapping. Here subscripts H and L are used to distinguish two

objects which belong to the higher level and the lower level respectively.

Definition 3 Transformation Rule

For two given sets of atomic propositions AP_{H} and $AP_{L},$ { $\eta_{L},$ $SI\rangle$ is
called a transformation rule, where

\bullet

η_{L} is a finite RTL formula,

$\bullet SI=\bigcup_{p_{H}\in AP_{H}}$ {$p_{H}arrow f_{L}|f_{L}$ is a lower-level (finite) RTL formula.}.

η_{L} is called a time marker and $p_{H}arrow f_{L}$ a state interpreter. \square

Definition 4 Abstraction Mapping

For alower-level sequence $\{I_{L}, \sigma_{L}\}$ and a transformation rule $A=$ { $\eta_{L},$ SI},
it is called transfo rmation of σ_{L} by A to obtain a higher-level sequence

\langle $I_{H},$ σ_{H} } such that, if $s_{L1}s_{L2}\cdots s_{Li}\models\eta_{L}$, then $\sigma_{H}(i)$ is a higher-level state
such that $I_{H}(\sigma_{H}(i))\ni p_{H_{\ell}}i_{j}ff_{S_{L1^{S}L2}}\cdots s_{Li}\models\xi_{L_{l}}$ for all $p_{H_{1}}arrow\xi_{L_{t}}\in SI$,

otherwise $\sigma_{H}(i)=\epsilon$. \square

Let us consider the example of Figure 1; a specification is assumed

to be written at the higher level, and an implementation is given at the
lower level. The higher-level adder calculates the addition $(mod 16)$ of
two integers $P,$ Q given as inputs and then, after a higher-level unit delay,
it outputs the result. The lower-level adder serial ly adds two integers as
4-bit binary numbers. And then, after a tower-level unit delay, starts to

output the result.

6

259

Input
P $3_{1}|2|$

Q 1 $||5$

$OutputR$ $\backslash _{1}4^{t}7$

Input
a 1 1 0 $0|||0$ 1 0 0

Lower
Level 0_{utput}^{b}

1 0 0

$0||\backslash ^{1}0$

1 0

c 0 0 1 $0(|1$ 1 1 0

Figure 1: Adders at Two Different Levels

In Figure 1, a higher-level stat e corresponds to the lower-level se-
quences wltich end with four consecutive bits of inputs, and the output

0010 at the lower level corresponds to 4 at the higher level.
A transformation rule $A=\langle\eta,$ SI} of the example of Figure 1 is

shown as follows, where $P,$ $Q,$ R are represented in binary representation
using atomic propositions, i.e., $(p_{3},p_{2},p_{1},p_{0}),$ $(q_{3}, q_{2}, q_{1}, q_{0}),$ $(r_{3}, r_{2}, r_{1}, r_{0})$

respectively. $p_{3},$ q_{3} and r_{3} are the most significant bits. Here the higher-
level integers are regarded as binary numbers, for simplicity.

$def=$: Len4η

SI $def=$
$\{p_{0}arrow last(4,$ $a),$ $p_{1}arrow last(4,$ $Oa),$ \cdots

:

$r_{0}arrow last(7, c),$ $r_{1}arrow last(7, Oc)$,
$r_{2}arrow last(7, OOc),$ $r_{3}arrow last(7, OOOc)$ }

where last$(i, \eta)def=(\eta\wedge Leni)\vee(V_{T} : (\eta:Leni))$. $Leni$ holds only along
the sequences that consist of exactly i states.

The example of the transformation fiom a lower-level sequence to a
higher-level sequence of the adders of Figure 1 is shown in Figure 2.

7

260

Figure 2: Transformation from a Lower-level Sequence to a Higher-level Se-
quence

Although the detail is ommitted in this paper, we can prove that the
abstraction mapping can be simulated by a generalized sequential ma-
chine $(gsm)[5]$. Because regular sets and infinitary regular sets are closed
under gsm mapping[5], any higher-level sequence obtained through the
abstraction mapping can be characterized by ∞RTL .

3.2 A Formal Verification Method Considering Two Different
Levels

In this section, we show the outline of a formal verification method for
an implementation and a specification given at two different levels.

We regard that a transformation rule is a part of an implementation.
Here a structure model is introduced to handle possible input-output

sequences easily.

Definition 5 Structure model

$K=(\Sigma, I, R, \Sigma_{0})$ is called a structure model, where (Σ, I) is a linear
model of ∞RTL . $R\subseteq\Sigma\cross\Sigma$ is a total binary relation on Σ and denotes
the possible transitions between states. $\Sigma_{0}\subseteq\Sigma$ is a set of initial states.

An RTL formula η is said to be universally K-true, if η holds along
all finite and all infinite paths π from s_{0} for all $s_{0}\in\Sigma_{0}$ in the structure
model K . Otherwise universally K-false.

8

For a Mealy machine M_{l} $=$ $(X, Z, S, \delta, \lambda, s_{0})$, its corresponding structure K_{l} $=$

$(\Sigma, I, R, \Sigma_{0})$ is constructed as follows:

\bullet $\Sigma=\{s_{i,j,h}’|s_{i}\in S, j\in 2^{X}, k\in 2^{Z}, \lambda(j, i)=k\}$

$\bullet I(s_{i,j,k}’)=\{p_{x}|x\in j\}\cup\{p_{z}|z\in k\}$

’ $R=\{(s_{i,j,k}, s_{i^{t},j’,k’})|s_{i,j,k}, s_{i’,j’,k^{l}}\in\Sigma, \delta(j, s_{i})=s_{i’}\}$

$\bullet\Sigma_{0}=\{s_{0,j,k}’\in\Sigma\}$

Figure 3: Generation of a Structure Model from a Sequential Machine [2]

When we focus to only infinite paths on the structure model K , the
term universally K-omega true (or false) is employed. \square

A structure model K corresponding to a designed sequential machine
$\mathbb{J}I$ is obtained so tbat the possible input-output sequences of M have
one-to-one correspondence with paths on K . The ways of generating a
structure model from a given Mealy machine are shown in Figure 3.

Then formal verification is to make sure that a given specification
formula holds along all the higher-level state sequences obtained by the
transformation rule from all the lower-level state sequences.

To do this, firstly, we generate a higher-level structure model K_{H}

from the lower-level structure model K_{L} corresponding to the machine.
The transformation is performed by applying the abstraction mapping
to all the paths of K_{L} . Its algorithm is omitted in this paper. Our
remaining work is to check whether a specification formula is universally
$I\sigma_{H}$-omega true. The outline of its algorithm is shown in [7].

4 Considerations

In this paper, we show a formal framework based on ∞RTL for describ-
ing relations between two different levels of abstraction and a verification
method for them.

The size of the higher-level structure model obtained from a lower-

9

262

level one can be larger than that of the lower-level one. In order to avoid
the increase of the size, some restriction will be necessary to the frame-
work of abstraction mapping. However, describing the correspondence
between a higher-level sequence and a lower-level one explicitly, seems a
suitable approach for formal verification of hierarchical design.

Acknowledgment

The authors would like to express their sincere appreciation to Dr. N.
Takagi, Mr. N. Ishiura, Mr. H. Danjo and all the members of the Yajima
Laboratory in Kyoto University for their precious discussion and advice.

References

[1] K. Hamaguchi, H. Hiraishi, and S. Yajima. A Temporal Logic Expressively Equiva-
lent to ω -Regular Set. Technical Report COMP88-8, IEICE, 1988. In Japanese.

[2] H. Hiraishi. Design Verification of Sequential Machines Based on a Model Check-
ing Algorithm of ϵ-free Regular Temporal Logic. Technical Report CMU-CS-88-195,
Carnegie Mellon University, 1989.

[3] P. Wolper. Temporal Logic Can Be More Expressive. In Proceedings of $22nd$ Annual
Symposium on Foundations of Computer Science, pages 340-348, 1981.

[4] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic Verffication of Finite State
Concurrent Systems Using Temporal Logic Specifications: A Practical Approach.
In 10th ACM Symposium on Principles of Programming Languages, pages 117-126,
January 1983.

[5] J. E. Hopcroft and J. D. Ullman. Formal Languages and their Relation to Automata.
Addison-Wesley, 1968.

[6] S. Eilenberg. Automata, Languages, and Machines. Academic Press, 1976.

[7] 濱口、平石、矢島. 正則時相論理による論理設計の形式的検証. 情報基礎理

論セミナー、 p. 121-122, 1989.

10

