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1 Introduction

The progress of VLSI technology makes it a pressing need to establish
methods for verifying the correctness of logic design. In order to verify

whether a designed system satisfies a specification for it, formal verffi-
cation methods have been developed.

In logic design, hierarchical design methodology is adopted to man-
age complex legic systems. Our main concern is to develop a formal
verification method applicable to hierarchical design.

We consider formal verification of sequential machines in this paper.
As a language for describing specffication, we adopt infinitary regular
temporal logic $(\infty RTL)[1]$ which is an extension of $\epsilon$-free RTL proposed
by Hiraishi et al. [2]. While traditional temporal $10$gic or computation
tree logic(CTL) cannot characterize finite state machines $[3,4]$ , $\infty RTL$ is
powerful enough to express regular sets and $\omega$ regular sets.

In hierarchical design, specifications and implementations are often
given at different levels of abstractions. For example, a specification at
register transfer level (a higher level) and an implementation at gate level
(a lower level) can be given. In order to verify whether the lower-level im-
plementation satisfies the higher-level specffication, we must determine
some formal relation and bridge the gap between the two levels.

In this paper, we propose a formal $fi:amework$ based on $\infty RTL$ to
explicitly describe relations between two different levels. We regard the
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relation as a part of an implementation and show a verification method
for a lower-level implementation (i.e., a lower-level sequential machine
and a relation) and a higher-level specification described in $\infty RTL$ .

This paper is organized as follows: Chapter 2 introduces $\infty RTL$ .
Chapter 3 discusses a formal $fi:ame$work for describing relations between
different levels and shows a design verification method considering two

different levels. Chapter 4 summarizes this paper.

2 Regular Temporal Logic

The empty word $\epsilon,$

$\Sigma^{*}$ and $\Sigma^{+}$ are defined as in the usual way. An omega
word over an alphabet $\Sigma$ is an infinite-length sequence of symbols from
$\Sigma$ . $\Sigma^{\omega}$ is the set of all omega words over $\Sigma$ . $\Sigma^{\infty}def=\Sigma^{*}\cup\Sigma^{\omega}$ .

The class of infinitary regular sets is the union of regular sets [5] and
$\omega$ regular sets [6].

For $\sigma\in\Sigma^{\infty}-\{\epsilon\},$ $|\sigma|$ denotes the length of $\sigma$ , i.e., the number of
symbols in $\sigma$ (If $\sigma$ is in $\Sigma^{\omega}$ , then we denote $|\sigma|=\omega$ ) . $\sigma(i)$ denotes the ith
symbol of $\sigma$ . In the case that $|\sigma|\geq i,$

$\sigma^{i}$ denotes the suffix sub-sequence
of a starting from $\sigma(i)$ .

2.1 Definition of Regular Temporal Logic

Definition 1 Syntax

An $\infty RTL$ formula is simply called an RTL formula. RTL formulas are
defined inductively as follows. Let $AP$ be a set of atomic propositions.
If $p\in AP$ , and $\eta$ and $\xi$ are RTL formulas, then so are $(p),$ $(\neg\eta),$ $(\eta\vee\xi)$ ,
$(O\eta),$ $(\eta:\xi)$ and $($ : $\eta)$ . $\square$

Definition 2 Model and semantics

$M=(\Sigma, I)$ is a linear model, where $\Sigma$ is a set of states and $I$ : $\Sigmaarrow$

$2^{AP}$ is an interpretation function.
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Let $\sigma\in\Sigma^{\infty}-\{\epsilon\}$ . $M,$ $\sigma|=\eta$ denotes that an RTL formula $\eta$ holds
along the sequence $\sigma$ with respect to a linear model $M$ . If there is no
confusion, $M$ is omitted like $\sigma\models\eta$ . Let $p$ be an atomic proposition, $\eta$

and $\xi$ be RTL formulas. The relation $|=is$ defined inductively as follows:

1. $\sigma\models p$ iff $p\in I(\sigma(1))$ .
2. $\sigma\models(\neg\eta)$ iff $\sigma\#\eta$ .
3. $\sigma\models(\eta\vee\xi)$ iff $\sigma\models\eta$ or $\sigma\models\xi$ .
4. $\sigma\models(O\eta)$ iff $|\sigma|\geq 2$ and $\sigma^{2}\models\eta$ .
5. $\sigma\models(\eta:\xi)$ iff

there exist $\sigma_{I}\in\Sigma^{+}$ and $\sigma_{2}\in\Sigma^{\infty}-\{\epsilon\}$

such that $\sigma=\sigma_{1}\sigma_{2},$
$\sigma_{1}\models\eta$ and $\sigma_{2}\models\xi$

or
$|\sigma|=\omega$ and $\sigma\models\eta$ .

6. $\sigma\models(:\eta)$ iff
there exist $\sigma_{i}\in\Sigma^{+}(i=1, \ldots, m-1)$ and $\sigma_{m}\in\Sigma^{\infty}-\{\epsilon\}$

such that $\sigma=\sigma_{1}\sigma_{2}\ldots\sigma_{m}$ and $\sigma_{i}\models\eta$ for all $i$

or
there exist an infinite number of finite sequences $\sigma_{i}\in\Sigma^{+}$

such that $\sigma=\sigma_{1}\sigma_{2}\ldots$ and $\sigma_{i}\models\eta(i=1,2, \ldots)$

$\square$

In the following, $‘\wedge,$ $V_{T}$ and $V_{F}$ represent $co$njunction, tautology

and ‘invalid ‘ respectively. Unary operators have higher precedence than
binary operators. If there is no ambiguity, ‘ (’ and ‘)’ are omitted.

Finite $RTL$ is defined as a subclass of $\infty RTL$ , whose semantics do-
main is restricted to $\Sigma^{+}$ . Finite RTL is exactly the same as $\epsilon$-free RTL[2].

2.2 Regular Temporal Logic and Regular Sets

First, we introduce several notations. $Len1$ holds along a set of se-
quences whose length is 1. ‘

$C\rangle$ (sometime’) and ‘
$\square$ (always’) correspond

to the temporal operators used traditionally in other temporal logic. In$f$

and Fin represent infinite sequences and finite sequences respectively.
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$\bullet$ Lenl $def=$
$\neg OV_{T}$ .

$\bullet\langle\rangle\eta$
$def=$

$\eta\vee(V_{T}:\eta)$ . $\bullet\square \eta$

$def=$
$\neg C\rangle_{\neg\eta=\eta\wedge\neg(V_{T}:\neg\eta)}$

$\bullet$ Inf $def=$ $(V_{T} : V_{F})$ . $\bullet$ Fin $def=$ $\neg Inf=\neg(V_{T} : V_{F})$ .

In order to discuss the relation between $\infty RTL$ and regular sets, we
define $L\langle\Sigma,$ $I$ } $(\eta)def=\{\sigma|\sigma\in\Sigma^{\infty}-\{\epsilon\}, \sigma\models\eta\},$ $L_{f}\langle\Sigma,$ $I$ } $(\eta)def=\{\sigma|\sigma\in$

$\Sigma^{+},$ $\sigma\models\eta$ } and $L_{\omega}\{\Sigma,$ $I\rangle$ $(\eta)def=\{\sigma|\sigma\in\Sigma^{\omega}, \sigma\models\eta\}$ .
If there is no confusion, $L(\eta)$ etc. are used, omitting $\langle\Sigma, I\rangle$ .

Theorem 1 For an arbitrary $RTL$ formula $\eta$ and an arbitrary model
$(\Sigma, I),$ $L\{\Sigma, I\}(\eta)$ is an $\epsilon$ -free infinitary regular set. Conversely, for an
arbitrary $\epsilon$ -free infinitary regular set $R$ over $\Sigma$ , we can $co$ nstruct an $RTL$

formula $\eta$ such that $L\{\Sigma, I\}(\eta)=R$ , by introducing, for each state $s\in\Sigma$ ,
an atomic proposition $p_{s}$ such that $I(s)=\{p_{s}\}$ .

This theorem is proved in [1].

Corollary 1 $L_{f}(\eta)$ and $L_{\omega}(\eta)$ are an $\epsilon$ -free regular set and an omega
regular set respectively.

From the definition of $L(\eta),$ $L_{f}(\eta)$ and $L_{\omega}(\eta)$ , we can see that an
RTL formula $\eta$ can be used to specify some property of sequences, and
$L(\eta)$ is a set of the sequences that have the property.

3 Formal Verification between Two Different Levels

3.1 Formal Framework for Describing Relations between Two
Different Levels

In this section, we provide a formal framework to explicitly describe
relations between the two different levels. We assume two different lev-
els, that is, a higher levet for a specification and a lower level for an
implementation.
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As an implementation to be verified, we consider a Mealy type deter-
ministic sequential machine $M$ with $n$ binary input signals $x_{1},$ $x_{2},$ $\ldots,$

$x_{n}$

and $m$ binary output signals $z_{1},$ $z_{2},$ $\ldots,$
$z_{m}$ . Let $ilT=(X, Z, S, \delta, \lambda, s_{0})$

be a Mealy type determministic sequential machine with an initial stat $e$ ,

where $X,$ $Z$ , and $S$ are finite, nonempty sets of binary input signals, bi-

nary output signals, and states, respectively. $s_{0}\in S$ is the initial state.
$\delta$ : $2^{X}\cross Sarrow S$ is the state transition function (We assume that at least
one next stat $e$ is defined for each state in $S$ ). $\lambda$ : $2^{X}\cross Sarrow 2^{Z}$ (We
assume that the $\lambda$ is defined so long as $\delta$ is defined).

A poss\’ible input-output sequence of the sequential machine $M$ is an

infinite or finite sequence $\rho$ over $2^{X\cup Z}$ such that $x_{i}\in\rho(k)$ iff $x_{1}=1$

at the kth input and $z_{j}\in\rho(k)$ iff $z_{j}=1$ at the kth output, where
$i=1,2,$ $\ldots,$ $n,$ $j=1,2,$ $\ldots,$

$m$ and $k=1,2,$ $\ldots,$
$|\rho|$ .

We can regard the behavior of the machine as the set of all of its pos-
sible input-output sequences. Furthermore, we can identify a possible
input-output sequence with a sequence of states of $\infty RTL$ , by introduc-
ing atomic propositions $p_{x;}$ and $p_{z_{j}}$ associated with input signal $x_{i}$ and
output signal $z_{j}re$spectively, such that $p_{x_{i}}$ is true iff $x_{i}=1$ and $p_{z_{j}}$ is
true iff $z_{j}=1$ . From Theorem 1 and Corollary 1, we can specify the
behavior of the sequential machine in finite RTL or $\infty RTL$ .

In [2], specifications are described for $fini_{j}te$ possible input-output se-
quences by using finite RTL. While finite RTL can express any behavior
of sequential machines, fairness constraints[4], which are important in
describing input constraints, cannot be described. In this paper, we
(1) adopt $\infty RTL$ to describe specifications and
(2) focus our attention to only infinite possible input-output sequences.

When we describe a specification at the higher level, we assume that
there are possible input-output sequences at the level, even if there does
not $e$xist a realized machine, and we specify the property of the sequences
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by an RTL formula. In describing relations between two different lev-

els formally, we should pay attention to higher-level and lower-level se-
quences of states of $\infty RTL$ . We formalize the relations as mappings from

lower-level sequences to higher-level ones.
The fiiamework for describing the relation of two state sequences

of $\infty RTL$ is formalized by the following the transformation rule and

abstraction mapping. Here subscripts $H$ and $L$ are used to distinguish two

objects which belong to the higher level and the lower level respectively.

Definition 3 Transformation Rule

For two given sets of atomic propositions $AP_{H}$ and $AP_{L},$ { $\eta_{L},$ $SI\rangle$ is
called a transformation rule, where

$\bullet$

$\eta_{L}$ is a finite RTL formula,

$\bullet SI=\bigcup_{p_{H}\in AP_{H}}$ {$p_{H}arrow f_{L}|f_{L}$ is a lower-level (finite) RTL formula.}.

$\eta_{L}$ is called a time marker and $p_{H}arrow f_{L}$ a state interpreter. $\square$

Definition 4 Abstraction Mapping

For alower-level sequence $\{I_{L}, \sigma_{L}\}$ and a transformation rule $A=$ { $\eta_{L},$ SI},
it is called transfo rmation of $\sigma_{L}$ by $A$ to obtain a higher-level sequence

\langle $I_{H},$ $\sigma_{H}$ } such that, if $s_{L1}s_{L2}\cdots s_{Li}\models\eta_{L}$ , then $\sigma_{H}(i)$ is a higher-level state
such that $I_{H}(\sigma_{H}(i))\ni p_{H_{\ell}}i_{j}ff_{S_{L1^{S}L2}}\cdots s_{Li}\models\xi_{L_{l}}$ for all $p_{H_{1}}arrow\xi_{L_{t}}\in SI$ ,

otherwise $\sigma_{H}(i)=\epsilon$ . $\square$

Let us consider the example of Figure 1; a specification is assumed

to be written at the higher level, and an implementation is given at the
lower level. The higher-level adder calculates the addition $(mod 16)$ of
two integers $P,$ $Q$ given as inputs and then, after a higher-level unit delay,
it outputs the result. The lower-level adder serial $ly$ adds two integers as
4-bit binary numbers. And then, after a tower-level unit delay, starts to

output the result.
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Input
$P$ $3_{1}|2|$

$Q$ 1 $||5$

$OutputR$ $\backslash _{1}4^{t}7$

Input
a 1 1 $0$ $0|||0$ 1 $0$ $0$

Lower
Level $0_{utput}^{b}$

1 $0$ $0$

$0||\backslash ^{1}0$

1 $0$

$c$ $0$ $0$ 1 $0(|1$ 1 1 $0$

Figure 1: Adders at Two Different Levels

In Figure 1, a higher-level stat $e$ corresponds to the lower-level se-
quences wltich end with four consecutive bits of inputs, and the output

0010 at the lower level corresponds to 4 at the higher level.
A transformation rule $A=\langle\eta,$ SI} of the example of Figure 1 is

shown as follows, where $P,$ $Q,$ $R$ are represented in binary representation
using atomic propositions, i.e., $(p_{3},p_{2},p_{1},p_{0}),$ $(q_{3}, q_{2}, q_{1}, q_{0}),$ $(r_{3}, r_{2}, r_{1}, r_{0})$

respectively. $p_{3},$ $q_{3}$ and $r_{3}$ are the most significant bits. Here the higher-
level integers are regarded as binary numbers, for simplicity.

$def=$ : Len4$\eta$

SI $def=$
$\{p_{0}arrow last(4,$ $a),$ $p_{1}arrow last(4,$ $Oa),$ $\cdots$

:

$r_{0}arrow last(7, c),$ $r_{1}arrow last(7, Oc)$ ,
$r_{2}arrow last(7, OOc),$ $r_{3}arrow last(7, OOOc)$ }

where last$(i, \eta)def=(\eta\wedge Leni)\vee(V_{T} : (\eta:Leni))$ . $Leni$ holds only along
the sequences that consist of exactly $i$ states.

The example of the transformation fiom a lower-level sequence to a
higher-level sequence of the adders of Figure 1 is shown in Figure 2.
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Figure 2: Transformation from a Lower-level Sequence to a Higher-level Se-
quence

Although the detail is ommitted in this paper, we can prove that the
abstraction mapping can be simulat$ed$ by a generalized sequential ma-
chine $(gsm)[5]$ . Because regular sets and infinitary regular sets are closed
under gsm mapping[5], any higher-level sequence obtained through the
abstraction mapping can be characterized by $\infty RTL$ .

3.2 A Formal Verification Method Considering Two Different
Levels

In this section, we show the outline of a formal verification method for
an implementation and a specification given at two different levels.

We regard that a transformation rule is a part of an implementation.
Here a structure model is introduced to handle possible input-output

sequences easily.

Definition 5 Structure model

$K=(\Sigma, I, R, \Sigma_{0})$ is called a structure model, where $(\Sigma, I)$ is a linear
model of $\infty RTL$ . $R\subseteq\Sigma\cross\Sigma$ is a total binary relation on $\Sigma$ and denotes
the possible transitions between states. $\Sigma_{0}\subseteq\Sigma$ is a set of initial states.

An RTL formula $\eta$ is said to be universally K-true, if $\eta$ holds along
all finite and all infinite paths $\pi$ from $s_{0}$ for all $s_{0}\in\Sigma_{0}$ in the structure
model $K$ . Otherwise universally K-false.

8



For a Mealy machine $M_{l}$ $=$ $(X, Z, S, \delta, \lambda, s_{0})$ , its corresponding structure $K_{l}$ $=$

$(\Sigma, I, R, \Sigma_{0})$ is constructed as follows:

$\bullet$ $\Sigma=\{s_{i,j,h}’|s_{i}\in S, j\in 2^{X}, k\in 2^{Z}, \lambda(j, i)=k\}$

$\bullet I(s_{i,j,k}’)=\{p_{x}|x\in j\}\cup\{p_{z}|z\in k\}$

’ $R=\{(s_{i,j,k}, s_{i^{t},j’,k’})|s_{i,j,k}, s_{i’,j’,k^{l}}\in\Sigma, \delta(j, s_{i})=s_{i’}\}$

$\bullet\Sigma_{0}=\{s_{0,j,k}’\in\Sigma\}$

Figure 3: Generation of a Structure Model from a Sequential Machine [2]

When we focus to only infinite paths on the structure model $K$ , the
term universally K-omega true (or false) is employed. $\square$

A structure model $K$ corresponding to a designed sequential machine
$\mathbb{J}I$ is obtained so tbat the possible input-output sequences of $M$ have
one-to-one correspondence with paths on $K$ . The ways of generating a
structure model from a given Mealy machine are shown in Figure 3.

Then formal verification is to make sure that a given specification
formula holds along all the higher-level state sequences obtained by the
transformation rul$e$ from all the lower-level state sequences.

To do this, firstly, we generate a higher-level structure model $K_{H}$

from the lower-level structure model $K_{L}$ corresponding to the machine.
The transformation is performed by applying the abstraction mapping
to all the paths of $K_{L}$ . Its algorithm is omitted in this paper. Our
remaining work is to check whether a specification formula is universally
$I\sigma_{H}$-omega true. The outline of its algorithm is shown in [7].

4 Considerations

In this paper, we show a formal framework based on $\infty RTL$ for describ-
ing relations between two different levels of abstraction and a verification
method for them.

The size of the higher-level structure model obtained from a lower-
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level one can be larger than that of the lower-level one. In order to avoid
the increase of the size, some restriction will be necessary to the frame-
work of abstraction mapping. However, describing the correspondence
between a higher-level sequence and a lower-level one explicitly, seems a
suitable approach for formal $ve$rification of hierarchical design.
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