goooboooogn 25‘3
0 6950 19890 253-262 *

On Design Verification
between Different Levels of Abstraction
Using Regular Temporal Logic
Kiyoharu Hamaguchi, Hiromi Hiraishi and Shuzo Yajima

BO EE FH #BE kB =
Department of Information Science

Faculty of Engineering, Kyoto University

1 Introduction

The progress of VLSI technology makes it a pressing need to establish
methods for verifying the correctness of logic design. In order to verify
whether a designed system satisfies a specification for it, formal verifi- _
cation methods have been developed. '

In logic design, hierarchical design methodology is adopted‘ to man-
age complex legic systems. Our main concern is to develop a formal
verification method applicable to hierarchical design.

We consider formal verification of sequential machines in this papef.
As a language for describing specification, we adopt wnfinitary regular
temporal logic(co RTL)[1] which is an extension of e-free RTL proposed
by Hiraishi et al. [2]. While traditional temporal logic or computation
tree logic(CTL) cannot characterize finite state machines[3,4], coRTL is
powerful enough to express regular sets and w regular sets.

In hierarchical design, specifications and implementations are often
given at different levels of abstractions. For example, a specification at
register transfer level (a higher level) and an implementaﬁon at gate level
(a lower level) can be given. In order to verify whether the lower-level im-
plementation satisfies the higher-level specification, we must determine
some formal relation and bridge the gap between the two levels.

In this paper, we propose a formal framework based on coRTL to

explicitly describe relations between two different levels. We regard the

254

relation as a part of an implementation and show a verification method
for a lower-level implementation (i.e., a lower-level sequential machine
and a relation) and a higher-level specification described in coRTL.
This paper is organized as follows: Chapter 2 introduces coRTL.
Chapter 3 discusses a formal framework for describing relations between
different levels and shows a design verification method considering two

different levels. Chapter 4 summarizes this paper.

2 Regular Temporal Logic

The empty word €, ©* and Xt are defined as in the usual way. An omega

word over an alphabet . is an infinite-length sequence of symbols from

2. X% 1s the set of all omega words over L. X% e vruze.

The class of infinitary regular sets is the union of regular sets[5] and
w regular sets[6].

For 0 € % — {¢}, |o| denotes the length of o, i.e., the number of
symbols in ¢ (If o is in X*, then we denote |o| = w). o(¢) denotes the ith
symbol of o. In the case that |o| > i, 0 denotes the suffix sub-sequence

of o starting from o(3).

2.1 Definition of Regular Temporal Logic

Definition 1 Syntaz

An ocoRTL formula is simply called an RTL formula. RTL formulas are
defined inductively as follows. Let AP be a set of atomic propositions.

If pe AP, and n and ¢ are RTL formulas, then so are (p), (-n), (nV &),
(On), (n:€) and ([Fn). =

Definition 2 Model and semantics

M = (X,1I) is a linear model, where ¥ is a set of states and [: ¥ —

24P is an interpretation function.

255

Let ¢ € £° — {e}. M,0 |= n denotes that an RTL formula » holds

along the sequence o with respect to a linear model M. If there is no

confusion, M is omitted like o = 7. Let p be an atomic proposition, n
and ¢ be RTL formulas. The relation |= is defined inductively as follows:

[B VL

cEDP iff pel(a(1)).
olE=(-n) ff ol

cEMVE ff cEnoraEE
o= (On iff |o| >2and o® =1
oEMm€ of

there exist 0; € ¥ and 0y € 2 — {¢}

such that ¢ = 0,049,017 and 05 | £

or

lo| = w and o | 7.

o= n) i

there exist 0; € Z¥(i=1,...,m — 1) and a7, € £° — {¢}
such that ¢ = g0 ...0,, and o; =7 for all 4

or

there exist an infinite number of finite sequences g; € Bt
such that ¢ = 102 ... and o; E (i = 1,2,...)

0

In the following, ‘A’, Vr and Vr represent ‘conjunction, ‘tautology’

and “nwvalid’ respectively. Unary operators have higher precedence than

binary operators. If there is no ambiguity, ‘(’ and ¢)’ are omitted.

Finite RTL is defined as a subclass of coRTL, whose semantics do-

main is restricted to . Finite RTL is exactly the same as e-free RTL[2].

2.2 Regular Temporal Logic and Regular Sets

First, we introduce several notations. Len 1 holds along a set of se-

quences whose length is 1. ‘O’(‘sometime’) and ‘0’(‘always’) correspond

to the temporal operators used traditionally in other temporal logic. Inf

and Fin represent infinite sequences and finite sequences respectively.

2956

e Lenl ¥ 0O
o On def nV (Vr:n). e Op —Oan =n A -(Vp:—n).
e Inf Y (Vp:VE). o Fin ¥ —Inf=-(Vr: V).

def

In order to discuss the relation between coRTL and regular sets, we
define L(Z,I)(n) ¥ {olo € ° — {e},0 = n}, Ly(Z,D)(n) £ {o]o €
S+, o = n} and Ly(S,I)(n) & {o|o € =¥, 0 = n}.

If there is no confusion, L(n) etc. are used, omitting (X, I).

Theorem 1 For an arbitrary RTL formula 1 and an arbitrary model

(X,1), L(X,I)(n) is an e-free infinitary reqular set. Conversely, for an

~arbitrary e-free infinitary regular set R over ¥, we can construct an RTL

formula n such that L{X, I)(n) = R, by introducing, for each state s € T,
an atomic proposition p; such that I(s) = {p,}.

This theorem is proved in [1].

Corollary 1 L¢(n) and L,(n) are an e-free reqular set and an omega

reqular set respectively.

From the definition of L(n), Ls(n) and L,(n), we can see that an
RTL formula n can be used to specify some property of sequences, and

L(n) is a set of the sequences that have the property.

3 Formal Verification between Two Different Levels

3.1 Formal Framework for Describing Relations between Two
Different Levels

In this section, we provide a formal framework to explicitly describe
relations between the two different levels. We assume two different lev-
els, that 1s, a higher level for a specification and a lower level for an

implementation.

297

As an implementation to be verified, we consider a Mealy type deter-
ministic sequential machine M with n binary input signals xq, %9, ..., %,
and m binary output signals zy,z2,...,2m. Let M = (X,Z,5,6,], s0)
be a Mealy type deterministic sequential machine with an initial state,
where X, Z, and S are finite, nonempty sets of binary input signals, bi-
nary output signals, and states, respectively. sy € S is the initial state.
§:2% x S — S is the state transition function (We assume that at least
one next state is defined for each state in S). X : 2X x § — 27 (We
assume that the X is defined so long as ¢ is defined).

A possible input-output sequence of the sequential machine M is an
inﬁn‘ite or finite sequence p over 2% such that z; € p(k) iff z; = 1
at the kth input and z; € p(k) iff z; = 1 at the kth output, where
1 =1,2,...,n,5=1,2,....omand k=1,2,...,|p|

We can regard the behavior of the machine as the set of all of its pos-
sible input-output sequences. Furthermore, we can identify a possible
input-output sequence with a sequence of states of coRTL, by introduc-
ing atomic propositions p;, and p., associated with input signal x; and
output signal z; respectively, such that p,, is true iff z; = 1 and p,, is
true iff 2; = 1. From Theorem 1 and Corollary 1, we can specify the
behavior of the sequential machine in finite RTL or coRTL.

In [2], specifications are described for finite possible input-output se-
quences by using finite RTL. While finite RTL can express any behavior
of sequential machines, fairness constraints[4], which are important in
describing input constraints, cannot be described. In this paper, we

(1) adopt coRTL to describe specifications and
(2) focus our attention to only infinite possible input-output sequences.

When we describe a specification at the higher level, we assume that

there are possible input-output sequences at the level, even if there does

not exist a realized machine, and we specify the property of the sequehces

258

by an RTL formula. In describing relations between two different lev-
els formally, we should pay attention to higher-level and lower-level se-
quences of states of coRTL. We formalize the relations as mappings from
lower-level sequences to higher-level ones. |

The framework for describing the relation of two state sequences
of coRTL is formalized by the following the transformation rule and
abstraction mapping. Here subscripts g and j, are used to distinguish two

objects which belong to the higher level and the lower level respectively.
Definition 3 Transformation Rule

For two given sets of atomic propositions APy and APy, (np,SI) is

called a transformation rule, where

e 77 is a finite RTL formula,

o SI= U {pm <« fr|fris alower-level (finite) RTL formula.}.

pHE€APH
nr 1s called a time marker and py «— fr, a state interpreter. O

Definition 4 Abstraction Mapping

For alower-level sequence (I7, 07) and a transformation rule A= (nr,SI),
it is called transformation of oy by A to obtain a higher-level sequence
(Iyg,opm) such that,if sp1872- -+ Sp; = 11, then og(7) is a higher-level state
such that Iy(og (i) 3 py, iff spispe - - s F &g, for all py, «— &, € SI,
otherwise o (1) = e. O

Let us consider the example of Figure 1; a specification is assumed
to be written at the higher level, and an implementation is given at the
lower level. The higher-level adder calculates the addition (mod 16) of
two integers P, () given as inputs and then, after a higher-level unit delay,
it outputs the result. The lower-level adder serially adds two integers as
4-bit binary numbers. And then, after a lower-level unit delay, starts to

output the result.

259

Input
,] P 312
ngheIP adder | |p R :
d 16 " Q 15
Level Q| M
Output \
R 4.7
Input
L a—] 4.bit a 11000100
ower serial | D |—c b 100 0!1010
Level
b—+ adder Output
c 0 010,11 10

Figure 1: Adders at Two Different Levels

In Figure 1, a higher-level state corresponds to the lower-level se-
quences which end with four consecutive bits of inputs, and the output
0010 at the lower level corresponds to 4 at the higher level.

A transformation rule A = (1, SI) of the example of Figure 1 is
shown as follows, where P, (), R are represented in binary representation
using atomic propositions, i.e., (ps, p2, P1, Po), (43, G2, 41, 90), (T3,72,71,70)
respectively. p3, g3 and r3 are the most significant bits. Here the higher-

level integers are regarded as binary numbers, for simplicity.

] — DLBTL4
SI def {po — laSt(4> a)>P1 A lafSt(47 Oa)? T

ro «— last(7,¢),r « last(7,Oc),
re — last(7,O O e¢),r3 — last(7,O O Oc)}

where last(i,n) % (nA Len i) v (Vr:(n: Len i)). Len ¢ holds only along

the sequences that consist of exactly ¢ states.
The example of the transformation from a lower-level sequence to a

higher-level sequence of the adders of Figure 1 is shown in Figure 2.

7

260

T T
L L L 1T L L 1 _LT
L L L L L L L L
L L L L

I

L5 holds along these sequences.

Figure 2: Transformation from a Lower-level Sequence to a Higher-level Se-
quence

Although the detail is omitted in this paper, we can prove that the
abstraction mapping can be simulated by a generalized sequential ma-
chine (gsm)[5]. Because regular sets and infinitary regular sets are closed
under gsm mapping[5], any higher-level sequence obtained through the

abstraction mapping can be characterized by coRTL.

3.2 A Formal Verification Method Considering Two Different

Levels -

In this section, we show the outline of a formal verification method for
an implementation and a specification given at two different levels.
We regard that a transformation rule is a part of an implementation.
Here a structure model is introduced to handle possible input-output

sequences easily.
Definition 5 Structure model

K = (3,1,R, %) is called a structure model, where (¥,I) is a linear
model of oRTL. R C ¥ x T is a total binary relation on ¥ and denotes
the possible transitions between states. Yo C X i1s a set of initial states.

An RTL formulé n is said to be universally K-true, if n holds along
all finite and all infinite paths 7 from s, for all sq € ¥y in the structure

model K. Otherwise universally K -false.

261

For a Mealy machine M; = (X,Z,5,6,], s0), its corresponding structure K; =
(3,1, R, %) is constructed as follows:

o L= {si.,lsi€ S je2X ke2? \ji) =k}

I

o I(s} ;i) ={pelz € j} U {p.|z € k}
o R = {(sijk sitjox)|8ijm 80000 € 5,87, 85) = sar}
o Y= {56,;',1: €X}

Figure 3: Generation of a Structure Model from a Sequential Machine [2]

When we focus to only infinite paths on the structure model K, the
term universally K -omega true (or false) is employed. O
A structure model K corresponding to a designed sequential machine
M 1is obtained so that the possible input-output sequences of M have
one-to-one correspondence with paths on K. The ways of generating a

structure model from a given Mealy machine are shown in Figure 3.

Then formal verification is to make sure that a given specification
formula holds along all the higher-level state sequences obtained by the
transformation rule from all the lower-level state sequences.

To do this, firstly, we generate a ‘higher—level structure model Ky
from the lower-level structure model K corresponding to the machine.
The transformation is performed by applying the abstraction mapping
to all the paths of Kr. Its algorithm is omitted in this paper. Our
remaining work is to check whether a specification formula is universally

K p-omega true. The outline of its algorithm is shown in [7].

4 Considerations

In this paper, we show a formal framework based on coRTL for describ-
ing relations between two different levels of abstraction and a verification
method for them.

The size of the higher-level structure model obtained from a lower-

level one can be larger than that of the lower-level one. In order to avoid
the increase of the size, some restriction will be necessary to the frame-
work of abstraction mapping. However, describing the correspondence
between a higher-level sequence and a lower-level one explicitly, seems a

suitable approach for formal verification of hierarchical design.
Acknowledgment |

The authors would like to express their sincere appreciation to Dr. N.
Takagi, Mr. N. Ishiura, Mr. H. Danjo and all the members of the Yajima

Laboratory in Kyoto University for their precious discussion and advice.

References

[1] K. Hamaguchi, H. Hiraishi, and S. Yajima. A Temporal Logic Expressively Equiva-
lent to w-Regular Set. Technical Report COMP88-8, IEICE, 1988. In Japanese.

[2] H. Hiraishi. Design Verification of Sequential Machines Based on a Model Check-
ing Algorithm of e-free Reqular Temporal Logic. Technical Report CMU-CS-88-195,
Carnegie Mellon University, 1989.

[3] P. Wolper. Temporal Logic Can Be More Expressive. In Proceedings of 22nd Annual
Symposium on Foundations of Computer Science, pages 340-348, 1981.

[4] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic Verification of Finite State
Concurrent Systems Using Temporal Logic Specifications: A Practical Approach.
In 10th ACM Symposium on Principles of Programming Languages, pages 117-126,
January 1983. : '

[5] J. E. Hopcroft and J. D. Ullman. Formal Languages and their Relation to Automata.
Addison-Wesley, 1968.

[6] S. Eilenberg. Automata, Languages, and Machines. Academic Press, 1976.

(7] ®O. ¥A. XE. ENRBERBECIZRERTOEANKRE. HHARE
#AeYF—. p.121-122, 1989.

10

