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A Difference Set Of A Cantor Set
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Abstract. An example of a regular Cantor set whose self-difference set is a Cantor

set with a positive measure is given. This is a counter example of one of the

questions related to the homoclinic bifurcation of surface diffeomorphisms.

§.0 Introduction.

In [2], Palis—Takens investigated the homoclinic bifurcations of surface diffeomorphisms
in the following context. Let M be a closed 2-dimensional manifold. We say a C"-
diffeomorphism ¢ : M — M is persistently hyperbolic if there is a C"-neighborhood U
of ¢ and for every ¢ € U, the non-wandering set Q(¢) is a hyperbolié set ( refer [1] for the
definitions and the notations of the terminologies of dynamical systems ). Let {¢,}.cr be
a 1-parameter family of C2-diffeomorphisms on M. We define {¢,},.cr has a homoclinic
Q-ezplosion at p = 0 if:

i) For p <0, ¢, is persistently hyperbolic;

ii) For u = 0, the non-wandering set Q(¢o) consists of a (closed) hyperbolic set Q(¢o) =
lim, .o Q(¢,) together with a homoclinic orbit of tangency O associatea with a fixed
saddle point p, so that 2(¢o) = Qo) U O; the product of the eigenvalues of d¢g at p
is different from one in norm;

iii) The separatrices have quadratic tangency along O unfolding generically; O is the only

orbit of tangency between stable and unstable separatrices of periodic orbits of ¢.

Let A be a basic set of a diffeomorphism on M. d."(A) ( d*(A) ) denotes the Hausdorff
dimension in the transversal direction of the stable ( unstable ) foliation of \stable ( unstable
) manifold of A ( refer [2] for the precise definition ), and is called the stable ( unstable )
limit capacity. B denotes the set of values u > 0 for which ¢, is not persistently hyperboiic.

‘ The resﬁlt of Palis—Takens is;
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THEOREM [2]. Let {¢,; p € R} be a family of diffeomorphisms of M with a homoclinic
. Q-explosion at p = 0. Suppose that d*(A) + d“(A) < 1, where A is the basic set of ¢o
associated with the homoclinic tangency. Then

lim m(B N[0, 4]) _

§—0 6 0

where m denotes Lebesgue measure.

This resﬁlt says that if d*(A)+d*(A) < 1, then the measure of the parameters for which
bifurcation occurs is relatively small. ‘

Now the case of d*(A) + d*(A) > 1 comes into question as the next step. In the proof
of the theorem above, one of the essential points is a question of how two Cantor sets in the
line intersect each other when the one is slid. In [3], Palis proposed the following questions.

(Q.1) For affine Cantor sets X and Y in the line, is it true that X —Y either has measure
zero or contains intervals ? |

(Q.2) Same for regular Cantor sets.

For two subset XY of R,
'X——Y:{z—-y]zéx, yEY}.
This can also be written as; |
X-Y={peR|XN(p+Y)#¢},

namely X — Y is the set of parameters for which X and Y have a intersection point when
Y is slid on the line.

Cantor set A in R is called affine, regular or C" for 1 < 7 < oo if Ais defined with
finite number of expanding affine, C? or C" maps respectively ( see §2 Definition 5 for the
rigorous definition ).

Our result in this note is that there is a counter example of (Q.2), namely;

THEOREM. There exists a C®-Cantor set A such that

(i) m(A - A) >0,
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(i) A — A is a Cantor set.

In the succeeding sections , we give an outline of the proof of this theorem. The complete

proof will appear elsewhere.

§.1 Definition of the Cantor sets A(s), I'(s).
First of all, we define two cantor set depending on a sequence of real numbers.

DEFINITION 1. Let I = [z1,23] be a closed interval and A a real number with 0 < A < 1.
We define,

Io(MT) = [21, 21 + A(22 — 21)]
CL(MT) =[z2 — Mz — 1), 23] -

DEeFINITION 2 ( CANTOR SET A(s) ). Let I° =[0,1] and s = (A1, Az, As,--) be a one
sided sequence of real numbers with 0 < A; < 1 for all i > 1. We define the Cantor set A(s)
as follows.

Let I} = Io(A;I°), I} = Li(A1;I°) and I' = I3 UI}. A, denotes the set of all
sequences of 0 and 1 of length n. When I;"l’s are defined for all 3 € A, _1, we define;

Igo = IO(An;.I;_l)
Ig, = I1(An;1;_1) .

Inductively, we can define I? for all « € A,, and for all » > 0. Define
r=\y r
a€A,

and

As)y=() I".

n>0
This is clearly a Cantor set by the definition.

Next, we define another Cantor set I'(s).

3
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DEFINITION 3. Let J = [21,22] and 0 < A < %. We deﬁné,

Jﬁ()\;]) = v[:cl,zl + AMz2 — 1))
o 21 + 23 )

J2(A;J) = [22 — A(22 — 1), 22] -

z; + 23
2

A A |
- 5(22 —21), + 5(2_2 — 21)]

DEFINITION 4. Let J° = [-1,1] and s = (A1, A2, As,--- ) be a one sided sequvence of

real numbers with 0 < A; < -:1,; forall > 1. ‘Let

Jo = Jo(Al;Jvo) |
Jll = J1(/\1,J0)
J3 = Ja(A137°)

and IL, denote the set of all sequences of 0,1,2 of length n. When J;_l’s are defined for

all § € II,,_1, we define;

Jio = Jo(An; J771)
J5 = Jl(An;J;—l)
T3 = 50w 727

Inductively, we can define J3 for all v € I, and for all n > 0. Define
=)
vy€Il,

and

T(s)=() J".

n>0
These cantor sets have the following relation.
THEOREM 1. Let s = (A1,A3,As,- ) be a sequence of real numbers with 0 < X; < % for

allt > 1. Then,
A(s) — A(3) =T(s) .
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§.2 Outline of the proof.
DEFINITION 5. Let A be a Cantor set on a closed interval I. A is called affine, regular
or C"-Cantor set for 1 < » < oo if there are closed disjoint intervals I;,--- , I} on I and
onto affine, C? or C™—maps f; : I; — I for all 1 < i < k such that; |
M) If'i(2)]>1 Veel
() A=NZo { Upemr fofony Fom@D 3
where 3% = {0 : {1,--- ,n} — {1,--- ,k}} .

Qur main result is restated as follows.

THEOREM 2. There exists a sequence of real numbers s = (A1, Az, As, <+ ) with0 < ; < %
for all i > 1 such that;

(i) A(s) is a C*™—Cantor set,

(i) m(A(s) —A(s)) >0,

where m( ) denotes the Lebesgue measure.

From now on, we shall give the outline of the proof of this Theorem 2.

Let {r,}.>0 be a sequence of positive real numbers such that
oo
® S r <1

n=0

We define {)\,}.>1 using this {r,},.>0 as follows.

1
Al = 5(1 - ‘ro)
@) | , _1(1—Z?=or,-)
" 1- 2?:_01 Ti
It is easily seen that
1
(3) 0<A <3 Vaxl.

These numbers has the following relations.

5
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LEMMA 3. ,
’ n - n+1l
dom=1-3""][% Vvrn>0.
i=0 i=1

LeMMA 4.
o ra=3"1-3) [ Ve20.

ji=1

where, we assume H?:I A; = 1 for the simplicity of notation.

Using these lemmas, we can show (ii) of Theorem 2. In fact, the following lemma holds.

LEMMA 5. Let {r,}.>0 be a sequence of positive real numbers such that > > »r, <1,

and {\.}n>1 be the sequence defined by (2). Then, m(I'(s)) >0 .

§.3 The regularity of A(s).
We define a sequence {r,}, > 0 ( and so {),}»>1 ), and prove that A(s) is C*. First
of all, we fix a C*—function h(t) on [0,1] with the following properties.
(i) h(t) 20, |
(i) [y h(t)dt=1,
(iii) foralln >0,
lim R(™)(t) = 0,
t10

im A™(2) =
1t1Tr£1 R™(t)=0.
To define {7, }.>0, we define the following sequences. For each integers n > 0, let

¢» = max{qo,q1, "+ yqn_1,1, sup |h(")(t)| }.
tefo,1]

For n > 0, we define,
4-(n?+2)
Py = ————
an
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Since 7, < 4-(n"+2) < 4=(2+2) we have,
o Sr<Si-i.
Therefore, {r, }»>0 satisfy (1). We define another seciuence of positive real numbers;

o 3(8rn-1 — n)
2»-1(1 - E?z_ol 7;)

Since {7, }n>0 is monotonically decreasing and by (4), m, > 0 for all » > 1.

Vn>1.

n

U® denotes the open interval between I} and I}, namely;
U =1°\(Lul).

In general, U”! (o € A, _;) denotes the open interval between I?, and I, in IZ~1,
namely;

Ust =T N\(I5 U5 .

a

Let £, = {(I2). Then, by the definition,
Ly =Anlny .
Let u, = £(U?), and U? = [24,Ya]. Then,

Uy = ln - 2ln+1 ’

and

Up = Yo — & -

We prove the smoothness of A(s) as follows. We define a non-negative C*°—function
f(t) on [0, A1] and define; t
| o) = [ (1) +3)ds
We put;
| 90(t) =g(t)  on [0, ]
{ g(t) =g(t—1+21) on[l-2g,1].

7



and prove that these go and g; define A(s).

DEFINITION OF f(t). Recall that we have already defined a C>—function h(t) on [0,1]. We
Bl . v L f .

define f(t) using this h(t) as follows. Let [z),% ] be the interval of length —313 in the middle
of U2 such that

: 1 L 1 L

[ A ol _ l _ - - _ﬂv

(203 Yol = [2a + 2('”'1: 3 ) Yau 2('“1» 3 )]
We define f(t) as follows.
() On U2 (n£0),

I
t—z,

) te[za vl

La

f(t) = mah(
F6)=0  otherwise .
(i) On A(s), £(2) = 0. |
What we have to show are;

(1) f(t)is a C=—function on [0, A,] .
(1) go and gy, define A(s).

To show the smoothness of f(t), we define a function f,(t) for any n > 0 as follows.
Since £(t) is C® on U = Un>1,0ea,. U ( = [0, A]\A(s) ), F™)(¢) exists for all = > 0 on

U. We define, .
{ FPul)=F™(@)  for teU

fn(t)=0  otherwise (ie. te€A(s)).

The smoothness is shown by proving that;

LEMMA 6. For any n >0, f, is differentiable at any t € [0, 1] and f.(t) = fai1(t).

For the proof of (Il), we need some lemmas. Let I? = [r2,s2].

LemMma 7. Forall a,a’' € A,

[ sa— | s
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LEMMA 8. Foralln > 1,

ln nt1
/ F(R)dt = Smot, +2 f f(t)dt .
0 3 0

LEMMA 9. Foralln > 1,
Loy = go(£n) -

We have to prove that,

A= (LU 9;(11)9;(12)"?95(1)(1({)} -

n20 s€x2
Recall that 2 = {0,1}{%"»} and I® = [0,1]. This is obtained by showing the following

lemma.

LEMMA 10. Foralln >0 anda € A,

o) =0, a@i)=1;.
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