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Abstract. An example of a regular Cantor set whose self-difference set is a Cantor

set with a positive measure is given. This is a counter example of one of the

questions related to the homoclinic bifurcation of surface diffeomorphisms.

\S .0 Introduction.

In [2], Palis-Takens investigated the homoclinic bifurcations of surface diffeomorphisms

in the following context. Let $M$ be a closed 2-dimensional manifold. We say a $C’-$

diffeomorphism $\phi$ : $Marrow M$ is persistently hyperbolic if there is a $C^{\tau}$ -neighborhood $\mathcal{U}$

of $\phi$ and for every $\psi\in \mathcal{U}$ , the non-wandering set $\Omega(\psi)$ is a hyperbolic set (refer [1] for the

definitions and the notations of the terminologies of dynamical systems). Let $\{\phi_{\mu}\}_{\mu\in R}$ be

a l-parameter family of $C^{2}$-diffeomorphisms on $M$ . We define $\{\phi_{\mu}\}_{\mu\in R}$ has a homoclinic
$\Omega$ -explosion at $\mu=0$ if:

i) For $\mu<0$ . $\phi_{\mu}$ is persistently hyperbolic;

ii) For $\mu=0$ , the non-wandering set $\Omega(\phi_{0})$ consists of a (closed) hyperbolic set $\tilde{\Omega}(\phi_{0})=$

$\lim_{\mu\uparrow 0}\Omega(\phi_{\mu})$ together with a homoclinic orbit of tangency $\mathcal{O}$ associated with a fixed

saddle point $p$, so that $\Omega(\phi_{0})=\tilde{\Omega}(\phi_{0})\cup \mathcal{O}$; the product of the eigenvalues of $d\phi_{0}$ at $p$

is different from one in norm;

iii) The separatrices have quadratic tangency along $\mathcal{O}$ unfolding generically; $\mathcal{O}$ is the only

orbit of tangency between stable and unstable separatrices of periodic orbits of $\phi_{0}$ .

Let A be a basic set of a diffeomorphism on M. $d$“(A) $(d^{u}(A))$ denotes the Hausdorff

dimension in the transversal direction of the stable (unstable) foliation of stable (unstable

$)$ manifold of A (refer [2] for the precise definition), and is called the stable (unstable)

limit capacity. $B$ denotes the set of values $\mu>0$ for which $\phi_{\mu}$ is not persistently hyperbolic.

The result of Palis-Takens is;
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THEOREM [2]. Let $\{\phi_{\mu}; \mu\in R\}$ be a family of diffeomorphisms of $M$ with a homoclinic

$\Omega- ex\rho losion$ at $\mu=0$ . Suppose tha $td(A)+d^{u}(\Lambda)<1$ , where A is the $ba$sic set of $\phi_{0}$

sssociated with the homoclinic tange$ncy$. Then

$\lim_{5arrow 0}\frac{m(B\cap[0,\delta])}{\delta}=0$

where $m$ denotes Lebesgue $mea$sure.

This result says that if $d$‘ $(A)+d^{u}(A)<1$ , then the measure of the parameters for which

bifurcation occurs is relatively small.

Now the case of $d(A)+d^{u}(A)>1$ comes into question as the next step. In the proof

of the theorem above, one of the essential points is a question of how two Cantor sets in the

line intersect each other when the one is slid. In [3], PaIis proposed the following questions.

(Q.1) For affine Cantor sets $X$ and $Y$ in the line, is it true that $X-Y$ either has measure

zero or contains intervals ?

(Q.2) Same for regular Cantor sets.

For two subset $X,Y$ of $R$ ,

$X-Y=\{x-y|x\in X, y\in Y\}$ .

This can also be written as;

$X-Y=\{\mu\in R|X\cap(\mu+Y)\neq\emptyset\}$ ,

namely $X-Y$ is the set of parameters for which $X$ and $Y$ have a intersection point when
$Y$ is slid on the line.

Cantor set A in $R$ is called affine, regular or C’ for $1\leq r\leq\infty$ if A is defined with

finite number of expanding affine, $C^{2}$ or $C$‘ maps respectively (see \S 2 Definition 5 for the

rigorous definition).

Our result in this note is that there is a counter example of (Q.2), namely;

THEOREM. There exists a $C^{\infty}$ -Cantor set A such that

(i) $m(A-A)>0$ ,
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(ii) A–A is a Cantor set.

In the succeeding sections , we give an outline of the proof of this theorem. The complete

proof will appear elsewhere.

\S .1 Definition of the Cantor sets $A(\ell),$ $\Gamma(s)$ .
First of all, we define two cantor set depending on a sequence of real numbers.

DEFINITION 1. Let $I=[x_{1}, x_{2}]$ be a closed interval and $\lambda$ a real number with $0<\lambda<$ } $.$

We define,

$I_{0}(\lambda;I)=[x_{1}, x_{1}+\lambda(ae_{2}-x_{1})]$

$I_{1}(\lambda;I)=[x_{2}-\lambda(x_{2}-ae_{1}), x_{2}]$ .

DEFINITION 2 (CANTOR SET $A(s)$ ). Let $I^{0}=[0,1]$ and $s=(\lambda_{1}, \lambda_{2}, \lambda_{S}, \cdots)$ be a one

sided sequence of real numbers with $0< \lambda_{i}<\frac{1}{2}$ for all $i\geq 1$ . We define the Cantor set $A(s)$

as follows.

Let $I_{0}^{1}=I_{0}(\lambda_{1}; I^{0}),$ $I_{1}^{1}=h(\lambda_{1}; P)$ and $I^{1}=I_{0}^{1}\cup I_{1}^{1}$ . $A_{n}$ denotes the set of all

sequences of $0$ and 1 of length $n$ . When $\Gamma_{\beta}^{-1}s$ are defined for all $\beta\in A_{\iota-1}$ , we define;

$I_{\beta 0}^{\mathfrak{n}}=I_{0}(\lambda_{n}; \Gamma_{\beta}^{\iota-1})$

$\Gamma_{\beta^{b}1}=I_{1}(\lambda_{n}; \Gamma_{\beta}^{-1})$ .

lnductively, we can define $I_{\alpha}$ for all $\alpha\in\Delta_{n}$ and for all $n\geq 0$ . Define

$\Gamma=\bigcup_{\alpha\in A}$

$P_{\alpha}$

and

$A(s)=\bigcap_{n\geq 0}I^{n}$
.

This is clearly a Cantor set by the definition.

Next, we define another Cantor set $\Gamma(\iota)$ .
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DEFINITION 3. Let $J=[x_{1}, z_{2}]$ and $0< \lambda<\frac{1}{3}$ We define,

$J_{0}(\lambda;J)=[x_{1}, x_{1}+\lambda(x_{2}-x_{1})]$

$J_{1}(\lambda;J)=[$ $a_{2}^{e_{1}+x_{2}}- \frac{\lambda}{2}(x_{2}-x_{1}), \frac{x_{1}+x_{2}}{2}+\frac{\lambda}{2}(x_{2}-x_{1})]$

$J_{2}(\lambda;J)=[x_{2}-\lambda(x_{2}-x_{1}), x_{2}]$ .

DEFINITION 4. Let $J^{0}=[-1,1]$ and $s=(\lambda_{1}, \lambda_{2}, \lambda_{3}, \cdots)$ be a one sided sequence of

real numbers with $0< \lambda_{i}<\frac{1}{\}$ for all $i\geq 1$ . Let

$J_{0}^{1}=J_{0}(\lambda_{1}; J^{0})$

$J_{1}^{1}=J_{1}(\lambda_{1} ; J^{0})$

$J_{2}^{1}=J_{2}(\lambda_{1} ; J^{0})$

and $\Pi_{n}$ denote the set of all sequences of $0,1,2$ of length $n$ . When $J_{5}^{\tau\iota-1\prime}s$ are defined for

all $\delta\in\Pi_{\mathfrak{n}-1}$ , we define;

$J_{\delta 0}^{n}=J_{0}(\lambda_{n}; J_{s}^{r\iota-1})$

$J_{51}^{n}=J_{1}(\lambda_{n}; J_{\delta}^{n-1})$

$J_{\delta 2}^{n}=J_{2}(\lambda_{n}; J_{\delta}^{n-1})$ .

lnductively, we can define $J_{\gamma}^{n}$ for all $\gamma\in\Pi_{n}$ and for all $n\geq 0$ . Defi ne

$J^{\iota}= \bigcup_{\gamma\in\Pi_{\mathfrak{n}}}J_{\gamma}^{n}$

and

$F(s)=\bigcap_{n\geq 0}J^{n}$

These cantor sets have the following relation.

THEOREM 1. Let $s=(\lambda_{1}, \lambda_{2}, \lambda_{3}, \cdots)$ be a sequence of real numbers with $0< \lambda_{i}<\frac{1}{3}$ for

all $i\geq 1$ . Then,

$\Lambda(s)-\Lambda(s)=\Gamma(s)$ .
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\S .2 Outline of the proof.

DEFINITION 5. Let A be a Cantor set on a closed intervaI $I$ . A is called affine, regular

or $C^{\tau}$ -Cantor set for $1\leq r\leq\infty$ if there are closed disjoint intervals $I_{1},$ $\cdots$ $I_{k}$ on $I$ and

onto affine, $C^{2}$ or $C^{r}$ -maps $f_{i}$ : $I_{i}arrow I$ for all $1\leq i\leq k$ such that;

(i) $|f’:(x)|>1$ Vz $\in I_{:}$

(ii) $\Lambda=\bigcap_{n}^{\infty_{=0}}\{\bigcup_{\sigma\in\Sigma_{n}^{k}}f_{\sigma(1)}^{-1}f_{\sigma(2)}^{-1}\cdots f_{\sigma(n)}^{-1}(I)\}$ ,

where $\Sigma_{n}^{h}=\{\sigma : \{1, \cdots , n\}arrow\{1, \cdots , k\}\}$ .

Our main result is restated as follows.

THEOREM 2. There exists a sequence of real numbers $\epsilon=(\lambda_{1}, \lambda_{2}, \lambda_{S}, \cdots)$ with $0< \lambda_{i}<\frac{1}{8}$

for all $i\geq 1$ such that;

(i) $A(s)$ is a $C^{\infty}$ -Cantor set,

(ii) $m(A(s)-A(s))>0$ ,

where $m()$ denotes the Lebesgue measure.

From now on, we shall give the outline of the proof of this Theorem 2.

Let $\{r_{n}\}_{n\geq 0}$ be a sequence of positive real numbers such that

(1) $\sum_{n=0}^{\infty}r_{n}<1$ .

We define $\{\lambda_{n}\}_{n\geq 1}$ using this $\{r_{n}\}_{n\geq 0}$ as follows.

(2) $\{_{\lambda_{n+1}}\lambda_{1}==\frac{}{3}(\frac{1^{-r_{0})}-\sum_{i=0^{r}:}^{n}}{1-\sum_{:=0^{r}:}^{n-1}})\frac{1}{3,1}(1$

lt is easily seen that

(3) $0< \lambda_{n}<\frac{1}{3}$ $\forall n\geq 1$ .

These numbers has the following relations.
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LEMMA 3.

$\sum_{:=0}^{n}r_{i}=1-3^{n+1}II^{\lambda_{j}}n+1j=1$ $\forall n\geq 0$ .

LEMMA 4.

$r_{n}=3^{n}(1-3 \lambda_{n+1})\prod_{j=1}^{n}\lambda_{j}$ $\forall n\geq 0$ .

where, we assume $\prod_{j=1}^{0}\lambda_{j}=1$ for the simplicity of nota tion.

Using these lemmas, we can show (ii) of Theorem 2. In fact, the following lemma holds.

LEMMA 5. $L$ et $\{r_{n}\}_{n\geq 0}$ be a sequence of positive $rea1$ numbers such that $\sum_{n}^{\infty_{=0}}r_{n}<1$ ,

and $\{\lambda_{n}\}_{n\geq 1}$ be the sequence defned by (2). Then, $m(\Gamma(\epsilon))>0$ .

\S .3 The regularity of $A(s)$ .
We define a sequence $\{r_{n}\}_{n}\geq 0$ (and so $\{\lambda_{n}\}_{n\geq 1}$ ), and prove that $A(\ell)$ is $C^{\infty}$ . First

of all, we fix a $C^{\infty}$-function $h(t)$ on $[0,1]$ with the following properties.

(i) $h(t)\geq 0$ ,

(ii) $\int_{0^{1}}h(t)dt=1$ ,

(iii) for a11 $n\geq 0$ ,

$\{\begin{array}{l}\lim_{\downarrow 0}h^{(n)}(t)=0\lim_{\ell\uparrow 1}h^{(n)}(t)=0\end{array}$

To define $\{r_{n}\}_{n\geq 0}$ , we define the following sequences. For each integers $n\geq 0$ , let

$q_{n}= \max\{q_{0}, q_{1}, \cdots q_{n-1},1, \sup|h^{(n)}(t)|\}$ .
$t\in[0,1]$

For $n\geq 0$ , we define,

$r_{\mathfrak{n}}= \frac{4^{-(n^{2}+2)}}{q_{n}}$
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Since $r_{n}\leq 4^{-(n^{2}+2)}\leq 4^{-(n+2)}$ , we have,

(4) $\sum_{n=0}^{\infty}r_{n}<\sum_{n=2}^{\infty}\frac{1}{4^{n}}=\frac{1}{12}$

Therefore, $\{’ n\}_{n\geq 0}$ satisfy (1). We define another sequence of positive real numbers;

$m_{n}= \frac{3(3r_{n-1}-r_{n})}{2^{n-1}(1-\sum_{i=0}^{n-1}r_{i})}$ $\forall n\geq 1$ .

Since $\{r_{n}\}_{n\geq 0}$ is monotonically decreasing and by (4), $m_{n}>0$ for all $n\geq 1$ .
$U^{0}$ denotes the open interval between $I_{0}^{1}$ and $I_{1}^{1}$ , namely;

$U^{0}=I^{0}\backslash (I_{0}^{1}\cup I_{1}^{1})$ .

In general, $U_{\alpha}^{n-1}(\alpha\in\Delta_{n-1})$ denotes the open interval between $I_{\alpha 0}^{n}$ and $I_{\alpha 1}^{n}$ in $\Gamma_{\alpha}^{-1}$ ,

namely;
$U_{\alpha}^{n-1}=\Gamma_{\alpha}^{-1}\backslash (I_{a0}^{n}\cup I_{\alpha 1}^{n})$ .

Let $t_{n}=t(I_{\alpha}^{n})$ . Then, by the definition,

$t_{n}=\lambda_{n}t_{n-1}$ .

Let $\prime u_{n}=t(U_{\alpha}^{n})$ , and $U_{\alpha}^{n}=[x_{\alpha}, y_{\alpha}]$ . Then,

$u_{n}=t_{n}-2t_{n+1}$ ,

and

$\tau\iota_{n}=y_{\alpha}-x_{\alpha}$ .

We prove the smoothness of $A(s)$ as follows. We define a non-negative $C^{\infty}$ -function

$f(t)$ on $[0, \lambda_{1}]$ and define;

$g(t)= \int_{0}^{t}(f(s)+3)d\ell$ .

We put;

$\{\begin{array}{l}g_{0}(t)=g(t)on[0,\lambda_{1}]g_{1}(t)=g(t-1+\lambda_{1})on[1-\lambda_{1},1]\end{array}$
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and prove that these $g_{0}$ and $g_{1}$ define $A(s)$ .

DEFINITION OF $f(t)$ . Recall that we have already defined a $C^{\infty}$ -function $h(t)$ on $[0,1]$ . We

define $f(t)$ using this $h(t)$ as follows. Let $[x_{\alpha}’ , y_{a}]$ be the interval of length $\frac{\ell_{n}}{3}ln$ the middle

of $U_{\alpha}^{n}$ such that
$[x_{\alpha}’, y_{\alpha}’]=[x_{\alpha}+ \frac{1}{2}(u_{n}-\frac{t_{n}}{3}), y_{\alpha}-\frac{1}{2}(u_{n}-\frac{t_{n}}{3})]$ .

We define $f(t)$ as follows.

(i) On $U_{\alpha}^{n}(n\neq 0)$ ,

$\{\begin{array}{l}f(t)=m_{n}h(\frac{t-W_{\alpha}^{r}}{\underline{l}_{As}})t\in[x_{\alpha}^{/},y_{\alpha}^{/}]f(t)=0otherwise\end{array}$

(ii) On $A(s),$ $f(t)=0$ .

What we have to show are;

(1) $f(t)$ is a $C^{\infty}$ -function on $[0, \lambda_{1}]$ .
(11) $g_{0}$ and $g_{1}$ define $\Lambda(s)$ .

To show the smoothness of $f(t)$ , we define a function $f_{n}(t)$ for any $n\geq 0$ as follows.

Since $f(t)$ is $C^{\infty}$ on $U= \bigcup_{n\geq 1,\alpha\in\Delta_{\mathfrak{n}}}U_{\alpha}^{n}(=[0, \lambda_{1}]\backslash \Lambda(s))$. $f^{(n)}(t)$ exists for all $n\geq 0$ on
$U$ . We defi ne,

$\{\begin{array}{l}f_{n}(t)=f^{(n)}(t)fort\in Uf_{n}(t)=0otherwise(i.e.t\in A(s))\end{array}$

The smoothness is shown by proving that;

LEMMA 6. For any $n\geq 0,$ $f_{n}$ is differentiable at $anyt\in[0, \lambda_{1}]$ and $f_{n}’(t)=f_{n+1}(t)$ .

For the proof of (II), we need some lemmas. Let $I_{\alpha}^{n}=[r_{\alpha}^{n}, s_{\alpha}^{n}]$ .

LEMMA 7. For all $\alpha,$
$\alpha’\in\Delta_{n}$ ,

$\int_{I_{\alpha}^{n}}f(t)dt=\int_{I_{\alpha’}^{n}}f(t)dt$ .
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LEMMA 8. For all $n\geq 1$ ,

$\int_{0}^{1}f(t)dt=\frac{1}{3}m_{n}\ell_{n}+2\int_{0}^{1.+1}f(t)dt$ .

LEMMA 9. For all $n\geq 1$ ,

$t_{n-1}=g_{0}(l)$ .

We have to prove that,

$\Lambda(s)=\bigcap_{n\geq 0}\{ \bigcup_{2,\sigma\in\Sigma_{n}}g_{\sigma(1)}^{-1}g_{\sigma(2)}^{-1}\cdots g_{\sigma(n)}^{-1}(I^{0_{-}})\}$
.

Recall that $\Sigma_{n}^{2}=\{0,1\}^{\{1,\cdots,n\}}$ and $I^{0}=[0,1]$ . This is obtained by showing the following

lemma.

LEMMA 10. For all $n\geq 0$ and $\alpha\in\Delta_{n}$ ,

$g_{0}(\Gamma_{0\alpha}^{+1})=I_{a}^{n}$ , $g_{1}(I_{1\alpha}^{n+1})=I_{\alpha}^{n}$
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