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Homoclinic Linkage in the Double Scroll Circuit
and the Cusp-Constrained Circuit

R.Tokunagé, T.Matsumoto, T.Ida, and K.Miya

Department of Electrical Engineering, Waseda University, Tokyo 160, Japan.

Introduction

This paper reports Homoclinic Linkage. In this paper, we will deal with two

circuits. One is the Double Scroll circuit [1] whose dynamics is given by

dx _ aly - L %(mu - Ix-11)}

dt 7

dy

—=X-y+z

P (1)
dz

—=-PBy
dr

which is symmetric with respect to the origin. The other is the Cusp-Constrained circuit

[2] whose dynamics is given by

dx

—=-y+ax

dec

t-:ix:é-{ly-l-zl—ly-zl} +-ly+x )]
dt 4 2

dz
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which is symmetric with respect to the z-axis. The parameters o, B, a, ¢ and € are

functions of circuit parameters. In order to show what homoclinic linkage is, we will

focus

our attention on (1).
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1.1 Fates of Periodic 'Orbits

" Let us fix B =9.0, and see what happens to (1) as we vary o.. The dynamics has
three equilibria: O, the origin, P+ and P- (Fig.1). The last two are located
symmetrically with respect to O, because of the symmetry of (1). For o small, P* are
sinks. For =0y =5.118, Hopf bifurcation at P* gives rise to a pair of nonsymmetric
stable periodic orbits (IT!j) and a symmetric saddle type periodic orbit (IT1) (Fig.1). At
a=0.,;, IT1j loses its stability to give rise to a new periodic orbit I12, via period

doubling bifurcation. However IT!, still survives as a saddle type periodic orbit. Our
first question is

What is the fate of these two periodic orbits, I11;, and IT! ?

Figure 2 shows how these periodic orbits are deformed as we very o where the
ordinate is period? of the periodic orbits. A broken (resp. solid) curve indicates that the
periodic orbit is unstable (resp.stable). 0, ®p, &'y, O'yp, (T€SP. Oy, Opg, O'py,

o) indicate the values of o at which saddle-node (resp. period doubling or pitch
folk) bifurcations take place. Both of the curves oscillate around 0=7.2978 at which
the simplest homoclinicity (I'ly) through O exists.(Fig.4(a)) And the period tends to
+eo, It seems that IT!y and IT! are deformed into I'ly. We can confirm that this
continuous deformation via observing trajectories. (Fig.3) Hence the answer to the
above question is

IT1; and IT! are continuously deformed into homoclinic orbit T'l,.

This has been observed by George[3].

Next we observe the fate of other periodic orbits I12; and fl2o (resp. IT1; and
ﬁll) which are born via period doubling of IT!j at o =0ty and @ = oy, (resp. pitch
folk bifurcation of of II! at a=a',; and a=a',), respectively. Figure 5 shows the

bifurcation curves of these four periodic orbits.

1 Throughout this paper, half period is used for (o, period)-bifurcation diagram of symmetric periodic
orbit.
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It is clearly observed that

112, and I1!, (resp. ﬁ20 and ﬁ‘l) are continuously deformed into

homoclinic orbits I'2; and A2 (resp. f‘ZO and 7\20 )

Recall that there are symmetric periodic orbit, IT! and nonsymmetric periodic orbit, ITl,
which are continuously deformed into I'l;. The above four periodic orbits are all non-
symmetric, hence the symmetry of the dynamics indicates existence of other symmetric
periodic orbits which are deformed into I'2, A2y, T'%, and A2,. Figure 5 shows the

bifurcation curves of a pair of symmetric orbits, IT2 and~1'12, which are shown in Fig.6.
An extremely interesting fact is that

different homoclinicities, T2y and A2 (resp. r 2, and 7\20) are linked

together via T12 (resp. ﬁ2).

From the above observation, the fate of periodic orbits are classificd by the following:

(T1) periodic orbits whose bifurcation curve is terminated by a Hopf bifurcation
and homoclinicity;

(T2) periodic orbits whose bifurcation curve is terminated by a period doubling
(resp. pitch folk bifurcation) and homoclinicity;

(T3) periodic orbits whose bifurcation curve is terminated by two homoclinicities .

Especially, (iii) is very important because these curves are isolated from other curves.
We call this case a

homoclinic linkage.
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Next, let us observe the above bifurcation from a different view point. Figure 7
shows (I'2y, A%y) and (I?ZO,A~20) in the (o, y*, z*)-space instead of the (o, T)-space,

where y* and z* are defined by the following: Let
U=((xy2)lx=1}. | 3)

Then (1, y*, z*) is the point at which a periodic orbit hits U. Note that locus of each

periodic orbit in this space is an infinite spiral as it approaches homoclinicity.

1.2 The Shilnikov Condition

The mechanism of continuous deformation of a periodic orbit into a homoclinicity
is studied in [4][5]. Roughly speaking, the mechanism can be classified by the
following: Suppose that a homoclinicity in question has one real eigenvalue y> 0 and a
complex-conjugate pair ¢ * jo, 6 <0. ’

G If
¥ > lol ()
then the bifurcation curve associated periodic orbit oscillates infinite times around
homoclinicity, (see Fig.8(a)), while
(i) if
Y< lol, (&)
then the bifurcation curve associated with periodic orbit oscillates only finite times
around homoclinicity. (see Fig.8(a))
Since condition (4) is one of the conditions of the theorem of Shilnikov [6], we

call this condition the "Shilnikov condition”. Naturally, then, the end of a spiral is
characterized by

y=lol. | (©)
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II. Homoclinic Linkages in the Double Scroll Circuit
In the previous section, we observed (I'2),A2%;) and '(UIYO,X%) at p=9.0. However

these homoclinic linkages are deformed into (Iqo:f’zo) and (A%,XZO), as B decreases.

- (see Fig.9(a)) Moreover homoclinic linkages disappear at B=1.95. (Fig.9(b)) In order

to analyze this mechanism, we construct a sheet model in the (a*,B,s)-space, where

o* and s are defined by

ot 2 a - H(B),

A
s = y*+3z*

respectively. Here, H(B) denotes the value of o for which homoclinicity I'l occurs.
The coordinate "s" contains the information as to where a periodic orbit is located. The
purpose of taking the linear combination of y* and z* instead of y* or z* alone is
simply to avoid self-intersection of the loéi. Figure 10 shows a hand drawn sheet
model. The computer generated model is shown in Fig.11. In this space, periodic orbit
corresponds to a continuous sheet. The sheet model of Fig.10 consists of the following

three sheets:

(1) Sy2 which is terminated by homoclinicity locus I'2 uT% and period doubling
bifurcation set P, ui’l ;

(2) S,! which is terminated by homoclinicity locus AZyuU XZO and pichfolk
bifurcation set P, U ﬁr;

(3) S2 which is terminated by homoclinicity loci T2, U T2, and A2yU AZ,.

Note that I'2j and f’zo (resp. A2 and KZO) and other bifurcation sets connect to each
other in the (a,)-space. Note that homoclinic linkage in the (ot,B)-space is S2, itself.

Hence, it is sufficient to analyze S2 in order to analyse homocliniclinkage via IT2.

5
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The sections in Figure 10 are planes which are normal to the B-axis. Consider the
intersection between S2 and section-0 which consists of continuous curves correspond-
ing to (I'2y, A2p) via IT2 and (f%, /CZO) via 12, A pair of saddle node bifurcation sets,
T, and T}, are born out of cusp-point C;. On the other hand, I12 contains another
saddle node bifurcation sets, i and 'i‘; Ty hits 'f‘l at S, on section-1. Here on section-1,
a pair of linkages merge togethor and form the (I‘20,A20,f20,K23)-1inkage. Below
section-1, the linkage is devided into (I'?, Y‘ZO) and (A%, Aio). Between section-1 and
section-2, a pair of saddle node bifurcation sets, T, and T', are born out of another
cusp-point C,. On section-2, (AZO,X%) touches itself at S,. Hence, under section-2,
this homoclinic linkage breaks into two parts: one is loop-like set containing T', and

T',, while the other is (A2, 7\20).
2.2 Disappearance of Homoclinic Linkages

As P decreases further, I and I~“20 (resp.A2; and 7\20) get closer to each other.
Finally they merge, and then homoclinic linkages disappear. In the same manner,
period doubling (resp. pitch folk ) bifurcation sets P; and El (resp. P, and 'I;r) disépear.

Hence for B small, only IT!; and IT! which are connected via I'l; survive.
IT1. Homoclinic Linkages in the Cusp-Constrained Circuit

In this section, we consider (2) with 0.
3.1 Ggometric Structure and Homoclinicities

Figure 12 shows the c’onstrained surface X which is given by

3/4 (ly+z) + ly-zl}+ 1/2y + x = 0. 8)
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Let us consider the (y,z)-projection and define subsets by

F,={(y.2lz=1y20)
F.={(ylz= :t%—y 20}
L ={(y2lz=-y<0]}

L =((y2lz=y<0)

_ | a2
P:= (@-0ay2eHl * oprzot]
P, =0 -573)

o =(0,0).

F, , Fe; and o indicate "fold", "shadow of fold" and "cusp-point" on X, respectively,
while p,. and P, indicate fixed points of the slow vector field. If a > 1 and ¢ > -2 hold,
P, is a saddle node. On the other hand, p, is unstable focus in our case. Let us illustrate
the behavior of the flow. (see Fig.13) Consider the intersection between righthand-side
unstable manifold of pyand F,, say c. Let the flow which starts from ¢ be denoted by
y7T(c). yU(c) starts to rotates around p, in the counter clockwise direction. It hits F
and jumps onto x; on F¢_ rapidly. Next it starts to rotate around p_ in the clockwise
direction, but hits F_and jumps onto x, on F¢,_ rapidly. After repeating similar
process which contains "jumps", it start to rotate around p, of p_. If times of jump is
even (resp.odd), it rotates around p, (resp. p_). After several rotations, it hits F
(resp. F ), the above "jump process" starts again.

Since (2) is a constrained system, one can not apply the definition of
homoclinicity, however we would like to consider the following situations as
"homoclinicity and heteroclinicity of (2)".

(i) Homoclinicity through pgdenoted by Hy": unstable manifold of pg hits
cusp-point o after the n-th jump.
(i) Homoclinicity and heteroclinicity through p, denoted by Hy™:

p; € Fey, and | )
lix,, 11 > lip,l. (10)



(iii) Homoclinic loop between p, and p, denoted by Tm:
condition (9), and ; ,
lIx,, Il = lip.ll. : (11)

Next let us consider the loci of homoclinicities in the (c,a)-space. An equivalent
condition of (9) is given by

a=>5.0. ‘ . (12)

See Fig.14. Hpn are located on the line segment a = 5.0, in the (c,a)-space whose right
terminal point is locus of T". On the other hand locus of H." is an infinite spiral whose
center is also locus of T". Hence H," and H," are born from Tn.

3.2 (H)?2, H ?)-Homoclinic Linkages and Fish Hooks

Let us consider the (H2, H,2)-Homoclinic Linkages. We choose c¢=4.9 in the
(c,a)-space and find a pair of periodic orbits which are continuously deformed into
H 2. One of them is symmetric (C;/;) and the other is nonsymetric (C;/3). (see
Fig.15) Figure 16 shows their bifurcation curves. It is clearly seen that they approach
Hp2 at a = 5.0 with oscillatons around it. To analyse this homoclinic linkage, we
construct their sheet model in the (c,a,£)-space where & is the maximal y-coordinate of
the intersection between F, and the periodic orbit. (see Fig.15) Figure 17 shows a hand
written sheet model of the (HPZ, H2)-homoclinic linkages. It consists of a pair of
sheet: one corrsponds to Cy; (Syj), the other corresponds to C, 3 (Sy/3). Globally,
these two sheets are scrolled with respect to H,2. However its local structure near T2 is
terminated in a very complicated manner. A pair of cusp points (c") appears on S,
and they are connected with each other via tangent bifurcation set (t,). On the other
hand, for c large, there is no bifurcation set on S;j,, and S, is terminated by H,2 to
be connected with S, 3. Note that this sheet model contains infinite number of cusp
points ¢ which accumulate onto T2, Figure 18 shows the computer generated sheet
model. In the above, stability of periodic orbits is not discussed. Here we consider the
region where the stable periodic orbit exists, i.e., stability interval.

=
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In this model, period doubling bifurcation sets (p,) (resp. pitch folk bifurcation sets
(p'n)) are located on S5 (S1,) as in Fig.19. Dotted region in Fig.19 corresponds to
stability intervals. Note that the stability interval exists along the locus of H 2, and that
a part of this contains single cusp point ¢ which looks like a "fish hook". Such an
accumulation structure of cusp points has been reported by Guspard et al.. [7] In their
report, the nature of accumulation point has not been discussed in detail. However our
case, accumulation point is defined by a codimension-2 homoclinic loop.
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