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p-Discrete Languages

H.J. Shyr, G. Thierrin and S.5. Yu

§1. Introduction and Notations

Let X* be the free monoid generated by the finite alphabet X with |X| > 2. Any
element of X* is called a word and any subset of X* is called a language. The length of a
word u is denoted by lg(u). If 1 is the empty word, then X+ = X*\{1}. The catenation of
two languages A and B is the set AB = {zy |z € A,y € B}. A word u € X is primitive
if u= f" f € Xt implies n = 1. Every word can be expressed uniquely as a power of
a primitive word ([3]). The set of all primitive words over X will be denoted by Q. If
u=f" f € Q, then v/u = f and for any language L C X+, VL = {{/u | u € L}.

A nonempty language L C X7 is called a code if mllxg...a:n = Y1Y2---Ym,Ti,Yj € L
implies m = n and z; = y;,7 = 1,2, ...,n and an n-code if every subset of L with at most
n elements is a code ([1]).

A language L C X* is said to be n-discrete, n a positive integer, if |[L N X™| < n for
all m > 1. L is called semidiscrete if L is n—discrete for some n > 1. If n =A1, then the

language L is said to be discrete.

Remark that a language L is n-discrete iff |[L N A| < n for every class A of the
equivalence relation A defined by u = v(A) iff Ig(u) = lg(v), because the classes of A are
the sets {X™ | m > 0}. It is therefore natural to consider generalizations of the discrete
languages in relation with more general equivalence relations p. |

The purpose of this paper is to study in particular generalizations connected with
equivalences associated with general and cyclic permutations of words in X*. If p is an
equivalence relation defined on X*, then the equivalence class contdining the word u will

be denoted by p,. If n is a positive integer, then L C X™* is said to be p(n)-discrete if
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' ILNpu| <n

for every u € X*.

If n =1, then L is called a p-discrete language.

If u € X* then n(u) and a(u)' denotes respectively the set of all permutations and the
set of all cyclic permutations of the word u. The following relations defined on X* are

equivalence relations:

(1) w=od)  ff  lg(u) =lg(v);

(2) u = v(o) iff o(u) = o(v).

It is immediate that

g CrCA

It follows then that a A(n)-discrete language is a 7(n)-discrete language and that a 7(n)-
discrete language is a o(n)-discrete language. The converse is not true. For example, if
X = {a,b}, then {a?, ab} is m-discrete, but not A-discrete and {abab,a?b?} is o-discrete

but not w-discrete.

Remark that the o-equivalence classes are the cyclic permutations of a word v € X *.
Hence o(n)-discrete languages are the languages containing at most n words of the cyclic
permutations o(u) of u € X* and a g(n)-discrete language is a union of at most n o-discrete

languages.

It is immediate that a language is o-discrete iff zy € L and yz € L implies zy = yz.

Since a language is called reflective iff zy € L implies yz €L, it follows that a o-discrete
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language is, in some way, the opposite of a reflective language and for this reason could

also be called an anti-reflective language.

In this paper we give, in section 2, several characterizations of o(n)-discrete tand
w(n)-discrete languages. In section 3, some operations on these two classes of languages
are considered and in section 4, the corresponding maximal languages are studied. The
special family of o-discrete 2-codes is investigated in section 5. In the last section, we
consider the class of cm-free languages which are in some way the opposite of comrﬁutative

languages.

§2. Some Properties of o(n)-discrete and n(n)-discrete l.zinguages

For any language L C X* , we let L(™ = {z™ | 2 € L}. Clearly if L is a o(n)-discrete
language, then so is L(™) for m > 2. ’
First we establish some characteristic properties of o(n)-discrete and w(n)-discrete

languages.

PROPOSITION 2.1. Let X be an alphabet with |X| > 2 and let L C X*. Then for
every n > 1, the following properties are equivalent:
(1) L is a o(n)-discrete language;
(2) loe(w)NL|<n forallwe X,
(3) LN X™ 13 g(n)-discrete Vm > 1;
(4) L™ 45 g(n)-discrete Ym > 1;
(5) L™ is o(n)-discrete for some m > 1.
PROOF. The equivalences of (1),(2) and (3) are immediate.
(1) = (4). Let m > 2. Suppose L™ is not o(n)-discrete. Then there exist at least
n + 1 distinct words uy, s, ..., Upn, Upy1 € L such tha,t

ul® € o(u*) for all s.
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Let ul* = a:;ui""ly,'. Then z; # 1,y; # 1 and u; = y;z;. This means that u; € o(u;) for
1<t <n+1. Thus L is not o(n)-discrete, a contradiction.

(4)= (5). Trivial.

(5) = (1). Suppose L is not o(n)-discrete. Then there exist at least n + 1 distinct
words U1, Uz, ..., Un, Unt1 € L such that u; € o(u;) for all 2. It then follows that

u™ € L(™ for all 4.

But u; € o(u;) implies that u™ € o(u]*). Thus L{™) is not o(n)-discrete. This shows that
(5) implies (1).¢

A language L C X7 is called an infiz code if for u € X+, 2,y € X*, u,zuy € L

implies zy = 1.
For the case n = 1, we have the following proposition:

PROPOSITION 2.2. Let X be an alphabet such tha;t |X|> 2 and let L C X*. Then
L is o-discrete if and only if for any u,v € LN X™, {u?,v} is an infiz code.

PROOF. Let u = a1a3...am; v = bibs...bm, where a;,b; € X, Then {u?,v} is not an
infix code if and only if u? = zvy for some z,y € X*, 2y # 1. Which then implies that
{u?,v} is not an infix code if and only if v = @;a;41...am0103...a;_1, for some 1 < i < m.

The proof of the proposition follows then easily from these results.$

PROPOSITION 2.3. Let X be‘ an alphabet such that | X| > 2. Lét L'c_: X*. Then for
ang) n > 1? the following properties are equivalent
(1) Lisa %(n)-discrcte language;
(2) [r(w)NL| <n forallwe XT;
(8) LN X™ is m(n)-discrete Vm > 1;
(4) L™ 45 n(n)-discrete Ym > 1;
(5) L™ 45 w(n)-discrete for some m > 1.

PROOF. The equivalences of (1),(2) and (3) are immediate.
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(1) = (4). Let m > 2. Suppose L(™) is not n(n)-discrete. Then there exist at least.

n + 1 distinct words uy, Uz, ..., Up, Upt1 € L such that
ul® € w(ul*) for all ¢.
This means that u; € n(uy) for 1 < i < n+1. Thus L is not n(n)-discrete, a contradiction.

(4)=> (5). Trivial.

(5) = (1). Suppose L is not w(n)-discrete. Then there exist at least n + 1 distinct
words %1, Uz, ..., Un, Unt1 € L such that u; € 7(uy) for all 2. It then follows that ui® € L(m)
for all 7. But u; € m(u;) implies that u™ € m(u}*). Thus L(™ is not n(n)-discrete. This
shows that (5) implies (1).¢

It has been shown that a semi-discrete dense language is disjunctive (see [2]). The

following proposition is a generalization of this fact.

PROPOSITION 2.4. A w(n)-discrete language L is dense if and only if L is disjunc-
tive.
PROOF. (<) Trivial.

(=) Let L be a w(n)-discrete dense language. For any u # v € X*, there exist

z,y € X* such that \/ruy # /zvy. Let u' = zuyrvy and let v' = zvyzuy. Then
u' € w(v'). Define wy = (W)™, wy = (w)" W, w, = w'(W) ), whgy = (v')®. Then
w; € m(wq) for all ¢. If u = v(Py), then u' = v'(Pr). This implies that w; = w;(Py) for
all 7,7. Since L is dense, there exist z,z' € X* such that 2w,z € L. This implies that
zw;z' € L for all ;. But zw;2' € n(zw;2’) for all 7 and this contradicts the condition that

L is w(n)-discrete. Thus u # v(Pg) for all u # v € X*. This shows that L is disjunctive.$

§3. Operations on o-discrete and w-discrete Languages
For a language L C X*, let L® = X*\L be the complement of L in X™*.

PROPOSITION 3.1. Let p be an equivalence relation such that o C p. Then for any

p(n)-discret language L, L€ is dense.
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PROOF. Since every p(n)-discrete language is a o(n)-discrete language, we only need
to show that for any o(n)-discrete language L, L° is dense.

Now let L be a o(n)-discrete language and suppose L€ is not dense. Then there
exists a word w € X1 such that X*wX* N L = . It then implies that X*wX* C L.
Let m = lg(w). Then |o(w?ab?™*"a)| > n. This contradicts the condition that L is

o(n)-discrete. Therefore, L° must be dense.
- COROLLARY 3.2. For any n(n)-discrete language L, L® is dense.{

It is clear that if L is not a o-discrete language, then L* is not o-discrete for all
i > 2. If L is o-discrete, then L* is not necessarily o-discrete. In fact, the next prdposition
shows that, for example, the class of languges L such that L and L? are o-discrete is quite

restrictive.

PROPOSITION 3.3. Let L be a language. Then the following properties are equiva-
lent: |

(1) L and L? are o-discrete;

(2) L and L? are.w-discrete;

- (3) L Cw* for some w € X*.

PROOF. (2) = (1) Since every w-discrete language is o-discrete, clearly (2) implies
(1). '

(1) = (3) Suppose L € w* for any w € X*. Then there exist z,y € L such that
z # 1 # y and \/5:- # /y. Since zy # yz and zy,yz € L% L? is not a-discrete, a
contradiction. | |

(3) = (2) Suppose L C w* for some w € X*. Then clearly L? C w* and L? is discrete.

Therefore, L and L? are w-discrete.$

In relation with the preceding proposition, we have the following result:
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PROPOSITION 3.4. Let L C X*. Then the following properties are equivalent:

(1) L 13 a o-discrete submonoid;

(2) L is a w-discrete submonoid;

(3) L = w* for some w € X*.

PROOF. (2) = (1) Since every m-discrete lla,nguage is a o-discrete language, the
implication holds. '

(1) = (3) Suppose there exist wi,wz € L with wy # 1 and w; # 1 such that
VW1 # /wz. Then wiyw; # waw; and wyw,, wow; € L. Which implies that L is not
o-discrete, a contradiction. Therefore, L = w* for some w € X*.

(3) = (2) Trivial.

In general, if a language L is o-discrete then v/I is not necessarily o-discrete. For
example, L = {a2b,(aba)?} is o-discrete but VI = {a?b, aba} is not. However the converse

is true for any language L C X +,

PROPOSITION 3.5. Let L C X*. If VL is a o-discrete language, then L is o-
discrete. ’

PROOF. Suppése L is not o-discrete. Then there exist u,v € L such that v € o(v)
and u # v. Let v € Q® for some i. Then by Proposition 1.11 ([7]), u € Q). Thus v = ¢*
and u = k' for some g # h € Q. Which then implies that & € o(g) and g,h € VL. Thus

VL is not o-discrete, a contradiction. Therefore, L is o-discrete.<

The next proposition shows that the family of o-discrete languages is not closed under

catenation.

PROPOSITION 3.6. For any word w € X, there exists a o-discrete language L such
that wL is not o-discrete .

PROOF. Let X = {a,b,...}. Given w € X*: ‘

(i) if w ¢ b*, then we let L = {bw3b, bwbw?};
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(ii) if w = b™,n > 1, then we let I = {aw?a,awaw?}. It is clear that L is o-discrete

put wL is not. This proves the proposition.{

In the following discussion, we consider the free monoid X* with the standard total
order < which is defined as follows (see [6]):

For u,v € X* u < v if lg(ﬁ) < lg(v) and < is the lexiéographica.l order if lg(u) = lg(v).
Let A={a; <a; <..<a;<..}and B={b < by <..<b;<..}betwo languages
over X with the same cardinality and ordéred relatively to the standard order. The. ordered
catenation of A aﬁd B is‘ the set

AAB = {a;b;| 1 =1,2,...}.

We let A® = AAA and let AM™ = A®~DAA forn > 3. Let (X*,<)={zo <21 <22 <
.. < &; < ..} with the standard total order <. The injective mapping # : X* — NU{0}
is defined by #(z) =1 if ¢ = z;.

In general, o-discrete languages are not closed undexj ordered catenation. In the next
proposition, we consider a case where this is true. For the proof of this prop‘osition, we
need the following known results:

(*) f u and v have powers u™ vand v™ with a common initial segment of length
lg(uw) + lg(v), then u and v are powers of a common word ([3]).

In particular we have

(**) For p,q € @, if p* and ¢’ have a common segment of length lg(p) + lg(q), then

p € a(g).

PROPOSITION 3.7. Let A C QW) B C QU) where i # j > 3. If both (4,<) and
(B, <) are g-discrete, then AAB 1is o-discrete. | |

PROOF. Suppose AAB is not o-discrete. Then there exist uy,uz,vy,v2 € Q with
ui,ub € A, v{,vg € B, uiv{,u%vg € AAB and uiv{ € a(uévg). Which implies that
g(uivd) = lg(uivd), lg(us) = lg(uz),lg(v1) = lg(vs). Since both A and B are o-discrete,

11 ¢ o(uz), vy & o(va). Thus ul ¢ E(o(ul)), v} ¢ E(c(vl)) and vice versa. It is clear that
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lg(ui) < lg(uy) + lg(v?) and lg(v};) < lg(v1) + lg(ul) for k = 1,2. (Otherwise, u; € o(us)
or v; € o(vy).) Without loss of generality, let #(u;) > #(uz) and let #(v1) > #(v2). -
Then we have the following five cases. »

Case 1, u = zy,v] = yz for some x,y,2 € X* with lg(z) < lg(uz) and Ig(z) < lg(v1).
Then lg(y) > 2max{lg(uz),lg(v1)} > lg(uz) + lg(vy). By the condition (**) above, u; € .7
o(v1). Thus Ig(uz) = lg(v1). This implies that ¢ = j; a contradiction.

Case 2, v{ = zy,ul = yz. It is the same as Case 1.

Case 3, ub = a:vgy and lg(z) + lg(y) < lg(uz). Since ¢,5 > 3, lg(v{) > 2 max{lg(uz),
lg(v1)}. By the condition (**) above, uz € o(v;). We get that lg(uz) = lg(v1) and & = j;‘é
a contradiction. .

Case 4, v{ = zudy. It is the same as Case 3. ’

Case 5, v{ = ui. By the condition (*) above, u; = v;. Then u; = vy. But #(v2) =
#(u1) > #(uz) = #(v1); a contradiction. |

Therefore, the language AAB must be o-discrete.{

Let A and B be two o-discrete languages contained in Q), Q) respectively. If i = j,.
then AAB may not be o-discrete. This is the case, for example, if A = {(aaba)’, (bbaa)}
and B = {(aabb)’, (baaa)'}. Then A, B C Q) and both A and B are o-discrete. Howéver,; |
AAB is not o-discrete. If A C @, then AAB may also not be o-discrete. For example, let
A = {abibb,ba’ab} C @ and let B = {a?,b'} C Q). Then both A and B are o-discrete.

But AAB is not o-discrete.

§4. Maximal o-discrete and wm-discrete Languages

DEFINITION. An o-discrete language I C Xt is mazimal if L is not properly con-
tained in other o-discrete languages, that is, for any o-discrete language L' C X+, L C L'
imples that L = L'.

PROPOSITION 4.1. Let L C X*. Then the following properties are equivalent:
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(1) L is @ mazimal o-discrete language;

(2) ILNno(w)] =1 forallwe X¥;

(3) LN X! is a mazimal o-discrete language in X*, 1 > 1;

(4) LN QW is a mazimal o-discrete language in Q), i > 1.
PROOF. Immediate.{

The elements of a maximal o-discrete language have the following interesting proper-
ties: |

If L is a maximal o-discrete language, then for‘any v € X, there exist some z,y € X*
such that yv"’m € L for some 1, and there also exist some z,y € X* such that (yvz)' € L

for some 7. In fact:

LEMMA 4.2. Let L be a mazimal o-discrete language. Then for any v € X+ and for
any t > 1 there exist z,y € X™* with 2y = v such that (ya:_)""'1 = yviz € L.

PROOF. Let v € X*. Then by Proposition 4.1, o(v*t1)NL # 0. Let v = zy
for some z,y € X* be such that v'*! = zyzy...zy and yzyz...yz € L. Then clearly

yryz..yz = (yz)'+! = yviz € L.O
An immediate result of Lemma 4.2, we have the following;

REMARK 4.3. IfL i3 a mazimal o-discrete language, then for anyv € Xt and i > 1

there ezist z,y € X*, zy = v such that (yvz)' € L.

Recall that a language L is called dense if for any v € X, there exist z,y € X* such
that zvy G L. The language L is called disjunctive if its syntatic congruence Pr is the
equality, where Py, is defined by u = v(Pp) if and only if Lu = L..v with L..u being the
set of all pairs of words (z,y) such that zuy € L. Every disjunctive language is dense, but
the converse is not true.

By Lemma 4.2 or by the above Remark, a maximal o-discrete language L is always

dense and we will show in the next proposition that it is also disjunctive. However if L is
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not maximal, then L is not necessarily disjunctive. For example, let X = {a,b} and let
L = {bzba'9(®)+2|z ¢ X+}. It is clear that L is a -o-discrete and dense language that is

not disjunctive.

PROPOSITION 4.4. Every mazimal o-discrete langua,;qe 13 a disjunctive language.

PROOF. Suppose L is a maximal o-discrete language which is not disjunctive. Then
there exist two words u,v € X+, u # v,lg(u) = lg(v) such that u = v(Pr). It follows that
(zvy)? = zvyzuy = zuyzvy(Pr) for all z,y € X*. By Lemma 4.2 there exist z,y such

that (zvy)? € L. Which then implies that zvyzuy € L and zuyzvy € L, a contradiction.$

Let S be any finite set. If v is a permutation of S let ¥(v) = |{s € S| v(s) = s}|.

Now, let S = X™ and lét v be the permutation defined by v(aja;...an) = az...anay
where ajaz...a, € S. Then clearly v*(z) = z for all z € S. Thus, v" stands as unit
clement of G where G = {v,7%,7%,..,7™}, and ¥(y") = |X"|. Two elements s;, sz of
S are called equivdlcnt, written s; ~ 3, if there exists a permutation v € G such that
v(s1) = sq. It is clear that ~ is an equivalence relation. For 4% € G, the order of v* is the

least positive integer k such that (y*)* = 7". Hence, the order of v" is 1.

Let ¢ be the Euler’s function; that is, ¢(d) is the number of positive integers k with
1<k <d, (k,d) =1. Then, by [4], we have the following result:

1/ ~ | = & Zvect(7)
= 184.9(12)4(3)
where 4 € G and the order of v4 is d.

Hence for any maximal o-discrete language L, we can calculate the number of elements

in the intersection of L and X™ with the following formula:

(@) [ILNX™ = X"/ ~ | = 3 Zyec¥(7)-

11
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If L C X* and if |[L N X"| < cn for some constant ¢, then L is called linear discrete.
Using the formula (a) showed above, we now prove that every maximal o-discrete language

over a finite alphabet X is not linear discrete.

PROPOSITION 4.5. Let |X| =k > 2. Then every mazimal o-discrete language over
X 13 not linear discrete.

PROOF. Since |X| = k, then | X™| = k™. Let L be a maximal o-discrete language over
X. By formula (), [LNX"| = 12,e69(y). But |£-] < 18,661 (v) and limn_,oo'[—ﬁ%_l —
0o. Thus there exists no constant ¢ such that |L N X"| < en. Therefore L is not linear

discrete.{

Let X = {a1,a2,...,ar}. Then the language L = ajaj...a} is a maximal and régtilar -
discrete language. It is clear that every maximal w-discrete language has the same number
of elements in X", we need only to consider |L N X™|. From [5], we know that |[L N X™| is

equal to the conbination number C(ktn—1) = %’% Hence:

REMARK 4.6. Let |X| = k and let L be a mazimal w-discrete language. Then
|Ln X" =C(k+n—1).

Now we show that a maximal 7-discrete language is not linear discrete.

PROPOSITION 4.7. Let |X| = k > 2. Then every mazimal w-discrete language is
not linear discrete.

PROOF. By the above Remark, we know that |[L N X"| = %’%"_;11—)),—' for any maximal

n-discrete language L. Since limnqw%(%ﬁ%) = 00, L is not linear discrete.{

§5. o-discrete 2-Codes

An o-discrete 2-code is a o-discrete language which is also a 2-code. For any : > 1,

every o-discrete language contained in Q) is such a language.
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PROPOSITION 5.1. Let L C X*. Then L is an o-discrete 2-code if and only if for
everyv=fLfeQi>1,

(@) If NIl <1,

(i2) if fr€ L, then g" ¢ L for all g € o(f) and g # f.

PROOF. Immediate.{

‘We call a language L C X+ a mazimal o-discrete 2-code if for every o-discrete 2-code
L' such that L C L', then L = L'. In Proposition 4.4 it was proved that every maximal
o-discrete language is disjunctive. The following proposition shows that this is also true

for every maximal o-discrete 2-code.

PROPOSITION 5.2. If L is a mazimal o-discrete 2-code, then L i3 disjunctive.

PROOF. Let L C X+ be a maximal o-discrete 2-code. Suppose for some u # v € X™,
n > 1 such that u = v(Pg). Clearly, u?v? € Q.

Suppose o(u?v?) N L # . We have two cases:

(1) there exist z,y € X*, zy = v such that yvu?z € L or yu?vz € L;
(ii) there exist z,y € X*, zy = u such that yuv?z € L or yv?uz € L.

Since u = v(PL), u?v = vu?(Py) and uv? = v?u(Pr) hold. This in turns implies that
yu?vz € L <= yvu?z € L and yuv®z € L <= yv?uz € L. From this fact and since
L is o-discrete, we see that o(u?v?) N L = ) must be true. Now, (1) if (u?v?)* ¢ L for all
i > 1, then LU {u?v?} is an o-discrete 2-code and which contradict to the maximality of
L. (2) If there exists an ¢ > 2 such that (uZv?)! € L, then since

(u?v?)i = up?(u?v?)i~1u(Py)
uv?(u?v?)i~ly € L holds, a contradiction. This shows that every maximal o-discrete

2-code is a disjunctive language.{

Recall that Q{9 is a maximal 2-code and that every o-discrete language contained in
Q® for any i > 1 is a o-discrete 2-code. However such a language cannot be a maximal

o-discrete 2-code:
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PROPOSITION 5.3. For any ¢ > 1, there exists no mazimal o-discrete 2-code con-
tained in Q9. ' |

PROOF. Suppose on the contrary that there is a maximal o-discrete 2-code L C Q)
for some i > 1. Then (ab)’ € L or (ba)' € L, a # b € X. Indeed, if (ab)’ ¢ L and
(ba)’ ¢ L, then LN (ba)’ is a o-discrete language contained in Q) and L is not a maximal
o-discrete 2-code contaied in Q). Now le£ us assume (ab)’ € L. Since L is a 2-code,
(ab)*1 ¢ L. Again since L C Q, we have (ba)? ¢ Q) for all j > 1. It then follows
that L N {(ba)’*1} is a o-discrete 2-code. This implies that L is not a maximal o-discrete
2-code, a contradiction. This shows that for i > 1, Q) contains no maximal o-discrete

2-code.$

We give now a method to construct maximal o-discrete 2-codes.

Let A € Xt be a non empty language. A o-discrete language L C A is called A-
mazimal if there is no o-discrete language in A containing étrictly L. Since every non empty
word is a o-discrete language, then, by the Zorn’s Lemma, A always contains a A-maximal

o-discrete language. For a language L C X+, L(+) denotes the set L(+) = User (V)T /

We construct a sequence of languages Ly, Lq, L3, ..... inductively in the following way:
First we choose a @-maximal o-discrete language Ly in ). This is always possible by the
above considerations and Ly is a 2-code. Let Ty = Q® — L{V).

Next we choose a Tj-maximal o-discrete language Ly in T;. The language Ly U L is also
a 2-code. Let T3 = Q¥ — (L§+) u Lg’”). Suppose now that we have chosen the language
L, which is a T,,-maximal o-discrete language in
T,=Q™ — (P uLiPu..Lh)).
We choose then a Tj,4i-maximal o-discrete language Lp41 in Thyy = Q("+1) - (L§+) U
LY u..uLih).
By induction, we have now a sequence of languages Li, L, Lj,... that are disjoint

o-discrete 2-codes. Let

14
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L=;2,Ln.
It is easy to see that the language L is a maximal o-discrete language which is also a

maximal 2-code. It follow then that L is a maximal o-discrete 2-code.

§6. cm-free languages

A language L C X* is said to be commutative or abelian if for all u,v,z,y € X*,
yuvz € L <= yvuzx € L. This is equivalent to the property that the syntactic monoid
of L is a commutative monoid. For the properties of abelian regular languages, see for
example ([7]). A language L is called cm-free or commutativity — free if zuvy € L and
u # v, z,u,v,y € X*, implies zvuy ¢ L. For example, the language L = at U bt with k
a # b€ X is a cm-free language. It is immediate that a cm-free language is o-discrete. It
is also clear that every discrete language 13 cm-free. For dense cm-free languagés, we have

the following;

PROPOSITION 6.1. Every cm-free language L C X* that is dense, is disjunctive.

PROOF. Suppose that L is dense but not disjunctive. Then there exist u # v € X*
such that u = v(Pg). It is possible to find a word w such that both uw and vw are
primitive. Since Pj, is a congruence, then uw = vw(P) and vwvw = vwuw(Pr) with
uwovw # vwuw. Since L is dense, there exist z,y € X* such that zuwvwy, zvwuwy € L.

Hence L is not cm-free, a contradiction.{

PROPOSITION 6.2. Every mazimal cm-free language is dense and hence disjunctive.
PROOF. Let L be a maximal cm-free language and let w € X™*. If w = 1, then
LNX*wX* =L # 0. If w # 1, then we consider the word w®. Since L is maximal cm-free,
there is a word zuvy € L with zvuy = w® for some z,u,v,y € X*. Then w must be a
subword of z,u,v or y. This means that zuvy € X*wX* N L # . The disjunctivity of L

follows from Proposition 6.1.{
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PROPOSITION 6.3. For any z,y € X*, the language {z,y} is cm-free if and only if
{uzv,uyv} is cm-free for all u,v € X*.

PROOF. Since z = wijwawsws,y = wiwzwaw, for some wi,wz, w3, wy € X* if
and only if uzv = uw;wrwzwav, uyv = uvwiwzwawev, {z,y} is commutative if and only

{uzv,uyv} is commutative.{

LEMMA 6.4. For any z # y € X* there exists a word w € X™* such that zwy # ywz.
PROOF. If zy # yz, then let w = 1. If zy = yz, then lg(z) # lg(y). Without
loss of generality, we can take lg(z) > lg(y). Suppose that a € {u | u € X and yuz =
z for somey,z € X*}. Since |X| > 2, there exists a b € X with b # a. Let n = lg(z)+Ig(y)
and let w = . If zwy = ywsz, then z = bly = yb’ for some i and then z,y € b* ([3)]).
But a € {u| v € X and yuz = z for some y,z € X*} and b # a, a contradiction. Thus

Twy # ywz.§

The next proposition shows that in general cm-free languages are not closed under

catenation.

PROPOSITION 6.5. For any cm-free language L with |L| > 2, there exists a cm-free
language L' such that LL' is not cm-free.

PROOF. Suppose z,y € L with £ # y. Then by the above Lemma, there exists a word
w € X* such that zwy # ywz and hence zwyw # ywzw. By Proposition 6.3, {wzw, wyw}
is a cm-free language. Let L' = {wzw, wyw}. Then {zwyw,ywzw} C LL' and LL' is not

cm-free.{
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