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$\rho$-Discrete Languages

H.J.Shyr, G.Thierrin and S.S. Yu

\S 1. Introduction and Notations

Let $X^{*}$ be the free monoid generated by the finite alphabet X with $|X|\geq 2$ . Any

element of $X^{*}$ is called a word and any subset of $X^{*}$ is called a language. The length of a

word $u$ is denoted by $lg(u)$ . If 1 is the empty word, then $X^{+}=X^{*}\backslash \{1\}$ . The catenation of

two languages $A$ and $B$ is the set $AB=\{xy|x\in A, y\in B\}$ . A word $u\in X^{+}$ is primitive

if $u=f^{n},$ $f\in X^{+}$ implies $n=1$ . Every word can be expressed uniquely as a power of

a primitive word ([3]). The set of all primitive words over $X$ will be denoted by $Q$ . If

$u=f^{n},$ $f\in Q$ , then $\sqrt{u}=f$ and for any language $L\subseteq X^{+},$ $\sqrt{L}=\{\sqrt{u}|u\in L\}$ .
A nonempty language $L\subseteq X^{+}$ is called a code if $x_{1}x_{2}\ldots x_{n}=y_{1}y_{2}\ldots y_{m},$ $x_{i},$ $y_{j}\in L$

implies $m=n$ and $x_{i}=y_{i},$ $i=1,2,$ $\ldots,$
$n$ and an n-code if every subset of $L$ with at most

$n$ elements is a code ([1]).

A language $L\subseteq X^{*}$ is said to be n-discrete, $n$ a positive integer, if $|L\cap X^{m}|\leq n$ for

all $m$. $\geq 1$ . $L$ is called semidiscrete if $L$ is $n$ -discrete for some $n\geq 1$ . If $n=1$ , then the

language $L$ is said to be discrete.

Remark that a language $L$ is n-discrete iff $|L\cap A|\leq n$ for every class $A$ of the

equivalence relation $\lambda$ defined by $u\equiv v(\lambda)$ iff $lg(u)=lg(v)$ , because the classes of $\lambda$ are

the sets $\{X^{m}|m\geq 0\}$ . It is therefore natural to consider generalizations of the discrete

languages in relation with more general equivalence relations $\rho$ .
The purpose of this paper is to study in particular generalizations connected with

equivalences associated with general and cyclic permutations of words in $X^{*}$ . If $\rho$ is an

equivalence relation defined on $X^{*}$ , then the equivalence class containing the word $u$ will

be denoted by $\rho_{u}$ . If $n$ is a positive integer, then $L\subseteq X^{*}$ is said to be $\rho(n)$-discrete if
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$|L\cap p_{u}|\leq n$

for every $u\in X^{*}$ .

If $n=1$ , then $L$ is called a p-discrete language.

If $u\in X^{*}$ , then $\pi(u)$ and $\sigma(u)$ denotes respectively the set of all permutations and the

set of all cyclic permutations of the word $u$ . The following relations defined on $X^{*}$ are

equivalence relations:

(1) $u\equiv v(\lambda)$ if$f$ $lg(u)=lg(v)$ ;

(2) $usv(\sigma)$ $iff$ $\sigma(u)=\sigma(v)$ .

It is immcdiate that

$\sigma\subseteq\pi\subseteq\lambda$ .

It follows then that a $\lambda(n)$-discrete language is a $\pi(n)$-discrete language and that a $\pi(n)-$

discrete language is a $\sigma(n)$-discrete language. The converse is not true. For example, if

$X=\{a, b\}$ , then { $a^{2}$ , ab} is $\pi$-discrete, but not $\lambda$-discrete and {abab, $a^{2}b^{2}$ } is $\sigma$-discrete

but not $\pi$-discrete.

Remark that the $\sigma$-equivalence classes are the cyclic permutations of a word $u\in X^{*}$ .

Hence $\sigma(n)$-discrete languages are the languages containing at most $n$ words of the cyclic

permutations $\sigma(u)$ of $u\in X^{*}$ and a $\sigma(n)$-discrete language is a union of at most $n\sigma$-discrete

languages.

It is immediate that a language is $\sigma$-discrete iff $xy\in L$ and $yx\in L$ implies $xy=yx$ .

Since a language is called reflective iff $xy\in L$ implies $yx\in L$ , it follows that a $\sigma$-discrete
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language is, in some way, the opposite of a reflective language and for this reason could

also be called an anti-reflective language.

In this paper we give, in section 2, several characterizations of $\sigma(n)$-discrete and

$\pi(n)$-discrete languages. In section 3, some operations on these two classes of languages

are considered and in section 4, the corresponding maximal languages are studied. The

special family of $\sigma$-discrete 2-codes is investigated in section 5. In the last section, we

consider the class of cm-free languages which are in some way the opposite of commutative

languages.

\S 2. Some Properties of $\sigma(n)$-discrete and $\pi(n)$-discrete languages

For any language $L\subseteq X^{*}$ , we let $L^{(m)}=\{x^{m}|x\in L\}$ . Clearly if $L$ is a $\sigma(n)$-discrete

language, then so is $L^{(m)}$ for $m\geq 2$ .

First we establish some characteristic properties of $\sigma(n)$-discrete and $\pi(n)$-discrete

languages.

PROPOSITION 2.1. Let $X$ be an alphabet with $|X|\geq 2$ and let $L\subseteq X^{*}$ . Then for
every $n\geq 1$ , the following properties are equivalent:

(1) $L$ is a $\sigma(n)$ -discrete language;

(2) $|\sigma(w)\cap L|\leq n$ for all $w\in X^{+}$ ;

(3) $L\cap X^{m}$ is $\sigma(n)$ -discrete $\forall m\geq 1$;

(4) $L^{(m)}$ is $\sigma(n)$ -discrete $\forall m\geq 1$ ;

(5) $L^{(m)}$ is $\sigma(n)$ -discrete for some $m\geq 1$ .
PROOF. The equivalences of (1),(2) and (3) are immediate.

(1) $\Rightarrow(4)$ . Let $m\geq 2$ . Suppose $L^{(m)}$ is not $\sigma(n)$-discrete. Then there exist at least

$n+1$ distinct words $u_{1},$ $u_{2},$ $\ldots,$
$u_{n},$ $u_{n+1}\in L$ such that

$u_{i}^{m}\in\sigma(u_{1}^{m})$ for all $i$ .
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Let $u^{m}:=x_{i}u_{1}^{m-1}y;$ . Then $x;\neq 1,$ $y_{i}\neq 1$ and $u_{1}=y:x_{i}$ . This means that $u_{i}\in\sigma(u_{1})$ for

$1<i\leq n+1$ . Thus $L$ is not $\sigma(n)$-discrete, a contradiction.

(4) $\Rightarrow(5)$ . Trivial.

(5) $\Rightarrow(1)$ . Suppose $L$ is not $\sigma(n)$-discrete. Then there exist at least $n+1$ distinct

words $u_{1},$ $u_{2},$ $\ldots,$
$u_{n},$ $u_{n+1}\in L$ such that $u_{i}\in\sigma(u_{1})$ for all $i$ . It then follows that

$u^{m}:\in L^{(m)}$ for all $i$ .

But $u_{i}\in\sigma(u_{1})$ implies that $u_{i}^{m}\in\sigma(u_{1}^{m})$ . Thus $L^{(m)}$ is not $\sigma(n)$-discrete. This shows that

(5) implies (1) $.\phi$

A language $L\subseteq X^{+}$ is called an infix code if for $u\in X^{+},x,y\in X^{*},$ $u,xuy\in L$

implies $xy=1$ .

For the case $n=1$ , we have the following proposition:

PROPOSITION 2.2. Let $X$ be an alphabet such that $|X|\geq 2$ and let $L\subseteq X^{*}$ . Then

$L$ is $\sigma$ -discrete if and only if for any $u,$ $v\in L\cap X^{m},$ $\{u^{2}, v\}$ is an infix code.

PROOF. Let $u=a_{1}a_{2}\ldots a_{m};v=b_{1}b_{2}\ldots b_{m}$ , where $a_{i},$ $b_{j}\in X$, Then $\{u^{2}, v\}$ is not an

infix code if and only if $u^{2}=xvy$ for some $x,$ $y\in X^{*},$ $xy\neq 1$ . Which then implies that

$\{u^{2}, v\}$ is not an infix code if and only if $v=a_{i}a_{i+1}\ldots a_{m}a_{1}a_{2}\ldots a_{i-1}$ , for some $1\leq i\leq m$ .

The proof of the proposition follows then easily from these results. $\theta$

PROPOSITION 2.3. Let $X$ be an alphabet such that $|X|\geq 2$ . Let $L\subseteq X^{*}$ . Then for
any $n\geq 1_{f}$ the following properties are equivalent

(1) $L$ is a $\pi(n)$ -discrete language;

(2) $|\pi(w)\cap L|\leq n$ for all $w\in X^{+}$ ;

(3) $L\cap X^{m}$ is $\pi(n)$ -discrete $\forall m\geq 1$;

(4) $L^{(m)}$ is $\pi(n)$ -discrete $\forall m\geq 1$;

(5) $L^{(m)}$ is $\pi(n)$ -discrete for some $m\geq 1$ .

PROOF. The equivalences of (1),(2) and (3) are immediate.
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(1) $\Rightarrow(4)$ . Let $m\geq 2$ . Suppose $L^{(m)}$ is not $\pi(n)$-discrete. Then there exist at least

$n+1$ distinct words $u_{1},$ $u_{2},$
$\ldots,$ $u_{n},$ $u_{n+1}\in L$ such that

$u_{i}^{m}\in\pi(u_{1}^{m})$ for all $i$ .
This means that $u_{i}\in\pi(u_{1})$ for $1<i\leq n+1$ . Thus $L$ is not $\pi(n)$-discrete, a contradiction.

(4) $\Rightarrow(5)$ . Trivial.

(5) $\Rightarrow(1)$ . Suppose $L$ is not $\pi(n)$-discrete. Then there exist at least $n+1$ distinct

words $u_{1},$ $u_{2},$
$\ldots,$ $u_{n},$ $u_{n+1}\in L$ such that $u;\in\pi(u_{1})$ for all $i$ . It then follows that $u_{i}^{m}\in L^{(m)}$

for all $i$ . But $u_{i}\in\pi(u_{1})$ implies that $u^{m}:\in\pi(u_{1}^{m})$ . Thus $L^{(m)}$ is not $\pi(n)$-discrete. This

shows that (5) implies (1) $.\phi$

It has been shown that a semi-discrete dense language is disjunctive (see [2]). The

following proposition is a generalization of this fact.

PROPOSITION 2.4. A $\pi(n)$ -discrete language $L$ is dense if and only if $L$ is disjunc-

tive.

PROOF. $(\Leftarrow)$ Trivial.

$(\Rightarrow)$ Let $L$ be a $\pi(n)$-discrete dense language. For any $u\neq v\in X^{*}$ , there exist

$x,$ $y\in X^{*}$ such that $\sqrt{xuy}\neq\sqrt{xvy}$. Let $u’=$ xuyxvy and let $v’=$ xvyxuy. Then

$u’\in\pi(v’)$ . Define $w_{1}=(u’)^{n},$ $w_{2}=(u’)^{n-1}v’,\ldots,w_{n}=u’(v’)^{n-1},$ $w_{n+1}=(v’)^{n}$ . Then

$w_{i}\in\pi(w_{1})$ for all $i$ . If $u\equiv v(P_{L})$ , then $u’\equiv v’(P_{L})$ . This implies that $w_{i}\equiv w_{j}(P_{L})$ for

all $i,j$ . Since $L$ is dense, there exist $z,$ $z’\in X^{*}$ such that $zw_{1}z’\in L$ . This implies that

$zw_{i}z’\in L$ for all $i$ . But $zw;z’\in\pi(zw_{1}z’)$ for all $i$ and this contradicts the condition that

$L$ is $\pi(n)$-discrete. Thus $u\not\equiv v(P_{L})$ for all $u\neq v\in X^{*}$ . This shows that $L$ is disjunctive. $\theta$

\S 3. Operations on $\sigma$-discrete and $\pi$-discrete Languages

For a language $L\subseteq X^{*}$ , let $L^{c}=X^{*}\backslash L$ be the complement of $L$ in $X^{*}$ .

PROPOSITION 3.1. Let $\rho$ be an equivalence relation such that $\sigma\subseteq\rho$ . Then for any

$p(n)$ -discret language $L,$ $L^{c}$ is dense.
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PROOF. Since every $\rho(n)$-discrete language is a $\sigma(n)$-discrete language, we only need

to show that for any $\sigma(n)$-discrete language $L,$ $L^{c}$ is dense.

Now let $L$ be a $\sigma(n)$-discrete language and suppose $L^{c}$ is not dense. Then there

exists a word $w\in X^{+}$ such that $X^{*}wX^{*}\cap L^{c}=\emptyset$ . It then implies that $X^{*}wX^{*}\subseteq L$ .

Let $m=lg(w)$ . Then $|\sigma(w^{2}ab^{2m+n}a)|>n$ . This contradicts the condition that $L$ is

$\sigma(n)$ -discrete. Therefore, $L^{c}$ must be dense.

COROLLARY 3.2. For any $\pi(n)$ -discrete language $L,$ $L^{c}$ is dense. $\theta$

It is clear that if $L$ is not a $\sigma$-discrete language, then $L^{i}$ is not $\sigma$-discrete for all

$i\geq 2$ . If $L$ is $\sigma$-discrete, then $L^{i}$ is not necessarily $\sigma$-discrete. In fact, the next proposition

shows that, for example, the class of languges $L$ such that $L$ and $L^{2}$ are $\sigma$-discrete is quite

restrictive.

PROPOSITION 3.3. Let $L$ be a language. Then the following properties are equiva-

lent:

(1) $L$ and $L^{2}$ are $\sigma$ -discrete;

(2) $L$ and $L^{2}are.\pi$-discrete;

(3) $L\subseteq w^{*}for$ some $w\in X^{*}$ .

PROOF. (2) $\Rightarrow(1)$ Since every $\pi$-discrete language is $\sigma$-discrete, clearly (2) implies

(1).

(1) $\Rightarrow(3)$ Suppose $L\not\subset w^{*}$ for any $w\in X^{*}$ . Then there exist $x,$ $y\in L$ such that

$x\neq 1\neq y$ and $\sqrt{x}\neq\sqrt{y}$. Since $xy\neq yx$ and $xy,$ $yx\in L^{2},$ $L^{2}$ is not $\sigma$-discrete, a

contradiction.

(3) $\Rightarrow(2)$ Suppose $L\subseteq w^{*}$ for some $w\in X^{*}$ . Then clearly $L^{2}\subseteq w^{*}$ and $L^{2}$ is discrete.

Therefore, $L$ and $L^{2}$ are $\pi- discrete.\phi$

In relation with the preceding proposition, we have the following result:
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PROPOSITION 3.4. Let $L\subseteq X^{*}$ . Then the following properties are equivalent:

(1) $L$ is a $\sigma$ -discrete submonoid;

(2) $L$ is a $\pi$ -discrete submonoid;

(3) $L=w^{*}for$ some $w\in X^{*}$ .

PROOF. (2) $\Rightarrow$ (1) Since every $\pi$-discrete language is a $\sigma$-discrete language, the

implication holds.

(1) $\Rightarrow$ (3) Suppose there exist $w_{1},$ $w_{2}\in L$ with $w_{1}\neq 1$ and $w_{2}\neq 1$ such that

$\sqrt{w}ir$ $\neq\sqrt{w_{2}}$ . Then $w_{1}w_{2}\neq w_{2}w_{1}$ and $w_{1}w_{2},$ $w_{2}w_{1}\in L$ . Which implies that $L$ is not

$\sigma$-discrete, a contradiction. Therefore, $L=w^{*}$ for some $w\in X^{*}$ .
(3) $\Rightarrow(2)$ Trivial.Q

In general, if a language $L$ is $\sigma$-discrete then $\sqrt{L}$ is not necessarily $\sigma$-discrete. For

example, $L=\{a^{2}b, (aba)^{2}\}$ is $\sigma$-discrete but $\sqrt{L}=\{a^{2}b, aba\}$ is not. However the converse

is true for any language $L\subseteq X^{+}$ .

PROPOSITION 3.5. Let $L\subseteq X^{+}$ . If $\sqrt{L}$ is a $\sigma$ -discrete language, then $L$ is $\sigma-$

discrete.

PROOF. Suppose $L$ is not $\sigma$-discrete. Then there exist $u,$ $v\in L$ such that $u\in\sigma(v)$

and $u\neq v$ . Let $v\in Q^{(i)}$ for some $i$ . Then by Proposition 1.11 ([7]), $u\in Q^{(i)}$ . Thus $v=g^{i}$

and $u=h^{i}$ for some $g\neq h\in Q$ . Which then implies that $h\in\sigma(g)$ and $g,$
$h\in\sqrt{L}$ . Thus

$\sqrt{L}$ is not $\sigma$-discrete, a contradiction. Therefore, $L$ is a-discrete. $\theta$

The next proposition shows that the family of $\sigma$-discrete languages is not closed under

catenation.

PROPOSITION 3.6. For any word $w\in X^{+}$ , there exists a $\sigma$ -discrete language $L$ such

that $wL$ is not $\sigma$ -discrete.

PROOF. Let $X=\{a, b, \ldots\}$ . Given $w\in X^{+}:$

(i) if $w\not\in b^{+}$ , then we let $L=$ { $bw^{3}b$, bwbw2};
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(ii) if $w=b^{n},n\geq 1$ , then we let $L=$ { $aw^{3}a$ , awaw2}. It is clear that $L$ is $\sigma$-discrete

but $wL$ is not. This proves the proposition. $\theta$

In the following discussion, we consider the free monoid $X^{*}$ with the standard total

order $\leq which$ is defined as follows (see [6]):

For $u,$ $v\in X^{*},$ $u<v$ if $lg(u)<lg(v)$ and $\leq is$ the lexicographical order if $lg(u)=lg(v)$ .

Let $A=\{a_{1}<a_{2}<\ldots<a_{i}< \}$ and $B=\{b_{1}<b_{2}<\ldots<b_{i}< \}$ be two languages

over X with the same cardinality and ordered relatively to the standard order. The ordered

catenation of $A$ and $B$ is the set

$A\triangle B=\{a_{i}b_{i}|i=1,2, \ldots\}$ .

We let $A^{(2)}=A\triangle A$ and let $A^{(n)}=A^{(n-1)}\triangle A$ for $n\geq 3$ . Let $(X^{*}, \leq)=\{x_{0}<x_{1}<x_{2}<$

$...<x;<$ } with the standard total order $\leq$ . The injective mapping $\#:X^{*}\mapsto N\cup\{0\}$

is defined by $\#(x)=i$ if $x=x_{i}$ .
In general, $\sigma$-discrete languages are not closed under ordered catenation. In the next

proposition, we consider a case where this is true. For the proof of this proposition, we

need the following known results:

$(^{*})1fu$ and $v$ have powers $u^{m}$ and $v^{n}$ with a common initial segment of length

$lg(u)+lg(v)$ , then $u$ and $v$ are powers of a common word ([3]).

In particular we have

$(^{**})$ For $p,$ $q\in Q$ , if $p^{i}$ and $q^{j}$ have a common segment of length $lg(p)+lg(q)$ , then

$p\in\sigma(q)$ .

PROPOSITION 3.7. Let $A\subseteq Q^{(i)},$ $B\subseteq Q^{(j)}$ where $i\neq j\geq 3$ . If both $(A, \leq)$ and

$(r_{B}\leq)$ are $\sigma$ -discrete, then $A\triangle B$ is $\sigma$ -discrete.

PROOF. Suppose $A\triangle B$ is not $\sigma$-discrete. Then there exist $u_{1},$ $u_{2},$ $v_{1},$ $v_{2}\in Q$ with

$!t_{1}^{i},$ $u_{2}^{i}\in A,$ $v_{1}^{j},v_{2}^{j}\in B,$ $u_{1}^{i}v_{1}^{j},$ $u_{2}^{i}v_{2}^{j}\in A\triangle B$ and $u\dot{i}^{v_{1}^{j}}\in\sigma(u_{2}^{i}v_{2}^{j})$ . Which implies that

$|g(u\dot{i}v_{1}^{j})=lg(u_{2}^{i}v_{2}^{j}),$ $lg(u_{1})=lg(u_{2}),$ $lg(v_{1})=lg(v_{2})$ . Since both $A$ and $B$ are $\sigma$-discrete,

$J_{1}^{|}\not\in\sigma(u_{2}),$ $v_{1}\not\in\sigma(v_{2})$ . Thus $u_{1}^{i}\not\in E(\sigma(u_{2}^{i})),$ $v_{1}^{j}\not\in E(\sigma(v_{2}^{j}))$ and vice versa. It is clear that
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$lg(u_{k}^{i})<lg(u_{1})+lg(v_{1}^{j})$ and $lg(v_{k}^{j})<lg(v_{1})+lg(u\dot{i})$ for $k=1,2$ . (Otherwise, $u_{1}\in\sigma(u_{2})$

or $v_{1}\in\sigma(v_{2}).)$ Without loss of generality, let $\#(u_{1})>\#(u_{2})$ and let $\#(v_{1})>\#(v_{2})$ . $|$

Then we have the following five cases.

Case 1, $u_{2}^{i}=xy,$ $v_{1}^{j}=yz$ for some $x,$ $y,$ $z\in X^{*}$ with $lg(x)<lg(u_{2})$ and $lg(z)<lg(v_{1})$ .
$A$

Then $lg(y)>2 \max\{lg(u_{2}), lg(v_{1})\}\geq lg(u_{2})+lg(v_{1})$. By the condition $(^{**})$ above, $u_{2}\in$

$\urcorner^{}\backslash$

$\sigma(v_{1})$ . Thus $lg(u_{2})=Ig(v_{1})$ . This implies that $i=j$ ; a contradiction.
$v$

$\iota$

Case 2, $v_{1}^{j}=xy,$ $u_{2}^{2}=yz$ . It is the same as Case 1.

Case 3, $u_{2}^{i}=xv_{2}^{j}y$ and $lg(x)+lg(y)<lg(u_{2})$ . Since $i,j\geq 3,$ $lg(v_{1}^{j})>2 \max\{lg(u_{2})$ ,

$lg(v_{1})\}$ . By the condition $(^{**})$ above, $u_{2}\in\sigma(v_{1})$ . We get that $lg(u_{2})=lg(v_{1})$ and $i=j$ ;

a contradiction.
:

Case 4, $v_{1}^{j}=xu_{2}^{i}y$ . It is the same as Case 3.

Case 5, $v_{1}^{j}=u_{2}:$ . By the condition $(^{*})$ above, $u_{2}=v_{1}$ . Then $u_{1}=v_{2}$ . But $\#(v_{2})=$

$\{$

$\#(u_{1})>\#(u_{2})=\#(v_{1})$ ; a contradiction.

Therefore, the language $A\triangle B$ must be a-discrete.\langle )
$A\}$

Let $A$ and $B$ be two $\sigma$-discrete languages contained in $Q^{(i)},$ $Q^{(j)}$ respectively. If $i=j$ ,

then $A\triangle B$ may not be $\sigma$-discrete. This is the case, for example, if $A=\{(aaba)^{i}, (bbaa)^{i}\}$

and $B=\{(aabb)^{i}, (baaa)^{i}\}$ . Then $A,$ $B\subseteq Q^{(i)}$ and both $A$ and $B$ are $\sigma$-discrete. However,

$A\triangle B$ is not $\sigma$-discrete. If $A\subseteq Q$ , then $A\triangle B$ may also not be $\sigma$-discrete. For example, let

$A=\{ab^{j}bb, ba^{j}ab\}\subseteq Q$ and let $B=\{a^{j}, b^{j}\}\subseteq Q^{(j)}$ . Then both $A$ and $B$ are $\sigma$-discrete.

But $A\triangle B$ is not $\sigma$-discrete.

\S 4. Maximal $\sigma$-discrete and $\pi$-discrete Languages

DEFINITION. An $\sigma$-discrete language $L\subseteq X^{+}$ is maximal if $L$ is not properly con-

tained in other $\sigma$-discrete languages, that is, for any $\sigma$-discrete language $L’\subseteq X^{+},$ $L\subseteq L’$

imples that $L=L’$ .

PROPOSITION 4.1. Let $L\subseteq X^{+}$ . Then the following properties are equivalent:
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(1) $L$ is a maximal $\sigma$ -discrete language;

(2) $|L\cap\sigma(w)|=1$ for all $w\in X^{+}$ ;

(3) $L\cap X^{i}$ is a maximal $\sigma$ -discrete language in $X^{i},$ $i\geq 1$ ;

(4) $L\cap Q^{(i)}$ is a maximal $\sigma$ -discrete language in $Q^{(i)},$ $i\geq 1$ .
PROOF. Immediate. $\theta$

The elements of a maximal a-discrete language have the following interesting proper-

ties:

If $L$ is a maximal $\sigma$-discrete language, then for any $v\in X^{+}$ , there exist some $x,$ $y\in X^{*}$

such that $yv^{i}x\in L$ for some $i$ , and there also exist some $x,$ $y\in X^{*}$ such that $(yvx)^{i}\in L$

for some $i$ . In fact:

LEMMA 4.2. Let $L$ be a maximal $\sigma$ -discrete language. Then for any $v\in X^{+}$ and for
any $i\geq 1$ there exist $x,$ $y\in X^{*}$ with $xy=v$ such that $(yx)^{i+1}=yv^{i}x\in L$ .

PROOF. Let $v\in X^{+}$ . Then by Proposition 4.1, $\sigma(v^{i+1})\cap L\neq\emptyset$ . Let $v=xy$

for some $x,$ $y\in X^{*}$ be such that $v^{i+1}=$ xyxy...xy and yxyx....$yx\in L$ . Then clearly

yxyx... $yx=(yx)^{i+1}=yv^{*}x\in L.\theta$

An immediate result of Lemma 4.2, we have the following:

REMARK 4.3. If $L$ is a maximal $\sigma$ -discrete language, then for any $v\in X^{+}$ and $i\geq 1$

there exist $x,$ $y\in X^{*},$ $xy=v$ such that $(yvx)^{i}\in L$ .

Recall that a language $L$ is called dense if for any $v\in X^{+}$ , there exist $x,$ $y\in X^{*}$ such

that $xvy\in L$ . The language $L$ is called disjunctive if its syntatic congruence $P_{L}$ is the

equality, where $P_{L}$ is defined by $u\equiv v(P_{L})$ if and only if $L..u=L..v$ with L..u being the

set of all pairs of words $(x, y)$ such that $xuy\in L$ . Every disjunctive language is dense, but

the converse is not true.

By Lemma 4.2 or by the above Remark, a maximal $\sigma$-discrete language $L$ is always

dense and we will show in the next proposition that it is also disjunctive. However if $L$ is
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not maximal, then $L$ is not necessarily disjunctive. For example, let $X=\{a, b\}$ and let

$L=\{bxba^{lg(x)+2}|x\in X^{+}\}$ . It is clear that $L$ is a $\sigma$-discrete and dense language that is

not disjunctive.

PROPOSITION 4.4. Every maximal $\sigma$ -discrete language is a disjunctive language.

PROOF. Suppose $L$ is a maximal $\sigma$-discrete language which is not disjunctive. Then

there exist two words $u,$ $v\in X^{+},$ $u\neq v,$ $lg(u)=lg(v)$ such that $u\equiv v(P_{L})$ . It follows that

$(xvy)^{2}\equiv$ xvyxuy $\equiv xuyxvy(P_{L})$ for all $x,$ $y\in X^{*}$ . By Lemma 4.2 there exist $x,$ $y$ such

that $(xvy)^{2}\in L$ . Which then implies that $xvyxuy\in L$ and $xuyxvy\in L$ , a contradiction. $\theta$

Let $S$ be any finite set. If $\gamma$ is a permutation of $S$ let $\psi(\gamma)=|\{s\in S|\gamma(s)=s\}|$ .

Now, let $S=X^{n}$ and let $\gamma$ be the permutation defined by $\gamma(a_{1}a_{2}\ldots a_{n})=a_{2}\ldots a_{n}a_{1}$

where $a_{1}a_{2}\ldots a_{n}\in S$. Then clearly $\gamma^{n}(x)=x$ for all $x\in S$ . Thus, $\gamma^{n}$ stands as unit

element of $G$ where $G=\{\gamma,\gamma^{2},\gamma^{3}, \ldots,\gamma^{n}\}$ , and $\psi(\gamma^{n})=|X^{n}|$ . Two elements $s_{1},$ $s_{2}$ of

$S$ are called equivalent, written $s_{1}\sim s_{2}$ , if there exists a permutation $\gamma^{i}\in G$ such that

$\gamma^{i}(s_{1})=s_{2}$ . It is clear $that\sim is$ an equivalence relation. For $\gamma^{i}\in G$ , the order of $\gamma^{i}$ is the

least positive integer $k$ such that $(\gamma^{i})^{k}=\gamma^{n}$ . Hence, the order of $\gamma^{n}$ is 1.

Let $\phi$ be the Euler’s function; that is, $\phi(d)$ is the number of positive integers $k$ with

$1\leq k\leq d,$ $(k, d)=1$ . Then, by [4], we have the following result:

$|S/ \sim|=\frac{1}{|G|}\Sigma_{\gamma\in G}\psi(\gamma)$

$= \frac{1}{n}\Sigma_{d|n}\psi(\gamma_{d})\phi(\frac{n}{d})$

where $\gamma_{d}\in G$ and the order of $\gamma_{d}$ is $d$ .

Hence for any maximal $\sigma$-discrete language $L$ , we can calculate the number of elements

in the intersection of $L$ and $X^{n}$ with the following formula:

$( \alpha)|L\cap X^{n}|=|X^{n}/\sim|=\frac{1}{n}\Sigma_{\gamma\in G}\psi(\gamma)$ .

11
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If $L\subseteq X^{*}$ and if $|L\cap X^{n}|\leq cn$ for some constant $c$ , then $L$ is called linear discrete.

Using the formula $(\alpha)$ showed above, we now prove that every maximal $\sigma$-discrete language

over a finite alphabet $X$ is not linear discrete.

PROPOSITION 4.5. Let $|X|=k\geq 2$ . Then every maximal $\sigma$ -discrete language over

$X$ is not linear discrete.

PROOF. Since $|X|=k$ , then $|X^{n}|=k^{n}$ . Let $L$ be a maximal $\sigma$-discrete language over

X. By formula $(\alpha),$ $|L \cap X^{n}|=\frac{1}{n}\Sigma_{\gamma\in G}\psi(\gamma)$ . But $L\frac{k^{n}}{n}\rfloor\leq\frac{1}{n}\Sigma_{\gamma\in G}\psi(\gamma)$ and $\lim_{narrow\infty}L\frac{k^{n}}{n^{2}}\rfloorarrow$

$\infty$ . Thus there exists no constant $c$ such that $|L\cap X^{n}|\leq cn$ . Therefore $L$ is not linear

discrete. $\theta$

Let $X=\{a_{1}, a_{2}, \ldots, a_{k}\}$ . Then the language $L=a_{1}^{*}a_{2}^{*}\ldots a_{k}^{*}$ is a maximal and regular $\pi-$

discrete language. It is clear that every maximal $\pi$-discrete language has the same number

of elements in $X^{n}$ , we need only to consider $|L\cap X^{n}|$ . $\mathbb{R}om[5]$ , we know that $|L\cap X^{n}|$ is

equal to thc conbination number $C(kn+n-1)=\frac{(k+n-1)!}{n!(k-1)!}$ . Hence:

REMARK 4.6. Let $|X|=k$ and let $L$ be a maximal $\pi$ -discrete language. Then

$|L\cap X^{n}|=C(n)$ .

Now we show that a maximal $\pi$-discrete language is not linear discrete.

PROPOSITION 4.7. Let $|X|=k\geq 2$ . Then every maximal $\pi$ -discrete language is

not linear discrete.

PROOF. By the above Remark, we know that $|L \cap X^{n}|=\frac{(k+n-1)!}{n!(k-1)!}$ for any maximal

$\pi$-discrete language $L$ . Since $\lim_{narrow\infty}\frac{1}{n}(\frac{(k+n-1)!}{n!(k-1)!})=\infty,$ $L$ is not linear discrete. $\theta$

\S 5. $\sigma$-discrete 2-Codes

An $\sigma$ -discrete 2-code is a $\sigma$-discrete language which is also a 2-code. For any $i\geq 1$ ,

every $\sigma$-discrete language contained in $Q^{(i)}$ is such a language.

12
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PROPOSITION 5.1. Let $L\subseteq X^{+}$ . Then $L$ is an $\sigma$ -discrete 2-code if and only if for
every $v=f^{i},$ $f\in Qi\geq 1$ ,

(i) $|f^{+}\cap L|\leq 1$ ,

(ii) if $f‘\in L$, then $g^{r}\not\in L$ for all $g\in\sigma(f)$ and $g\neq f$ .
PROOF. Immediate. $\phi$

We call a language $L\subseteq X^{+}$ a maximal $\sigma$ -discrete 2-code if for every $\sigma$-discrete 2-code

$L’$ such that $L\subseteq L’$ , then $L=L’$ . In Proposition 4.4 it was proved that every maximal

$\sigma$-discrete language is disjunctive. The following proposition shows that this is also true

for every maximal $\sigma$-discrete 2-code.

PROPOSITION 5.2. If $L$ is a maximal $\sigma$ -discrete 2-code, then $L$ is disjunctive.

PROOF. Let $L\subseteq X^{+}$ be a maximal $\sigma$-discrete 2-code. Suppose for some $u\neq v\in X^{n}$ ,

$n\geq 1$ such that $u\equiv v(P_{L})$ . Clearly, $u^{2}v^{2}\in Q$ .
Suppose $\sigma(u^{2}v^{2})\cap L\neq\emptyset$ . We have two cases:

(i) there exist $x,$ $y\in X^{*},$ $xy=v$ such that $yvu^{2}x\in L$ or $yu^{2}vx\in L$ ;

(ii) there exist $x,$ $y\in X^{*},$ $xy=u$ such that $yuv^{2}x\in L$ or $yv^{2}ux\in L$ .
Since $u\equiv v(P_{L}),$ $u^{2}v\equiv vu^{2}(P_{L})$ and $uv^{2}\equiv v^{2}u(P_{L})$ hold. This in turns implies that

$yu^{2}vx\in L\Leftrightarrow yvu^{2}x\in L$ and $yuv^{2}x\in L\Leftrightarrow yv^{2}ux\in L$ . Ftirom this fact and since

$L$ is $\sigma$-discrete, we see that $\sigma(u^{2}v^{2})\cap L=\emptyset$ must be true. Now, (1) if $(u^{2}v^{2})^{i}\not\in L$ for all

$i\geq 1$ , then $L\cup\{u^{2}v^{2}\}$ is an $\sigma$-discrete 2-code and which contradict to the maximality of

L. (2) If there exists an $i\geq 2$ such that $(u^{2}v^{2})^{i}\in L$ , then since

$(u^{2}v^{2})^{i}\equiv uv^{2}(u^{2}v^{2})^{i-1}u(P_{L})$

$uv^{2}(u^{2}v^{2})^{i-1}u\in L$ holds, a contradiction. This shows that every maximal $\sigma$-discrete

2-code is a disjunctive language. $\theta$

Recall that $Q^{(i)}$ is a maximal 2-code and that every $\sigma$-discrete language contained in

$Q^{(i)}$ for any $i\geq 1$ is a $\sigma$-discrete 2-code. However such a language cannot be a maximal

$\sigma$-discrete 2-code:

13
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PROPOSITION 5.3. For any $i\geq 1_{f}$ there exists no maximal $\sigma$ -discrete 2-code con-

tained in $Q^{(i)}$ .

PROOF. Suppose on the contrary that there is a maximal $\sigma$-discrete 2-code $L\subseteq Q^{(i)}$

for some $i\geq 1$ . Then $(ab)^{i}\in L$ or $(ba)^{i}\in L,$ $a\neq b\in X$ . Indeed, if $(ab)^{i}\not\in L$ and

$(ba)^{i}\not\in L$ , then $L\cap(ba)^{i}$ is a $\sigma$-discrete language contained in $Q^{(i)}$ and $L$ is not a maximal

$\sigma$-discrete 2-code contaied in $Q^{(i)}$ . Now let us assume $(ab)^{i}\in L$ . Since $L$ is a 2-code,

$(ab)^{i+1}\not\in L$ . Again since $L\subseteq Q^{(i)}$ , we have $(ba)^{j}\not\in Q^{(i)}$ for all $j\geq 1$ . It then follows

that $L\cap\{(ba)^{j+1}\}$ is a $\sigma$-discrete 2-code. This implies that $L$ is not a maximal $\sigma$-discrete

2-code, a contradiction. This shows that for $i\geq 1,$ $Q^{(i)}$ contains no maximal $\sigma$-discrete

2-code.\langle )

We give now a method to construct maximal $\sigma$-discrete 2-codes.

Let $A\in X^{+}$ be a non empty language. A $\sigma$-discrete language $L\subseteq A$ is called A-

maximal if there is no $\sigma$-discrete language in $A$ containing strictly $L$ . Since every non empty

word is a $\sigma$-discrete language, then, by the Zorn’s Lemma, $A$ always contains a A-maximal

$\sigma$-discrete language. For a language $L\subseteq X^{+},$ $L^{(+)}$ denotes the set $L^{(+)}= \bigcup_{x\in L}(\sqrt{x})^{+}$ .

We construct a sequence of languages $L_{1},$ $L_{2},$ $L_{3},$
$\ldots.$ . inductively in the following way:

First we choose a Q-maximal $\sigma$-discrete language $L_{1}$ in $Q$ . This is always possible by the

above considerations and $L_{1}$ is a 2-code. Let $T_{2}=Q^{(2)}-L_{1}^{(+)}$ .
Next we choose a $T_{1}$-maximal $\sigma$-discrete language $L_{2}$ in $T_{2}$ . The language $L_{1}\cup L_{2}$ is also

a 2-code. Let $T_{3}=Q^{(3)}-(L_{1}^{(+)}\cup L_{2}^{(+)})$ . Suppose now that we have chosen the language

$L_{n}$ which is a $T_{n}$-maximal $\sigma$-discrete language in

$T_{n}=Q^{(n)}-(L_{1}^{(+)}\cup L_{2}^{(+)}\cup\ldots L_{n-1}^{(+)})$ .

We choose then a $T_{n+1}$ -maximal $\sigma$-discrete language $L_{n+1}$ in $T_{n+1}=Q^{(n+1)}-(L_{1}^{(+)}\cup$

$L_{2}^{(+)}\cup\ldots\cup L_{n}^{(+)})$ .

By induction, we have now a sequence of languages $L_{1},$ $L_{2},$ $L_{3},$
$\ldots$ that are disjoint

$\sigma$-discrete 2-codes. Let
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$L= \bigcup_{n}^{\infty_{=1}}L_{n}$ .
It is easy to see that the language $L$ is a maximal $\sigma$-discrete language which is also a

maximal 2-code. It follow then that $L$ is a maximal $\sigma$-discrete 2-code.

\S 6. cm-free languages

A language $L\subseteq X^{*}$ is said to be commutative or abelian if for all $u,$ $v,$ $x,$ $y\in X^{*}$ ,

$yuvx\in L\Leftrightarrow$ $yvux\in L$ . This is equivalent to the property that the syntactic monoid

of $L$ is a commutative monoid. For the properties of abelian regular languages, see for

example ([7]). A language $L$ is called cm-free or commutativity–free if $xuvy\in L$ and

$u\neq v,$ $x,$ $u,$ $v,$ $y\in X^{*}$ , implies $xvuy\not\in L$ . For example, the language $L=a^{+}\cup b^{+}$ with

$a\neq b\in X$ is a cm-free language. It is immediate that a cm-free language is $\sigma$ -discrete. It

is also clear that every discrete language is cm-free. For dense cm-free languages, we have

the following:

PROPOSITION 6.1. Every cm-free language $L\subseteq X^{*}$ that is dense, is disjunctive.

PROOF. Suppose that $L$ is dense but not disjunctive. Then there exist $u\neq v\in X^{*}$

such that $u\equiv v(P_{L})$ . It is possible to find a word $w$ such that both $uw$ and $vw$ are

primitive. Since $P_{L}$ is a congruence, then $uw\equiv vw(P_{L})$ and $uwvw\equiv vwuw(P_{L})$ with

$uwvw\neq vwuw$ . Since $L$ is dense, there exist $x,$ $y\in X^{*}$ such that xuwvwy, $xvwuwy\in L$ .
Hence $L$ is not cm-free, a contradiction.\langle )

PROPOSITION 6.2. Every maximal cm-free language is dense and hence disjunctive.

PROOF. Let $L$ be a maximal cm-free language and let $w\in X^{*}$ . If $w=1$ , then

$L\cap X^{*}wX^{*}=L\neq\emptyset$ . If $w\neq 1$ , then we consider the word $w^{5}$ . Since $L$ is maximal cm-free,

there is a word $xuvy\in L$ with $xvuy=w^{5}$ for some $x,$ $u,$ $v,$ $y\in X^{*}$ . Then $w$ must be a

subword of $x,$ $u,$ $v$ or $y$ . This means that $xuvy\in X^{*}wX^{*}\cap L\neq\emptyset$ . The disjunctivity of $L$

follows from Proposition $6.1.\phi$
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PROPOSITION 6.3. For any $x,$ $y\in X^{*}$ , the language $\{x, y\}$ is cm-free if and only if
$\{uxv, uyv\}$ is cm-free for all $u,$ $v\in X^{*}$ .

PROOF. Since $x=w_{1}w_{2}w_{3}w_{4},$ $y=w_{1}w_{3}w_{2}w_{4}$ for some $w_{1},$ $w_{2},$ $w_{3},$ $w_{4}\in X^{*}$ if

and only if $uxv=uw_{1}w_{2}w_{3}w_{4}v,$ $uyv=uw_{1}w_{3}w_{2}w_{4}v,$ $\{x, y\}$ is commutative if and only

$\{uxv, uyv\}$ is commutative. $\theta$

LEMMA 6.4. For any $x\neq y\in X^{*}$ there exists a word $w\in X^{*}$ such that $xwy\neq ywx$ .

PROOF. If $xy\neq yx$ , then let $w=1$ . If $xy=yx$ , then $lg(x)\neq lg(y)$ . Without

loss of generality, we can take $lg(x)>lg(y)$ . Suppose that $a\in\{u$ I $u\in X$ and $yuz=$

$x$ for some $y,$ $z\in X^{*}$ }. Since $|X|\geq 2$ , there exists a $b\in X$ with $b\neq a$ . Let $n=lg(x)+lg(y)$

and let $w=b^{n}$ . If $xwy=ywx$ , then $x=b^{i}y=yb^{i}$ for some $i$ and then $x,$ $y\in b^{*}$ ([3]).

But $a\in$ {$u|u\in X$ and $yuz=x$ for some $y,$ $z\in X^{*}$ } and $b\neq a$ , a contradiction. Thus

$xwy\neq ywx.\phi$

The next proposition shows that in general cm-free languages are not closed under

catenation.

PROPOSITION 6.5. For any cm-free language $L$ with $|L|\geq 2$ , there exists a cm-free
language $L’$ such that $LL’$ is not cm-free.

PROOF. Suppose $x,$ $y\in L$ with $x\neq y$ . Then by the above Lemma, there exists a word

$w\in X^{*}$ such that $xwy\neq ywx$ and hence $xwyw\neq ywxw$ . By Proposition 6.3, $\{wxw, wyw\}$

is a cm-free language. Let $L‘=\{wxw, wyw\}$ . Then {xwyw, ywxw} $\subseteq LL’$ and $LL’$ is not

cm-free. $\phi$
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