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Some Algebraic Properties of Comma-Free Codes

C.Y. Hsieh, S.C. Hsu and H.J. Shyr

1. Introduction

Let $X$ be a finite alphabet and let $X^{*}$ be the free monoid gen-

erated by $X$ . Any element of $X^{*}$ is called a word and any subset of
$X^{*}$ is called a language. We let $X^{+}=X^{*}-\{1\}$ where 1 is the empty

word. A code is a language $L\subseteq X^{+}$ such that $x_{1}x_{2}\cdots x_{n}=y_{1}y_{2}\cdots y_{m}$ ,

$x_{i},y_{j}\in L$ implies $n=m$ and $x_{i}=y_{i}$ for $i=1,2,$ $\cdots$ , $n$ . In recent

years many different types of codes are studied, which include

prefix codes, suffix codes, bifix codes, infix codes, outfix codes,

uniform codes, etc. S.W. Colomb and others studied a particular

kind of codes called comma-free codes. John A. Llewellyn quoted

that a comma-free code is a directory of code words such that for

any sequence of symbols, synchronization can be achieved within

at most $k$ symbols, where $k=2\cross$ (the length of the longest word)

- 1. Expressed alternatively : As a code in which a complete code

word can be identified as soon as its last symbol is received. To

achieve this, the set of code words must satisfy the condition that

a set of symbols corresponding to a valid code word can occur

neither in another code word nor within the catenation of two

code words.

In this paper we show that the family of comma-free codes

is a proper subfamily of infix codes. In fact a comma-free code

can contain only primitive words. We obtained a characterization

of this particular kind of codes.
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2. Notations and Preliminaries

For a word $u\in X^{*}$ , we let $1u1$ denote the length of the word $u$

and for any two languages $A,B\subseteq X^{*}$ , let $AB$ be the set $AB=\{xy|$

$x\in A,$ $y\in B$ }. We call a word, $u\in X^{+}$ , primitive if $u=f^{n},$ $n\geq 1,$ $f\in$

$X^{+}$ implies $n=1$ . The set of all primitive words over X will be de-

noted by $Q$ . It is known that every word $u\in X^{+}$ is a power of a

primitive word and the expression is unique. Thus if $u=f^{n},f\in Q$ ,

then we call $f$ the primitive root of $u$ . For a word $x=a_{1}a_{2}\cdots a_{n},$ $a_{i}$

$\in X$ , let the mirror image of $x$ to be $\overline{x}=a_{n}a_{n- 1}\cdots a_{1}$ . (see [2], [3]).

Definition 2.1. Let $X$ be an alphabet. A language $L\subseteq X^{+},$ $L$

$\neq\emptyset$ , is

(a) a prefix code if $L\cap LX^{+}=\emptyset$ ;

(b) an outfix code if for all $x,y,u\in X^{*},$ $xy\in L$ and $xuy\in L$

together imply $u=1$ .
(c) an infix code if for $x,y,u\in X^{*},$ $u\in L$ and $xuy\in L$

together imply $xy=1$ .
For the properties of prefix codes, outfix codes and infix

codes see [3].

We need the following lemmas in the sequel :

Lemma 2.1. (see [2]) Let $u,v\in X^{+}$ with $u\neq 1,$ $v\neq 1$ . If $uv$

$=vu$ , then $u$ and $v$ are powers of a common word.

Lemma 2.2. (see [5]) $LetL\subseteq X^{+}$ . Then $L$ is a prefix code if
and only if $L(A\cap B)=LA\cap LB$ for all $A,$ $B\subseteq X^{*}$

2
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The term comma-free codes has been studied by several

researchers. Especially the properties of maximal comma-free

codes. Here we express the comma-free codes by a set relation.

Definition 2.2. Let $X$ be an alphabet and let $L\subseteq X^{+},$ $L\neq\emptyset$ .
$L$ is called a comma-free code if $L^{2}\cap X^{+}LX^{+}=\emptyset$ .

Proposition 2.3. A comma-free code is an infix code and

hence a code.

Proof. Suppose $L\subseteq X^{+}$ is a comma-free code, i.e., $L^{2}\cap X^{+}LX^{+}$

$=\emptyset$ . If $L$ is not an infix code, then there exist $x,y\in X^{*},$ $u\in L$ such

that $xy\neq 1$ and $xuy\in L$ . Then $xuyxuy\in L^{2}\cap X^{+}LX^{+}$ , a contradic-

tion. This shows that a comma-free code is an infix code. Q.E.D.

By definition every singleton set is an infix code. But this is

not the case for comma-free codes. In fact we have the following.

Proposition 2.4. Let $u\in X^{+}$ . Then $\{u\}$ is a comma-free
code if and only $\iota fu$ is a primitive word.

Proof. $(\Rightarrow)$ Suppose $u$ is not a primitive word and let $u=$

$f^{n},f\in Q,$ $n\geq 2$ . Then $f^{n}f^{n}=ff^{n}f^{n- 1}\in\{u^{2}\}\cap X^{+}uX^{+}$ and $\{u\}$ is not

a comma-free code.
$(\Leftarrow )$ Suppose $\{u\}$ is not a comma-free code. Let $uu=xuy,$ $x,y\in$

$X^{+}$ . Clearly, lul $>[\chi|$ and lul $>1yI$ . Then $u=xx’,$ $u=y’y$ for some $x’,$ $y’$

$\in X^{+}$ . It follows that $uu=xx’y’y=xuy$ and $u=x’y’$ . Therefore, $u=$

$xx’=x’y’=yy’$ and lxl $=|y’|,$ $k’1=$ lyl. This then implies that $x=y’$

and $x’=y$ . Thus $u=xx’=xy=yx$ holds. By Lemma 2.1, $x$ and $y$

are powers of a common word and $u$ is not primitive, a contradic-

tion. Q.E.D.
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An infix code may not be a comma-free code. For $\{u^{2}\},$ $u\in$

$X^{+}$ is an infix code but not a comma-free code.

It is immediate that a subset of a comma-free code is a

comma-free code. The following is now clear :

Corollary. Let $L\subseteq X^{+}$ . If $L$ is a comma-free code, thenL $\subseteq$

$Q$.

Since every singleton set is an infix code, from Proposition

2.4 and the above corollary, we see that the family of comma-free

codes is a proper subfamily of the family of infix codes.

Example : Let $X=\{a, b\}$ . The language $ba^{+}b$ is an infinite

comma-free code. We can construct comma-free codes in the

following ways.
(a) For any $L_{1}\subseteq ab^{+}$ and $L_{2}\subseteq b^{+}a$ , the language $L_{1}L_{2}$ is a

comma-free code. This is true. For $L_{1}L_{2}$ is a subset of $ab^{+}a$ and

$ab^{+}a$ is a comma-free code.

(b) Let $L\subseteq X^{+}$ be a finite languages such that $m= \max\{|u||$

$u\in L\}$ . The language $ba^{m}Lba^{m}$ is always a comma-free code.

3. Characterizations of Comma-free Codes

In this section we characterize the comma-free codes. In

doing so we need the following terms :
For any $L\subseteq X^{+}$ , let

$L_{p}=$ { $x\in X^{+}|xy\in L$ for some $y\in X^{+}$ } ;

$L_{s}=$ { $y\in X^{+}|$ xy $\in L$ for some $x\in X^{+}$ }.
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That is, $L_{p}$ consists of all the proper prefixes of those words in $L$

and $L_{s}$ consists of all proper suffixes of those words in $L$ .

Proposition 3.1. Let $X$ be an alphabet and let $L\subseteq X^{+}$

Then the following are equivalent :
(1) $L$ is a comma-free code ;

(2) For any $u,v,w\in L,$ $x,y\in X^{*},$ $uv=xwy$ imply $x=1$ or

$y=1$ ;

(3) For any $u\in L,$ $x,y\in X^{*},$ $xuy\in L^{2}$ imply $x=1$ or $y=1$ ;

(4) $L$ is an infix code and $L\cap L_{s}L_{p}=\emptyset$ ;

(5) $L$ is an infix code and $L^{2}\cap L_{p}LL_{s}=\emptyset$ ;

(6) $L$ is an infx code and $L^{n}\cap(X^{+}LX^{+}L^{n- 1})=\emptyset,$ $n\geq 1$ ;

(7) $L$ is an infix code and $L^{n}\cap(L^{n- 1}X^{+}LX^{+})=\emptyset,$ $n\geq 1$ ;

(8) $Lis$ a comma-free code.

Proof. The equivalences of (1), (2) and (3) are immediate.

(1) $\Rightarrow(4)$ . Suppose $L$ is a comma-free code. By Proposition 2.3, $L$

is an infix code. For the second part, suppose on the contrary that

$L\cap L_{s}L_{p}\neq\emptyset$ and let $w\in L\cap L_{s}L_{p}$ . Then $w=xy$ for some $x\in L_{p}$

and $y\in L_{p}$ . Since $x\in L_{p},$ $y\in L_{p}$ , we have $ux,$ $yv\in L$ for some $u,v$

$\in X^{+}$ . It follows that $uxyv=uwv\in L^{2}$ and $L^{2}\cap X^{+}LX^{+}\neq\emptyset$ , a

contradiction. Thus $L\cap L_{p}L_{p}=\emptyset$ holds.

(4) $\Rightarrow$ (1). Suppose the condition (4) holds and $L$ is not a comma-

free code. Let $u,v,w\in L$ be such that $uv=xwy$ for some $x,y\in X^{+}$ .

Since $L$ is an infix code, $u\neq xws$ for all $s\in X^{*}$ and $v\neq wyr$ for all $r$

$\in X^{*}$ The remaining case will be $w=w_{1}w_{2}$ with $w_{1}\in L_{s},$ $w_{2}\in L_{p}$

and which contradicts the fact that $L\cap L_{s}L_{p}=\emptyset$ . This show that

(4) $\Rightarrow(1)$ .
(1) $\Rightarrow(5)$ . Trivial.
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(5) $\Rightarrow$ (1). Suppose (5) holds and $L$ is not a comma-free code. Let

$uv=xwy$ for some $u,v,w\in L,$ $x,y\in X^{+}$ . Since $L$ is an infix code, we

must have $u=xx’,$ $v=y’y$ for some $x’,$ $y’\in X^{+}$ . Clearly $x’y’=w$ and

$x\in L_{p},$ $y\in L_{s}$ . It follows that $uv\in L^{2}\cap L_{p}LL_{s}=\otimes$ , a contradiction.

We now show the equivalences of (1), (6) and (7). If $L$ is an

infix code, then $L$ is a bifix code. By Lemma 2.2,

$L^{i}(L\cap L^{i}X^{+}LX^{+})=L^{i- 1}\cap X^{+}LX^{+}$ and $(L\cap X^{+}LX^{+})L^{j}=L^{i+1}\cap$

$X^{+}LX^{+}$ for all $i\geq 1$ .
It is clear that (1), (6) and (7) are equivalent.

(1) $\Leftrightarrow(8)$ Since for any $x,y,z,u,v\in X^{+}$ the condition $xy=uzv$

implies $\overline{y}\overline{x}=x^{-}y=\overline{uz}v=\overline{v}$ zu, it is clear that (1) is equivalent to (8).

QJED.

Proposition 3.2. Let $L\subseteq X^{+}$ be an infix code. Then $L^{3}\cap$

$X^{+}L^{2}X^{+}=\emptyset\iota f$ and only if $L^{2}\cap L_{s}LL_{p}=\emptyset$ .

Proof. $(\Rightarrow )$ Immediate.
$(\Leftarrow )$ Suppose $L^{3}\cap X^{+}L^{2}X^{+}\neq\emptyset$ . Then $u_{1}u_{2}u_{3}=uxyv$ for some $u_{1}$ ,

$u_{2},$ $u_{3},$ $x,$ $y\in L,$ $u,v\in X^{+}$ . Since $L$ is an infix code, we have $u_{1}=uu’$ ,

$u_{3}=v’v,$ $u’\in L_{s},$ $v’\in L_{p}$ . $u_{1}u_{2}u_{3}=uu’u_{2}v’v=uxyv$ implies xy $=$

$u’u_{2}v’$ . It then follows that $L^{2}\cap L_{s}LL_{p}\neq\emptyset$ , a contradiction. Q.E.D.

Corollary 3.3. If $L\subseteq X^{+}$ is a comma-free code, then $L^{2}\cap$

$L_{s}LL_{p}\neq\emptyset$ .

4. Some Properties of Comma-free Codes and
n-Comma-free Codes

Proposition 4.1. If $L\subseteq X^{+}$ is a comma-free code, then for
any positive integer $n\geq 3,$ $L^{n}\cap X^{+}L^{n- 1}X^{+}=\emptyset$ .
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Proof. We prove the proposition by induction on $n$ . First we

prove that the proposition holds for $n=3$ . Suppose $L^{3}\cap X^{+}L^{2}X^{+}\neq$

$\emptyset$ . Then $uvz=xwgy$ for some $u,v,z,g\in L,$ $x,y\in X^{+}$ . Clearly $u\neq x$

and $z\neq y$ . If $x=uu’$ with $u’\in X^{+}$ , then $uvz=xwgy=uu’wgy$ and $vz$

$=u’wgy$ hold. It follows that $L^{2}\cap X^{+}LX^{+}\neq\emptyset$ , a contradiction. Sim-

ilarly $y\neq z’z$ for any $z’\in X^{+}$ . The remaining case is that $u=xx’$ and

$z=y’y$ for some $x’,$ $y’\in X^{+}$ . We have $uvz=xx’vy’y=xwgy$ and

$x’vy’=wg$ , which again contradicts the fact that $L^{2}\cap X^{+}LX^{+}\neq\emptyset$ .

Thus $L^{3}\cap X^{+}L^{2}X^{+}=\emptyset$ holds.

Suppose the proposition holds for $n=k-1$ , i.e., $L^{k- 1}\cap X^{+}L^{k- 2}X^{+}=$

$\emptyset$ . If $L^{k}\cap X^{+}L^{k- 1}X^{+}\neq\emptyset$ , then there exist $w_{1},$ $w_{2},$ $\cdots w_{k},$ $u_{1},$ $u_{2},$ $\cdots$ ,

$u_{k- 1}\in L$ such that $u_{1}u_{2}\cdots u_{k}=xw_{1}w_{2}\cdots w_{k- 1}y$ for some $x,y\in X^{+}$ . It

is easy to see that we need to consider the following cases ; (1) $x$

$=u_{1}u_{1}$ ’, (2) $u_{1}=xx’$ and $y=u_{k’}u_{k}$ and, (3) $u_{1}=xx’$ and $u_{k}=y’y$ ,

where $x’,$ $y’,$ $u_{1}’,$ $u_{k’}\in X^{+}$ . The above three conditions will all imply
$L^{k- 1}\cap X^{+}L^{k- 2}X^{+}\neq\emptyset$ , a contradiction. Thus by induction we have

that $L^{n}\cap X^{+}L^{n- 1}X^{+}=\emptyset$ for all $n\geq 3$ . Q.E.D.

The converse of the above proposition is not true as we can

see from the following example.

Example : Let $X=\{a, b\}$ and let $L\subseteq X^{+}$ be such that $L=$

$\{ab^{2}, b^{2}ab\}$ . Then $L^{2}=\{ab2_{ob^{2},ab^{4}ab,b^{2}abab^{2},b^{2}ab^{3}ab\}}$ and $L^{3}=$

$\{ab^{2}ab^{2}ab^{2},$ $ab^{2}ab^{4}ab,$ $ab^{4}abab^{2},$ $ab^{4}ab^{3}ab,$ $b^{2}abab^{2}ab^{2},$ $b^{2}abab^{4}ab$ ,

$b^{2}ab^{3}abab^{2},$ $b^{2}ab^{3}ab^{3}ab$ }. Here $L^{3}\cap X^{+}L^{2}X^{+}=\emptyset$ but $L^{2}\cap X^{+}LX^{+}\neq$

$\emptyset$ .

We note that every comma-free code is an anti-reflective

language in the sense that for any $x,y\in X^{+},$ $xy\in L$ implies $yx\not\in L$ .

Thus if $u\in Q$ and $v$ is a cyclic permutation of $u$ , then $\{u, v\}$ is not a
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comma-free code. However, the language $L=\{a^{n}b^{n}| n\geq 1\}$ is

anti-reflective but not comma-free, where $a,$ $b\in X,$ $a\neq b$ .
In general the catenation of two comma-free codes may not

be a comma-free code. Nevertheless, for a given finite comma-

free code $L$ , we can always find a word $u$ such that $uL$ is a comma-

free code.

In fact if $L=\{u_{1}, u_{2}, \cdots , u_{n}\}$ is a finite comma-free code and

$m= \max$ {lul $|$ $u\in L$ }, then for the word $u=a^{2m}b,$ $a\neq b\in X,$ $uL$ is

clearly a comma-free code.

We could have more general setting. In fact we have the

following :

Proposition 4.2. For any flnite comma-free code $L$ , there

exist an infinite language $A\subseteq X^{+}$ such that $AL$ is a comma-free
code.

Proof. Let $L\subseteq X^{+}$ be a finite comma-free code such that $m=$

$\max\{1u1| u\in L\}$ . Let $A=\{ab^{2m+n}a| n\geq 1\}$ . Then clearly $AL$ is a

comma-free code. Q.E.D.

Like n-code considered by M. Ito and others, we now con-

sider n-comma-free codes. An n-comma-free code is a language $L$

$\subseteq X^{+}$ such that every $n$ elements of $L$ is a comma-free code.

Lemma 4.3. A language $L\subseteq X^{+}$ is a 3-comma-free code if
and only if $L$ is a comma-free code.

Proof. Immediate. Q.E.D.

Therefore, the only interesting n-comma-free code is a 2-

comma-free code. By Proposition 2.4, we see that a language $L\subseteq$

$X^{+}$ is a l-comma-free code if and only if $L$ consists of only primi-

tive words.
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Proposition 4.4. Every 2-comma-free code is an infix
code.

Proof. Let $L$ be a 2-comma-free code. Assume $L$ is not an

infix code. Then there exists $u\in L$ and $x,y\in X^{*},$ $xy\neq 1$ such that

$xuy\in L$ . This implies that $u,$ $xuy\in L$ and uxuy, $xuyu\in L^{2}$ , a con-

tradiction. Therefore, $L$ is an infix code. Q.E.D.

A word $u\in X^{+}$ is said to be nonoverlapping if $u=vx=yv$ ,

$v,x,y\in X^{*}$ implies $v=1$ . A language $L\subseteq X^{*}$ is nonoverlapping if

every word $u$ contained in $L$ is nonoverlapping.

We now have the following :

Proposition 4.5. Let $L\subseteq Q$ be a nonoverlapping language.

If $L$ is an infix code, then $L$ is a 2-comma-free code.

Proof. Since $L\subseteq Q$ , by Proposition 2.4 $L$ is l-comma-free

code. Now suppose $L$ is not a 2-comma-free code. Then there

exist $u,v\in L(u\neq v)$ such that $\{u, v\}$ is not a comma-free code. By

definition, $uv=xuy$ or $uv=x’vy’$ for some $x,$ $x’,$ $y,$ $y’\in X^{*}$

Suppose $uv=xuy$ . Then since $\{u, v\}$ is an infix code, we

must have $u=xr$ for some $r\in X^{+}$ . Thus $uv=xrv=xuy$ and $u$ is

not nonoverlapping, a contradiction.

Similarly, the case $uv=x’vy’$ also will lead to a contradiction.

This shows that $L$ is a 2-comma-free code. Q.E.D.
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