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Bounds for Global Solutions of Some Semilinear Parabolic Equations

By
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Department of Mathematics, Faculty of Science, Tokai University

1. Introduction. In this note we are concerned with the asym-

ptotié behavior of global solutions of the initial boundary value

problem (E)N (or (E)D) for the semilinear parabolic equation

(E) [ (1) "u (x,t) - Aulx,t) = £(x,ulx,t)), (x,t)e x[0,00),
E , ‘ :

(2) u(x,0) =u_(x), xeq,
with the Neumann boundary condition

(3) u(x,t)/gn = 0, (x,t)e 30x[0,00),
( or the Dirichlet boundary condition

(4) u(x,t) =0, (x,t)e a0x0,00). )

Here &} is a bounded domain in E£J with smooth boundary 3£ and
f 1is a-continuous function from ILiRl to Rl.,‘It is well known
that if f 1is superlineér in u, then (E) has solutions which
blow up in finite time. ©So it would be natural to ask whether
(E) has a glébal solution which blows up at éo or not.

This kind of problem was first studied by [7,8) for an abstract
equation of the form a4 gq}(u(t)) - aq?(u(t)) =0 in a real

Hilbert space, where gq} are subdifferentials of lower semi-

a4

continuous convex and homogeneous functionals ql (i=1,2) on H.

As an application of a result of [7], it is shown in [8] that
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every global solution of (E), with f(x,u) = lulp_zu is

D
uniformly bounded in Hi(ﬂ) with respect to time t, provided

that p < 2%, 2*=00 for N=1,2; 2% = 2N/(N-2) for Nz 3.
Ni-Sacks-Tavantzis [6] also studied (E), for the case where

N, is convex and f{x,u) = ]u[p_2u and showed that if 2<p<

2 + 2/N, then every positive global solution of (E)D is uniform-
1y bounded in L”(;ﬂ.)b with respect to t and that if 2*ép (NZ3),
then (E)D has a global solution u such that Iu(t)lﬁw —5 co as

t —> +00 .

Cazenave-Lions- [2] treated more general nonlinear terms f(x,u) =

fo(u) satisfying

(o) £ e ct@mb;rby,

. p-1 ¥ 1
(£), | (1) If (Wl g C lul + C, lul uekR™, p < 2%,
¥ 1 v
(1) uf (W) z (2+€) F (W), ueR, >0, F_(w) = S £_(t) at,
o
and showed that every global solution of (E)D is bounded in
L) uniformly in [t, o@) for any t »O. Furthermore this bound

depends only on t and the Héﬂl}—norm of uo;,provided that

2<p<2,, 2, = for N=1; 2, = 2 +12/(3N -4) for N =z 2.

*

Giga [4] removed this resteiction on p for positive solutions,
i.e.,he showed that if p« 2%, then the L) bound for every

positive global solution depends only on the () -norm of u, -

For all these studies, it seems that there is no result for
the Neumann problem (E)N in this direction in spite of its impart-

ance. In studying (E) it must be noted that the methods in

N b
[2,4,6] rely much on the Dirichet boundary condition, so do not

work for (E)N.
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The main purpose of this note is to show that " phase plane "
method introducedin [7,8] works also forr (E)N. However, in
order to apply this method to (E)N, we have to remove two major
restrictions in [7,8],i.e., conditions that 3?9 is coercive
and '3@2 is homogeneous. As a matter of course, in cafrying
out this, we need much more careful consideration in the phase
space than in [7,8). In this note we are concerned with the

following nonlinearity of f:

~f(.,.) 1is a continuous function from [}.lel into lRl

and  there exist constants Ki( i=0,1,2,3) and numbers

pe(2,2%¥),§>0 and £» 0O such that

() | @ ltxwl €k, (1+ 1Pl Yixwener?,

e 2+<Y
u —-—

(ii) F(x,u) = f(x,t)dt =z K

\_f‘\

¥ 1
ll l K, (x,u)e QL xR™,

V(x,u)e .D.,"lRl.

o

\ (i)  uf(x,u) (2+¢) F(x,u) - K

IN

3

Then our main results are stated as follows.

Theorem 1. Let (f) Dbe satisfied and u Dbe a global solution

1,2
of (E)N (or (E)D) such that uelV = wloc
2

Lloc([o,oo); Hz(ﬂ)). Then there exists a positive constant CO =

(0,095 L2(W) N

H

(5) sup flu(t)] >, £ Cg

t=z0 L ’
(6) sup |u(t)] ;1 < reo,

t=0 H
(7) There exists a number T such that sup |u(t)] < C_,

1 1 ="o0
t =T H
1

(8) tsupo Iu(t)‘}'Hléco’ provided that pe¢ (2, 2,), 2,= o0 for N=1

>

and 2, = 2+12/(3N-4).
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Theorem IIL. Let (f) Dbe satisfied and u be a global solution

of (E)y (or (E);) such that wu e L) and uel, ( [0,00) ;L7 (L))

wl’z((o,aﬂ; Lzul))r\Lz ((0,00 ; HZQOJ). Then there exists a
loc , loc : .
positive constant C1 = Cl(luOIC”,K

O,

(9) sup Ju(t)]| <oo,
t =0 >

(10) There exists a number T such that sup ’Iu(t)l.wg C

1
1:ZT1 L

provided that pe(2, 2,).

l,

(11) sup Ju(t)| LEC

t=0 r 1

Remark 1. (1) Assertions in Theorems‘I and II hold true also for
Robin problem (E)R , i.e., (E) with more general boundary condi-
tion :

(3) g—;l(x,t) + -0~(x) u(x,t) =0, (x,t)€ 0,9, e L7GANH).

can be applied for (E) with

The following arguments for (E) R

N
slight modifications.

(2) Conditions (f)O does not allow f to cqntain linear or
sublinear parts, but condition (f) allow it. For example,
f(x,u)zlulq_2u+ luip—gu with 1< q<2<p satisfies (f)
but not (f)o.

(3) 1If £ satisfies condition (f) , then so does g(x,u) =f(x,u)
+ U. Indeed it is clear that g satisfieé (0)=(i) of (£f),

and since

ug(x,u) = u2+-uf(xnn g.uza-(2+8)F(x¢ﬂ -K

3 bl
(2+€/2)(us/2+ F(x,u)) + £F(x,u)/2 - gu/4a - Ky,
(2+¢/2) Su (x,t) dt + £(K. 1wl k. -u?/2)/2 -
+ . glix, + € l‘u - 2—-u -Ks5

—4-
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and Kl |u12+§ - Kz. - lu|‘2/2 is bounded below, g(x,u) also

satisfies (iii) of (f) with ¢ and K3 replaced by €/2 and
'

some K3'

2. Proofs of Theorems. We shall give here proofs only for

Neumann problem (E)N , which are.more complicated than those for
(E)D and also valid for (E)D.

Instead of (1), let us here consider its equivalent :

(1) up - AU+ U =u+ f(x,u) = g(x,u) (x,t) € Qx[0,00).
As was seen in (3) of Remark 1, g also satisfies (f). We use
the same Ki , § and ¢ for g as before. In what follows,
(+,-) and |.| denote the inner product and norm of Lg(ﬂ,).
We also denote by ].Ir and || .|| the Lr(ﬂ.) norm and Hl(.(L)
norm respectively. Now we introduce several functionals on Hl(_().)
1 2
- A = 5 (vul®+ [ul®) = 5 llull
. u(x)

- G(u) = J’ g g(x,t) dt dx ,

0,70 ‘
- J(w) = A(w) - &),
- jlu) = (g(C-,u()),ul-)) - 2A(u)

and subsets of Hl(.ﬂ.) :

- Sa = {ueHl(ﬂ); jla) = a} R aeRl.

Then, by virtue of (i) and ({ii) of (f), we obtain

2+6

(12)  &(u) z K, lul3¥s -k, lal VueHl(Q)?(lﬂl is the volume

of () .)
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(13) ju) z ¢G(u) - 2J3(u) - K, VueHl’(_(L),

(14)  A(u) z (1+ €/2)G(u) - Kg/2 - a/2 Vu es, .

Furthermore, by (i) of (f) and Sobolev's inequality

[lul . < CbIIuH , there exists a constant d_ such that d_z K

p 3

and G(u) = do ( A(u)p/2+v1 ), whence follows
(15) A(u) =z ([G(u)/do - l]+)2/p, where [a]+= max ( a, 0).

( Note that d is a constant depending only on K K3 , D, 1

and embedding constant C Introd'ucing a new parameter

b') »
o= (2+¢) do— K37O and taking account of (14) and (15),
we can draw the following Fig. 1l which illustrates how So’ Sa
and lines J(u) =J(uo) and J(u) = -~ do are located in the

( G(u) ,A(u))- phase plane.

We here claim the following proposition.

Proposition 1. Let u be a global solution of (E)N~ belonging
to V. Then we have
(i) J(u(t)) is monotone decreasing in t,

(1)  J(u(t)) z - 4 Yt zo,

(1) (Tlue12at € Ju) + a,

(@]
(1v) Ju(®)l ¢ ¢, Ytzo,
t+1 5
v | etusn®as zc,  Vezo,
£ O
t+1 4 v
vi) [l lifas 2, Yezo,
t

where Co is a constant depending only on Ki (i=0,1,2,3),¢,9,

d and J(u).
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¥ - ¢ K3
fo:A(W=(1+2)G(u) - =*

s ks
° f:Aw=(1+5)6(w) =5 - &
Al(u) S ‘J(u)=J(uo)
J(u)= - a
(o]
dl R it YA

2
A(u)=(G(u)/d_-1FP

; > G(u)

In this region there
m is no element of HI(N).

- K O

53>
d,= (2+8)(J(u ) + d ) /e

dy= (2J3(u ) +(2+€) d ) /e

do do( KO’ K3, p, k|, Cb)
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Proof of Proposition 1. Multiplying (1)' by u and u, we

t
have
(16) ]ut(t)l2 + %E J(u(t)) = 0 for a.e. tel0,),
(17) %—% Iu(t)12 = jlu(t)) for a.e. te[0,00).

Then assertion (i) 1is a direct consequence of (16), and it _

follows from (12),(13),(17) and (i) that

1d 2 ‘ |
(18) *E—Eglu(t)l z £G(u(t)) —‘ZJ(UO) - K,
-5/2 248
z ¢k, lo] lu(t) | - ex,lal - 23(u)) -Kg.
Suppose that J(u(to)) < - dO for some t_, then in view of

(i) and Fig. 1, we find that Jj(u(t)) =« >0 for all t zt .

Hence (17) and (18) assure that there exists tl>-O such that

-§/2 2+4d

fu(t) | for a.e. t =zt.,

(19)  SHlue)1® =z ek, la .

dt

which implies that |u(t)| blows up in a finite time. This is
a contradiction. Thus (il) is verified. Consequently integrat-
ion of (16) over [0O,00) gives (ii). = Suppose now that there

exists a t1>»0 such that

1!

leads to a contradiction. Thus we obtain a priori bound :

-d/2 2+8
e K. | / lu(tJ_)I+ /2 z ek IOl + 2J(u) + K,
1 ] 2 o 3
then by (18), |u(t)| 4is monotone increasing in the neibourhood
of t,. Consequently (19) holds for a.e. tzt this again

(20) sup Ju(t)| = kx, = [{4 exzblm +43(uy) +2K,] m,lé/2 / ¢k, ]1/(2+9)

t=0 4 1
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Since. dlu(t)fz/dt = 2 ( u(t),ut(t)) < Zlu(t)llut(t)l, assertion
(v) is derived from (iii),(iv) and integration of (18) over
[t, t+1) . Assertion (M) follows from (v) and the fact that

J(u(t)) ¢ J(uo) or A(u(t)) ¢ B(u(t)) + J(uo). ' Q.E.D.

Before proceeding to the proof of Theorem I, we prepare the

following lemmas.

Lemma 1. Let r,qe([l,00] and m be a non-negative integer.
Then

1-a
lul

lul, < c |ul? Yuew™ ") nLi)

W T
holds for any numbers ae¢ [0,1] and se[l,00] satisfying
1/s = a(l/r - m/N) + (1-a)/q,

where C 1is a constant depending only on .N,,r,q,m and a.
For a proof of this lemma, see Friedmann [3].

Lemma 2. Let (i) of (f) ©be satisfied and u be a global
solution of (E)N belonging to V. Then there exists a positive

monotone decreasing function T(.) such that

(21)  Mu(e) I g Hult )l + 1 for all t,  and ;e[to,to+T(l|u(to)ll)],
Proof. First of all, we note that there exists a number Ae(0,2]
such that

2(p-1 o_ -4+
(22) [al 2710 o a2 2 a2t Yy e ().

2(p-1) H2' ,

Indeed, for the case N=1,2 or N=23 and 2(p-1)£22N/(N-2),
we can take A = 2. For the other case, we have only to apply

Lemma 1 with s=2(p-1),m=r=2 and q=2N/(N-2) and use the

-9-
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fact that HlQQ) is continuously embedded in L2N/(N_2)(DJ.

This inequality implies that there exists a monotone increasing

function M(.) such that

' ' 1 2
(23) lgC-w %2 S laul® + mCllul) Yuer®@).
Multiplying (1)' by - au(t) + u(t), we get

Su(o) 112+ Tau(e) 1%+ [u(e) 12+ 2 Jvu(0) 1% 2 Igl-,u) | au(e)].

O-lQ-

1
2
Then, by (23), we obtain
1
2

llu(t)H < M()u(e)|]) for a.e. te[0,),

2

by which we can easily verify (21) by taking T(r) = 1/2M(r+l1).

Q.E.D.
Now we proceed to the proof of Theorem I.

Proof of (6) and (7). By virtue of (iii) of Proposition 1, there

exists a positive number TO such that

(24) 0 2 & 2
ST lut(t)! < (T) T( dl).
o) 4
Then we have
K2
_ 4
(25) lu(t)ll ¢ 4, + 1 for all t=zT, = T+ 5 -

Suppose that this does not hold. Then there exists a ‘@lng such

that IIu(tl)H > d; + 1. Hence, by Fig. 1, j(u(tl)) > L.

Therefore there exists a to< tl such that j(u(to))'z oL and

ju(t)) » & for all t e(to, ti). Then intégration of (17) over
2
. _ < .
{to,tl] and (20) give t, -t & K,/2x ,i.e., tozT,-

Again integrating (17) over [to,tl], we find

=10~
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t t ’
d (-t ¢ § e ae ¢ lu oo at
Ko] (@] 00
< K4(tl—to)l/z(STlut(t)lzdt)l/?
o |
Hence, by (24), t, -t £ T(d, ). Since ”u(to)llﬁ.dl’ Lemma 2

assures that |lu(t;)llgd; + 1. This is a contradiction. Thus

(5)=(7) of Theorem I are verified.

Proof of (8). As was seen above, u(t) can not stay in the region

{L16H1(Q); j(u)>d3 longer than ¥ = Ki/ 2d . Then for any

t 20, there exists to ¢ [max(0,t-7), t] such that Hu(tO)H < d3

= maX(Huo||,dl). Therefore, in order to prove (8), it suffices

to show that fu(t) 1l ¢ C, forall tel = [t, to+r]. For this

-

purpose, we prepare several results on u.

Lemma 3. If u.eLFKI ;Lrtn)), r< 2%, then

lul - C( |ul

< d ,d
121t 2 qy) T

) o) I
Lf(1;0)) © 3

Proof. We note that

=L a8 12 = (u (6), 1l Pu(e)) < lu () | Ju(e) |57
¢ Uu (O 1%+ Ju() D), s=% 1.

Then integration of this over I and (iii) of Proposition 1 assure

the assertion. R.E.D.
Proposition 2. If uel®™(I; LF(Q)) with N(p-2)/2<r< 2%,
then
lul < C(lu_| ,C ).
L=(1; H (@) °ro(r;Lt))  ©

-11-
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IQ—2

proof. Multiplying (1)' by |u u(t) (2< < 2*), we obtain,

ICL

p+2-2

- 9
» 2Ly juce) /212 . S

£
(26) g5 Iu(®)], , ¢ Ky (2 lu(v)] +lal).

Q.

t

For all £ > (p-2) N/2, Lemma 1 with s=2(p+0-2)/p,m=1,r=qg=2
Q/2

and u replaced by |u] gives

- - 0 -
PH-2 gy P2y /22

(27)  lulgy o

y A>O0.

Then, by integration of (26) over I and (27) with f =r, we

get

(28) | lulF/? ¢ ¢ (lul 1)
L2(I;Hl(a)) L®(1;L5)) ©

Again by Lemma 1 with s=2(N+2)/N,m=1,r=q=2 and u replaced

by lulr/2, we now deduce

(29)  lul (G € ¢ lul 2N TR,
Then it follows from (28) and (29) that ué_L(2+N)r/N(I;L(2+N)r/N

n)). Hence, by Lemma 3, ue L™(I; L(N+2)r/2N + 1

(V)). Repeating
this procedure, we observe that uc Lw(I;Lrial)), where r, are

defined by the recurrence formula

N+2 .
ri+1 = SN ri + 1, i=1,2,+++, r, =r.

Since ri-—e 2* as 1 —s oo and p< 2*, we can show by finite

steps that |u] < C(lul - , C ). Thus the
L(1;LP(Q)) I7(1;.5(Q))

assertion follows from (ii) of Proposition 1. Q.E.D.

-12-
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Proposition 3. For N=1,2,3 or 4, we have

ful
L(1;.9(Q))

A

o]

c, for all q< g*,
where q*=o0 for N=1 and q*=2+8/(3N-4) for N=2,3,4.

Proof. Let q1=2 and qi+l=(4—N)qi/2N+(6N+8)/2N, i=1,2,""",
and apply Lemma 1 with s-= a4y ,1° m=1,r=2 and q-= (2+qi)/2.Thenwe
have . -
TR APRr I CLONSRTNIES
q (2+q;)/2

i

i+l

Therefore, by virtue of (i) of Proposition 1 and Lemma 3,

. q.
ue L l(I;L 1)) for all q; - Since qi_>q* as 1-—o00, we can
derive the assertion by finite steps. Q.E.D.
Proposition 4. For N =5, we have
lul < Co . . for all q<q, =3+ (N-4)(2-p)/4.
r2(1;L4(Q))
Proof. Since p<2*< 4 for N=zZz4 and (vi) of Proposition 1
assures that |u] < C we get |ul < C_.
4 o s Yoo =
LH(I;L7 @) T ° LP(1;1P(0)) ©
Let p; =P, p; ; = (N-4)p . /(N-2) + [8+(N-4)(2-p))/(N-2), and
. . pi pi
s; = 2+pi—p, i=1,2,..-. Suppose that uel “(I;L ~()),
s./2
then by (26) with ¢= s,, lul * ¢ LZ(I;Hl(a)). Moreover
’Lemma 1 with s=2pi+l/si, m=1,r=2,q-= 2‘2*/51 and u replaced
by lulsi/2 yields
P.. A4 . A?.
al 2 g e ulDh I alS2)" witn A /2 + A <2,
Piv1 7 2 1 2

whence follows lLil c_. Since P; — 4y as

<
Lpi+l(I;Lpi+1<&)) o
i—yo0, the assertion can be derived by finite steps. QR.E.D.

-13-
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In order to prove‘ (8), we have only to combine Propositions
2 with 3 ( for the case N<4) and 2 with 4 ( for the case N =z5).
in fact, N(p-2)/2 < q* or N(p-2)/2<aq, holds if and only if

p<2y- | ~ Q.E.D.

Proof of Theorem II. We shall rely on Moser's iteration schemé
to obtain L% bound via Hl bound. The following lemma plays an

important role in this procedure.

oo

L o0 1
loc(IZO,°0),L (W)nH™ (Q))

Lemma 4. Let we Wiéi(ﬁo,aﬂ;Lz(ﬂJ)(\L

satisfy

lzg C I‘el(lw(t)|;+l) a.e.tef0,~)

r/2
| 2

(30)  SElw(e) 1L +c r il w(e) |

for all r 22, where Cl>Oand 02,61,6220.

Then there exist constants a,b,c,d such that
6, +(0.+46.) Db
sup |w(t)| < a?2 2 12 M,
co = o]
t=z0

sup [w(t)]9).

where M_ = max (1, cluO
tz 0

oo s

Proof. When w belongs to Hi&ﬂ) for a.e. t, this is proved by
Nakao [5] ( See Lemma 3;1);, By using Lemma 1 instead of Gagliado-
Nirenberg's inequality, one can prove this lemma by the same

argument as in (5]. Q.E.D.

Put }; = r(1-N(p-2)/2p), A, = P-2, Ay = Nr(p-2)/2p and

2
6 = Nr/(N-2). Then, by Holder's inequality, we get
p+r-2 _ o, AL, A2, A3
lu|p+r_2 < }ulr lulp lul6 .

Applying Sobolev's embedding theorem and Young's inequality, we

deduce

-14-
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_ A 2A./r
lae) B2 ¢ e luco) 1M uce) /29078
(31) /2 2 N(p-2)
¢ 221) juce) | 1T ¢ p2PPTAN 1y T,

where C is a general constant depending on sup{lu(t)lp; tg;O}.

r imply ‘that u(t) satisfies (30)

Then (31) and (26) with J{

with Cl=1, 6. =0 and 92

1

verified by Lemma 4.

2p/(2p-(p-2)N). Thus (9) 1is

On the other hand, it is easy to show that there exists a posi-

tive number T depending only on luohb such that

lu(t)l°° ¢Ju |l + 1 for all te[O,2T6} and Hu(To)llg C(Iuotg/To.

= O oo

Hence, (10) and (11) follows from (7) and (8) respectively.
Q.E.D.
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