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“The initial-boundary value problem for

a nonlinear degenerate parabolic equation

mH =S (EH+gEX¥) Isamu Fukuda

B & (BWHXE) Masayoshi Tsutsumi

l1.introduction and main results.

Let a < b and 2 > 0. We consider nonnegative solutions of

the initial-boundary value prohleﬁ

2 o
ut—uuxx-kluxl ’(a < x < b, t > 0) (1. 1)
u(a, t)=u(b, t)=0 (t > 0) . : (1.2)
u(x{0)=u0(x) (a < X < h) (1.3)

where initial data uD satisfj

A

(H. 1) u Wl ®(a,b)  and g (x) 2 0 (a € x & b)

0
In order to construct a solution to the probiem (1.1)-(1.3),
it might be natural to employ the well-known viscosity method: Let

¢ > 0 and let uE(X,t) be an unique classical solution of the

initial-boundary value problem for the uniformly parabolic

equation:

uo=(u +e)u ~Alu’ | (a < x <b, t> 0) (1.1)
et 13 EXX £X €

u (a,t)=u (b, t)=0 (t > 0) (1.2)
£ € £

u (x,0)=u,(x) ‘ (a < x < b) : (1. 3)
3 0 o _ 3
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We call u the .viscosity solution.of the problem (1.1)-(1.3)

if u(x,t) = lim u (x,t).
e=0 ¢

Let us consider solutions with compact support and define

the interface {,(t) by
C+(t)=tsup{ *x: u(x,t) > 0 } for t > O
Differentiating u({,_(t),t)=0 with respect to t and using eq.

(1.1), we easily see that the interface { (t) satisfies formally
ag, (t)
1t =Aux(§t(t),t) s (1.4)

provided uX(§+(t),t)¢0. Thus we might expect that the support of

solutions shrinks if ux(C+(t),t)¢U. Indeed, for 2 >~%— we have a

special weak solution of the form

1 21
P =5 i | 2 . 2A-1
ulx, t)=(T-t) (65 S (Tg~t) 1, (1.5)

where T, and €, are positive constants such that

0 0
A A

n——

(—JZ(ZA—I)CUTDZA_l,/?(2&—1580T82A—1)C[a,b]

and [-]+ = max(-,0)

Apparently its support shrinks to one point. But this
conjecture is not true for viscosity solutions. In [1], Bertch,
Dal Passo and Ughi show that every viscosity solution of the
Cauchy problem for (1.1) has a property that

supp u(t)=supp uy for t > 0 . (1.86)

It is a striking result. If 2 < 0, equation (1.1) is called

the pressure equation, related to the porous medium egquation and
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the support of solutions spreads out as. time goes , as is-

suggested by the interface equation(l.4).

Another curious

phenomenon which was

property of eq. (1.1) is the nonuniqueness

discovered by Dal Passo and Luckhaus [2]

(x = 0), Ughi [5] (& = 0) and Bertch, Dal Passo and Ughi [11 (% 2 0).
The existence of our special weak éolution u also suggests the
ponuniqueness phenomenon.
 ¥We now défiﬁe weak snfutions of the problem (1.1)-(1.3’ as
follows:
Jefinition 1. ‘A nonnegaive function ~u€L°°‘([D,°°):W1’:m,[a,b])
is called a weak solution of (1.1)-(1.3) if for any T > 0
2 .
utEL ([a,b]x[0,T])
and for all t 2 O
b b
Cu(x,t)y(x,t)dx = uD(x)¢(x,U)dx
a ‘ V a
t b
+ {u(x,s)wt(x,s)—u(x,s)ux(x,s)wx(x{s)?(A+1)!ux(X.s)|2w(x,s)}dxdt
0va '

for any function wecz’%([a,p]x[n,w)) vith compact support in (a,b),

Note that uELm([UﬁW);Wl’N([a,b])) with utELz([a,b}X[O,T])

for any T > 0 implies that u is continuous in x and t.
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In this paper we establish the global existence of (weak)
solutions of (1.1)-(1.3) and investigate the uniqueness of
solutions. We propose a new uniqueness class of solutions which is

different from [1], {[2] and [3].

As to the existence theorem, we have

Theoarem 1. Let U, satisfy (H1). Then the problem (1.1)-(1.3f

has at least one weak solution.

Theorem 2. Let 2 >—%— . Assume that U, satisfies (H1) and
uD(x) uU(x)
(H2) lim ————— < » and lim —«< «
xla (4t T (hox)?

Then u satisfies

1
iuxx(x,t)l < - (1.8)

2,

and, in particular, uELm([a,w):W 00([a,b])) as well as

utELm([s,m):Lm([a,b])) for any § > 0. Moreover, if we assume

that uU is semiconcave, that is,

Vd
u $ C in 7
Oxx

for some constant C, then u is also semiconcave almost everywhere,
that 1is,

uxx(x,t) £ 0 for a.e. (x,t)ela,b]x(0,x)

where C is also a positive constant.
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Remark 1. < .In theorem 2 the hypotheses (H1) can be weakened

as:  follows:

(Hl)w uUeL ([a,b]), uU(x) 2 0 a.e.

tollorary 1. Under the aséumﬁtion (Hl% and (H2), the problem

(1.1)-(1.3) has at least one weak solution which has properties in

Theorem 2.

Concerning the uniqueness and continuous-dependence-on-data

of solutions, we have

Theorem 3. Let u and v be two weak solutions coresponding to

the initial data ug, and Vg respectively. Assume that u and v

are semiconcave almost everywhere. Then the inequality

fu(x,t)-v(x,t)ldx £ eCt !uﬂ(x)-vﬂ(x)ldx

holds valid for any t > 0 and a positive constant c.

Corollary 2. Let u satisfy (Hl)w , (§E2) and be semiconcave.

Then the problem (1.1)-(1.3) has an unique weak solution u which

is also semiconcave and depends on initial data continuously in

Ll a,b).
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Remark 2. Our special solution (1.5) is not semiconcave.
Uniqueness theorem does not hold valid for the problem (1.1)-(1.3)

with initial data

1 22
_ Thi-1,.2_ 1 2, . \Zi-1
ug =T by g * T e

which does not satisfy (H2).

2.Proof of Theorem 1.

~Before proving Theorem 1, we shall obtain a priori estimates

of u .
; £
Leoma 1. Let u, satisfy (H1). Then
”ueﬂ w0 1. w £ C (2. 1)
L ([0,x):W"" ([a,b]l))
and
w b ,
p-1 2
(u (x,t)+e)]u (x,t)] u (x,t) dx & C (2.2)
£ £X £XX
0vYa

for any p 2 1, where and in the sequel § denotes various positive

constants independent of ¢.

Proof. The maximum principle gives
0$u (x,t) § max u (x) . ' (2.3)
£ asxsbh O
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Multiplying (1.1) by — (lu (x, )i’ "u )  and
£ p I £X X
integrating by parts en {a,b], we have
b b
! d . p+i p-1 2
— —— | fu (T Tdx o+ (u +¢)lu 3
p(p+1) dt | 'ex! S Tk ) £ | e xx dx
a a
A ' . D o A T .
+ - fu__(a,t)i"u _(a,t) - fu (b,t)! u (b,t) = 0 (2.4)
p+1 i X £X p+l T ex £X
Here and from now on we abbreviate X and t variahles in the
integrand. Since u,_ is nonnegative, wWwe easily see that
u ta,t) 2 0 and u (h,t) £ 0
£X _ £X
Hence integrating (2.4) from 0 te t, we obtain that, any p 2 1
b » t b
i p+l -1 2 ,
, - w0 Tdx +Jﬂ fu.+e) u P ta dxdt
pip+1} £X e £X XX
a 0¥
h
1 : +1
£ — u P dx
pi{p+1} 0X
a
form which it follows that
cas {t) . $oiun L, for any t > 0 (2.35)
£X b+1 tx p+1i
L (a, b) L {a, h)
and
x b : ‘
L . D~ 2 . p+ 1l
Jf (u’+£)IUﬁK;p lu%XY dxdt £ C"ug\v:pqu1 . (2.8)
6va  ° . L {a,b)
3) we easily have (2.1).

From (2.
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Lemma 2. Let 0 < ¢ <50 vhere 0 is a fixed number. For any

0 , < (2.7)
el 2 ([a.blx{0.T])

where C is a positive constant independent of €.

Prgaf. Using (1.1)E and integrating by parts, we get
TPb Tprb T
‘ 2 9
' u2 dxdt = {(u +e)“u2 dxdt -Qi €A {u (b,t)z—u (a,t) " tdt
£t 13 EXX 3 X X ,
0Vva 07a ' 0

Tpb
+(—32-?\+A2)J\f ut dxdt
£X
g}

Trh
i} ' 2
< (:ueg © , +£U)J\J[ (ue+£)uexx dxdt-
L™ el 0. TH P g,
. -%-Emzu zg (Ll - Tiu

4
L™ ([a,b]x[0,%)) L% (la, bl [0,9))

From (2.1) and (2.2) with p =1, we can easily obtain (2.7).

Proaf of Theorem 1. From (2.1),(2.3) and (2.7), we see that

0

] B
there exists a nonnegative function uELm([U,W):C([a,b])ﬂW" [a,b])

with uteLZ([a,b]x{D,T}) {(for any T > 0) and we can extract a

subsequence of {ue}, which is denoted by {uf ¥, such that, as
: “i

£, —3 0,
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r

U e——> U strongiy in  €([a,b]x(0,T])

u —N u weakly star in Lm([a,b]xgﬂ,m))

and

u —S wveakly in Lz({a,b}XEO,T])

In order to show that u is a weak solution of (1.1 -(1.3),

it suffices to show that, for any T > 0

in LM (faublx0.T))

and this implies

Yeox > u  strongly in 1% (la. b1 x10.T])

From (2.1) and (2.2), we have

A
oo
=
=
+
for
74N
(em)

ST
[3

X 12 (ta,bplx[0,1])  ° ([a,b]=[0,T])

We also have

R < ¢ (ud)
; t

xt 2

120, 1:8 a0 ©t 12(1a,b1x[0,T1)
By virtue of Aubin’s compactness theorem (see J.L.Lions [4]), we

may assume that

2 ‘ 2 . 2
= 9 M = y . )
(ue;)x “uziue;x'"—> Zuux (u )X strongly in L” ([a,b]x[0,T]).
Hence we may also assume that
u_ou —_—— ul_ a.e. in [a,b]x[0,%)
£y £;X X :

from which it follows that

U, a.e. in [a,b]x[0,%) (2.8)



since —%%— -0 a.e. in E={x€[a,b] ;u=0} (see

Kinderlehrer-Stampacchia [3],p53) and

U — a.e. in cE={x€[a,5];u>o}

In view of Lebesgue’s bounded convergence theorem we can easily

obtain

Trb i¥al]
4 dxdt = !u2| dxdt . (2.9)
m X

Br—
L
83

=

On the other hand, from (2.1) we may assume that umX converges
to u weakly in LZ([a,hIX[O,T]). Hence

. 2 |
U — strongly in L7 (la,blx[0,T]) (2.10)

This completes thé proof of Theorem 1.

‘3.Proof of Theorem 2.

Lemma J. Let u, satisfy (HllW and (H2) . Then, for any

iue(a,t)i < [t 0 (3.1)

and

(72N

Je C o , (3.2)

iug(h,t)ﬁ

1o~
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2roaf. We oniy show that (3.%) . hold valid. From (H2) we

see that far some § > 0 and C, > 0

et

9
0 £ u,(x) ¢ Cl{(x-a)"+J? (x-aj} for any xt(a,a+}) £3.3)

0

Let T > 0 be fixed. For any (x,t)é[a,qfﬁ]X{U,T] set

T(x.t) = A{(x-a) 2+ [T (x-a)} - (3.4)
where A is chosen so iarge that

A 2 Cl (3.8)

and

A(52_+{a“ §) 2 u (x,t) . (3.86)

Note that uEGZ’I((a.b)X{D.T}). Direct.calculation gives

T, - (T+e) T +A(E_)2
t XX X

2
2(2%—1)A2(x—a)“+ 2(2A—I)A2J? (x-a) + 2eA(XA-2)

in  (a,a+5)x(0,T) ~ (3.7)

[V
(o]

provided that i 2 —%— and that A is so large that

By virtue of (3.3)-(3.7) we apply the maximum principle to

ohtain
0 £ u (x,t) £ Tx,t) in [a,a+§]x[0,T]
t
Hence
u fa+h,t)-u_(a,t) u(a+h)
6§ S u (a,t)= lim — . < lim—— = AJ/7 .
3 h; 0 h h,0 h

Thus weAhave (3.1).
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Llemma {. Under the same assumption
o
? s — f .
U " or ant t > O (3.8)
Moreover, if u £ C then
Oxx 2
il £ C {3.8)
£XX 3
where 63 is a constant.
uet
Praof. Putting p= , we have
uo* e
p.={u +e)p +2(1-7)u p +p2 {x,tYs(a,b)x(0, =)
1 £ XX EX X ) '
p{a,t)=p(b,t)=0 ts (0, %)
< 112
" 0x ‘
(x,0)= — —— XE .
p{x,0) uGXX m— x€(a.b)

The standard comparison theorem yields that

1
X

T Tt

ey
v

Using (1.‘})£ , We easily see that

U2z - —— | (3.10)

We put q=u < to obtain that
Q. =(u +e)q +2(1-1)u_ q +(1-22)q° (3.1
1 3 XX X X

As for the houndary conditions, we utilize (l.i)£ to get
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A 2 Ao 2
q(a,t)=—?-futx(a,t)! R q(b,t)='f-!upx(b,t)§“ (3.12)

3 <

for any t >0. In view of Lemma 3, we see that

2 : , ‘
0S ala,t) s iC°, 0 a(h,t) s ac’ (3.12)

. . - . i
Hence the comparison theorem yields that, if 7 >-€r

4 — - ——-—-——C
Q(x,u)-uaxx(x,t) S -1
for some constant C > 0.
. 1 ‘
if Ty g 02 , A 2-5- and »(3.11)-(3.13) vield that
u __(x,t) §C (3.14)
£XX 3
L2 . .
where C,3 = max (A0 ’82 ) is independent of .
Preaf of Theorem 2. Because of Lemma 4, we see that {u }

£XX

is bounded in LN({a,b}XIS,M)) for every § > 0. Hence we can

assume that

u ——\ weakly star in ‘Lm({a,b]X[S.W))

and

A

L C . . ..
fu (x, t)i — for any (x,t)&ila,bix{§,wn),
X X : 1

if u, £ €, from (3.14) we have

‘uxx(x,tE < ¢ for any (x,t)€[a.blx[0,w).

This completes the proof of Theorem 2.
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4., Proof of Theorem 3.

Let u and v be two weak soluions of (1.1)-(1.3) with
initial data uU and Vg , respectively. Let T > 0  be fixed -
and put w(x,t) = u{x,t) ¥v(x;t) and WU(X) = ug(x) -'VG(X).
Then we have

b h
wix, T)y(x,T)dx = wD(X)¢(x,D)dx
a a
nh ‘
. fwo, - (uu_-vv )b -+ (lu 12-1y 1%)pldxdt (4.1)
t X X X X X . :
0Vva ’
for any wecz’l([a,b]X{G,m)) with compact support in <(a,b).
For each ne ¥ define
1 it == < s
n
6 el gL
gn(x) = ns if isi g -
-1 it s < -
. h
and
¥={g ((u-v%) 8 8 %o %o ks ko )0 8
*“n k'm v i y ¢k m
where » and o, are the standard molifiers with respect to x

and t, respéctively; Gk(-%-) where BEGE((a,b)) with 0 £ § £

and J{x)=1 in a neighborhood of 0 (we may assume O0€{a,b)) and
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8 (t)€C ((0,%))  such that 0 £ 8 S 1 and 8 (t) tends to the
m 0 m m
indicator function of {31,32} (0 < s, < S ) as m % » ., Then

¥eCy ((a,b)x(0,@)) ~and V(x,1) 2 0 for any (x,t)&(a,b)x(0,=).

Substituting ¥ for a test function v in (3.1), we have

e

w¥ _-(uuw -vv )¥ -(i+1)(lu EZ-EV iz)W}dxdt,. (4.2)
t X X X X X

From thLZ({a,b}X{D,T}); for any T > 0 and WECE((a,b)X(U,w)) ve

Trb Tpb

wy dxdt = - | thdxdt

Letting v and ¢ tend to infinity, we can easiiy see that

{k,m,n) - I.(k,m,n) - 13(k,m,n)

1
1 2

TN
2 2
= - g, 1
z wtﬁk@mgn((u v )Gkam)dxd
07Ya
TMb
-{- (uu_-vv_){g ((u“-vz)SLQ )b _odxdt]
X X £ m X
0vYa
Tph
o, | 2 2 o r(ul__2 _
-[-(i+1) (.uxs v )8k8m°n‘(d v )ekemdxdt] 0 (4.3)
0Ya
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. As n tends to infinity, we find Il(k,m,n) tends to

¢

since sgn((uz—vz)BLS ) = sgn((u-v)94,8 )
. <« m £ M

Moreover, ﬁm(t)=0 near 0 and T , then we have .

/ _ | :
\lwﬁkﬁml) dxdt ‘ngi(em)tdkdt

~
I,(k,m) £

1

As for Iz(k,m,n), using:chain rule, we get

. - ATPD ‘ .
- - - e/, 2 2 '
Iz(k,m,n) = ZJI.J\(UUX vvx) gn((u v )Bkem)ekem dxdt
0~a

nb

- {uu -vv ) g/((uz-vz)e 8 )(uz—vz)ezs (6,) dxdt
X X n m mk k'x

k

rh
- (uu_-vv_) g ((uz—vz)a 8 ) @2
X X n m om

K sk(ﬁk)xdxdt

- 18 -

- ‘wéh ‘ (s
‘W ki(@m)tdxdt , (4.

{(k,m) = w6 Sm sgn((u—v)&hﬁm)dxdt o (4.4)
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Since the first term onthe right hand side is nonpositive and

. 8
[ k)x' S 5% we have
C .3 .3 : ,
I,(k,m,n) £ =— (iu, +ohvy + oug + vy yiu i oL+ iV )
D) . - L ] <
2 K L " L” L x 2 X2

where Lp=Lp([a.b]XID,T]) (p=2,2). Since . uj , Lwvi I o

and 'v( g Aare bounded, we get

L

C
. $ = , )
Ig(k,m.n) £ (4.8)
Yoy Ly : . Yy o
where [ depends on B A ux 9 and .fo'g
L L L L
Since sgn((uz-vz)ﬁ § ) = sgn(wi, s ) letting n-—>x
k' m k'm” °
we see that [,(k,m, n) tends to
rhb
~ _ . | 2 2
I, (k,m) = -(i+1) (lu §7-lv 17)6,08 sgn(wf, 8 )dxdt
3 ' X X K m k'm
07%a
Recalliing that U and v‘X are semiconcave, we have
Tph
~ ’ )
I,(k,m) = =-(i+1) (iwd. 8 |) (u +v )dxdt
3 k'm "x X X
0%a
Trh
-{(i+1) (u-v)(ux-vx)(ek)x@m sgn(wﬂkem)dxdt
0”7a
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Tpb , ‘
+ (A+IzJiJ\(€uf+[vi)(!u P+lv D)1 (8, ) tdxdt
X X k' x
0 a

Tph
£ C J\J lwo, 8 |dxdt + —— (4.7)
K m k
0Ya
Hence eq. (4.3) with (4.5),(4.6) and (4.7) implies that
TNHh
‘wo ! Iwé_ 8 idxdt'+lL {4.8)
Uk Tk m k :
0“a
In (4.8) ietting k,m-—> x, we find that
b b 32 b
QW(x.sz)ldx - fW(x,sl)§dx £ C fw(x,s)|dxds
a a S1 a
£ .
for any sland 52 (0 < s1 < 32 ).
AsS 32=t and s1 tends to 0, we have
b h t nb
wix,t)idx - in(x)!dx s C iwi(x,s)ldxds
a a 0 Ya

from which it follows that, for any t 2 O



b

M»,' ( ' ’ ‘ : :u o “
;,wU\x),dX . o {(4.9)

b

W (x, t)dx s oSt

a a

This completes the proof of Theorem 3. Coroliary 2 is easily

obtained from;(@,g).
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