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Note on Hirzebruch’s Proportionality Principle

AR /{’;f,f:f TosHIYUKI KoBAYASHI (UNIV. OF TOKYO)
IhW2? KAORU ONO (TOHOKU UNIVERSITY)

Abstract. A @-stable homogeneous space G/ H is introduced with the asso-
ciated Riemannian space of compact type Gy /Hy. The equation among the
characteristic classes over I'\G/H inherits from the corresponding one over
Gu/Hy. As an application we also obtain a certain necessary condition for

the existence of a uniform lattice.

§1. INTRODUCTION
In [Hi], Hirzebruch showed

FACT(HIRZEBRUCH’S PROPORTIONALITY PRINCIPLE). Let D be a bounded
Hermitian symmetric domain, I' a torsionless discrete cocompact subgroup
of the automorphism group Aut(D) of D, and M the compact Hermitian
symmetric -space dual to D. Then there is a real number A = A(T) such
that ¢c*(I'\D)[I'\D] = Ac*(M)[M] for any c",k where o = (a,...,q;) is a

multi-index and ¢® = c¢{* U---Ucp* is a monomial of Chern classes.

The purpose of this note is to clarify this principle by eliminating unnec-
essary conditions. Let us explain the idea briefly in the above case. In order

to compare D and M, we shall take a common complexification of D and



104

M which we look upon as real manifolds by forgetting the original complex
structures. This enables us to treat non-Riemannian case and non-complex
case as well as Hermitian case. |

In this paper, we shall deal with not only characteristic numbers but also
characteristic classes. Furthermore, we can replace the tangent bundles over
Hermitian symmetric spaces by homogeneous vector bundles over a wide
class of homogeneous spaces, — which we call §—stable homogeneous space
(see §3)f-, containing the cases where the isotropy subgroup is the group of
the fixed points of an automorphism of finite order (eg. semisimple sym-
metric spaces), compact (homogeneous Riemannian spaces), or a Levi part
of a parabolic subgroup, etc. Formulation and our main theorem are stated
in §4, asserting that equations among characteristic classes (R—coefficient)
of a homogeneous vector bundle over a #—stable homogeneous space in-
herit from those of an associated Riemannian space of compact type. Our
approach is elementary alike Weyl’s unitary trick or Flensted-Jensen dual-
ity in representation theory (see [FJ]), and the results lead to interesting

corollaries:

COROLLARY 1. Let X be a Riemannian manifold of constant curvature.
Then all the Pontrjagin class vanishes in H*(X;R).

COROLLARY 2. Let G be a semisizhple Lie group contained in a connected
complexified Lie group G¢, I' be any discrete subgroup of G¢ acting on
G¢/G freely and properly discontinuously. Then all the Pontrjagin claés of
['\G¢ /G vanishes in Hf(F\GC/G; R). |

COROLLARY 3. Let G/H be a (not necessarily Riemannian) semisimple

symmetric space and Gy /Hy the associated Riemannian symmetric space
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of compact type. Let ' be any discrete subgroup of G acting on G/H freely
and properly discontinuosly. If Y a,p*(Gy/Hy) = 0 in H*(Gy/Hy;R),
then ) aqop*(I'\G/H) =0 in H*(I'\G/H;R). Here p* denotes a monomial
of Pontrjagin classes. Furthermore, if H is connected, the above result holds

when we replace p* by a monomial of Pontrjagin classes and the Euler class.

COROLLARY 4. Let H be the éentralizer of a toral subgroﬁp of a connected
semisimple Lie group G, and Gy/Hy an associated Riemannian space
of compact type (generalized flag variety). Then there is an embedding
G/H — Gy /Hy, through which G/H carries a G—invariant complex struc-
ture induced from a Gy—invariant complex structure on Gy /Hy. Let T be
any discrete subgroup of G acting on G/H freely and properly discontinu-
osly. If " aac®(Gy /Hy) = 0 in H*(Gy /Hy;R), then 3 aqc®(T\G/H) = 0
in H*('\G/H;R). Here c® denotes a monomial of Chern classes.

Corollary 1 can also be deduced from the following

FAcT(1.1)([S]). IfX is a Riemannian manifold of constant curvature, then

X x S! admits a flat affine connection.

The proof of this fact is not given in [S], so we show it for the sake of

completeness (see Appendix B).

Note that H is noncompact in general. G/H is a bounded Hermitian
symmetric domain in Corollary 4 if and only if Adg(H) is a maximal com-

pact subgroup of the adjoint group Int(g) = Adg(G).

If I' is a uniform lattice in G/H and H is connected, the converse state-

ment of Corollary 3 and Corollary 4 also holds. It is well-known that there
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exists a uniform lattice in G/H when H is a compact and G is linear
([Bo]). On the other hand, when H is noncompact, a discrete subgroup
of G does not necessarily act on G/H properly discontinuously. Various
aspects arise about the discrete subgroup which can act properly discon-
tinuously on G/H: some admit uniform lattices, some admit only finite
groups. (see [Ko] and the references there). Applying the results to Euler |

class, we have

COROLLARY 5. Let (G, H) be a linear 0-stable pair. If rankG = rankH
and dimg q N ¢ is odd, then G/H admits no uniform lattice, that is, there
exists no discrete subgroup I' of G such that I'\G/H is a compact smooth

manifold.

For example, let
G/H = SO(i+k,j+1)/SO(i,5) x SO(k,1).
Then there is no uniform lattice of G/H when when three elements among
t,J,k,l are odd and the other is even.

The authors are very grateful to Professor Akio Hattori for his constant

stimulation and encouragement.
§2. PRELIMINARIES

In this section, we review the notion of invariant connection of reductive
homogeneous space and the reduction of connections to real forms (cf. [N],

[K-NJ).

Let # : P — X be a smooth principal H—bundle. A connection on

P — X is a splitting of the tangent bundle TP — P into an H—equivariant

4
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Whitney sum TP = Ver(P) @ Hor(P), where Ver(P) = Ker(dn : TP —
T X) is the tangent bundle along fibers, and H or(P) is so called a horizontal
subbundle. The connection form o € (P, h) is defined by the composition
of TP — Ver(P), the first projection of the splitting TP = Ver(P) ®
Hor(P), and Ver(P) — b, the inverse of h 3 X — X € Ver(P),, where

X* denotes the fundamental vector field on P. The curvature form ) = D«

is the horizontal h—valued 2-form on P given by Q(X,Y) = Da(X,Y) def

do(prX,prY) (X,Y € TP), where pr: TP — Hor(P) stands for the second
projection of TP = Ver(P) ® Hor(P).

Let H be a éubgroup of H, P — X a smooth principal H'—bundle.

P’ — X is called a reduction of P —- X if P = P’ ;I< H. IfY isa

submanifold of X and a smooth principal H'—bundle 7’ :  — Y is a

reduction of 7y : Py — Y satisfying,
(2.1) (TQ), C Ker(dr,)® Hor(P)y,

for any p € ), we have a connection on ¢ induced from the one on P.

Namely, let Hor(Q), ' H or(P), N (TQ),, then the subbundle Hor(Q) of

T'Q determines a connection on ) — Y.

For E = P x V, the vector bundle associated to a representation p :
P

H — GL(V), we have a connection induced from a connection on P. The

curvature form QF of this connection is a End(E) valued 2-form described

as follows:

def

QE(“? v) = [p,dp(Q(u,v))],

via the identification P x End(V) = End(E). Here for z € X,p € P
Ad(p)
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with 7(p) = z, u,v € (TP), are lifts of u,v € (T'X), respectively, and dp

is a Lie algebra homomorphism g — gl(V') induced from p.

We call a homogeneous space G/H is reductive when there exists an
Ad(H)—stable vector subspace q complementary to b in g. For a reductive

homogeneous space G/H, a connection on a principal H—bundle G — G/H

is defined as follows: for g € G,

Hor(G), ¥ L,.q.
This coﬁnection is called the canonical connection of the second kind on
G/H in [N]. The curvature form is given by Q,(X,Y) = —[X, Y]y where
Z|y denotes the h component of Z € g = h+q, o is the origin corresponding
to the identity element of G and X,Y € q.

For any reductive homogeneous space G/H contained in its complexifi-
cation G¢/Hc, the canonical connection of the second kind on G¢/Hc¢
induces the one on G/H. In fact, g C b @ q¢c implies the condition
(2.1). Thus the principal bundle G — G/H inherits the connection from
Geig/a — G/H.

§3. O-STABLE PAIR

In this section we introduce a notion of a #-stable pair (G, H) and con-
struct an algebra homomorphism between the cohomology rings of I'\G/H

and of the associated Riemannian space of compact type Gy /Hy.

Let g be a semisimple Lie algebra defined over R. We call a subalgebra
b in g is B-stable when there exists a Cartan involution 8 of g such that

0h = h. Then the following lemma is proved by standard arguments (see

[War] Ch.1 §1).



LEMMA(3.1). Let b be a 6-stable subalgebra in g, q the orthogonal sub-
space of i) in g with respect to the Killing form. Then g = ) + q gives a
direct decomposition as a h-module. Furthermore, the adjoint representa-
tion adyy : h — gl(g) is semisimple. Especially, h is a reductive Lie algebra,

that is, b is decomposed into a direct sum of the center and the semisimple

ideal [, b].

EXAMPLE(3.2). Let g be a semisimple Lie algebra over R. The following

subalgebras are #-stable in g.
1) The centralizer (or normalizer) of a 6-stable subalgebra in g.

2) The fixed point subalgebra of a linear automorphism of g of finite order
([He] p.277).

3) A semisimple subalgebra ([M]).
Now we introduce a notion of a ‘6-stable pair’.

DEFINITION(3.3). Let G be a connected semisimple Lie group, H a closed
subgroup of G. We call (G,H) a 6-stable pair when the following two

conditions are satisfied:

a) There is a Cartan involution 8 of G such that H has a polar decomposition
H = (HnK)exp(hNp), where g = € + p is the corresponding Cartan

decomposition of g and K is the connected subgroup of G with Lie algebra

£

b) The connected Lie subgroup corresponding to the Lie algebra he = hRC
is closed in the adjoint group Int(gc).

When (G, H) is a f-stable pair, we call G/H a 0—stable homogeneous

7
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space.

When G has a faithful finite dimensional representation, we call (G, H)
is a linear 0-stable pair. In this case, the connected components of H are

finite because K is compact.

The condition a) in the above definition implies 8 = h, and so b is a
f-stable subalgebra in g. Conversely if H is connected, the condition a) can

be replaced by the condition that b is a f-stable subalgebra in g.

Let (G,H) be a f-stable pair. Then there is a closed subgroup H¢ of
a connected Lie group G¢ with Lie algebras he = H ® C and g¢c = g ®
C respectively such that the inclusion g «— g ® C induces the following

commutative diagram:
G —— Ge¢
U U
H — . He,
and that

(3.4) He = H)-(Hg)o

(Say, choose G¢ the adjoint group Int(ge) and put He by (3.4).)

Let (G, H) be a f-stable pair, § a Cartan involution of g which makes
b stable, and g = € + p be the corresponding Cartan decomposition of g.

Then we have a direct sum decomposition
g=bhnt+hnp+qne+qnp,

as a vector space. Let Gy be a connected Lie subgroup of G¢ with Lie

algebra gy = €+ +/—1p. Set Hy = Hc NGy. Then Hy, Gy are compact

8
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real forms of Hg, G¢ respectively, and we have a natural map

G/H —_ L(G)/HcﬂL(G) — Gc/HC P GU/HU.

covering complexification complexification

We call Gy /Hy (resp. G¢/He) an associated Riemannian space of compact

type (resp. a complezification) for a given #—stable homogeneous space

G/H.

REMARK(3.5). Each connected component of Hy meets Hc. Moreover the
cohomology ring H*(Gy/Hy;R) is independent of the choice of the above

complex Lie group G¢. This notice is sometimes convenient for actual

calculation.

EXAMPLE(3.6). Let G be a connected semisimple Lie group. (G, H) is a

f-stable pair in either of the following cases:

1) H is the centralizer (or normalizer) in G of a §-stable subalgebra t. When
t is a f-stable abelian subspace, an associated Riemannian space of com-

pact type Gy /Hy is called a (generalized) flag variety (cf. lemma(6.1)).

2) H is an operi subgroup in the group of the fixed points of an automor-
phism o of finite order of G. When ¢ is involutive, the homogeneous

space G/H is called a semisimple symmetric space.

3) H is a semisimple connected subgroup in G ([Y] guarantees that Hg is
closed in G¢).

4) H is compact.

Let (G,H) be a @-stable pair. Then G/H, Gy/Hy and G¢/Hc are
reductive homogeneous spaces in the sense of §2 with complementary sub-

spaces ¢, qu = qN€++/—1qNp and q® C respectively. Therefore invariant

9
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forms are identified with the invariant elements in the exterior algebra of

the cotangent space at the origins. Namely,
EX(G/H;R)® ~ (N q7)
EX(Gy/[Hy;R)®Y ~ (N au*)v,

and

£*(Ge/He; €)% =~ (/\ ac*)e.

Define a linear map d : A(q*)7 — A(q*)7 by
(@R)(X1, -, Xn) = S (=) h([Xs, Xlja X1, 55, X0), (X € ),
i<j
d: A(ap)™v — A(af) v by
(@R)(X1, -, Xa) = S (=) (X, Xljas X1, 250 Xa), (X € au),
i<y
and d : /\(VCIa:"‘)Hc — /\(‘QC*)HC by
(@R)(X1,- . Xn) = S (=1 R([X, Xiljger X1, %0 Xn), (Xi € dc).
i<j

Then it is easy to see that these d’s correspond to the exterior derivatives
under the above isomorphisms. Finally, define a linear isomorphism ¢ : q —
qu by

HX+Y)=X+,/-1Y (XeqntY eqnp).

Then we have the following

10
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LEMMA(3.7). With notation as above, let £ and €y be invariant differential
forms on G/H and Gy/Hy respectively. Assume & and {y satisfy the

following condition:

(38) &U(‘yb(Xl))7¢(Xa)a¢(Y1)7¢(Yb))
= (v/=1)%(X1,...,Xo, Y1,...13),
forany X; e qNEY; € qNp.

Then if £y is an exact form, there is a G—invariant form n on G/H such

that &€ =dn. If £y is a closed form, & is also closed.

ProoF: The natural isomorphism (see Remark(3.5))

A" eC~(Aac)™ ~(Aav")*oC
induces
E*(G/H;R)° ® C ~ £*(G¢/He; €)% ~ £*(Gy/Hy;R)“Y ® C.

The assumption (3.8) imply that £ and £y are the same images in the middle
term. Suppose £y is an exact form. Then there exists a Gy —invariant form
nu on Gy /Hy such that dny = £y, because {y-is Gy—invariant and Gy
is compact. Let n € £*(G/H;R)® ® C be the corresponding element of 7y
under the above isomorphism. Then we have £ = dn. The second claim is

similar and easy. Thus the lemma is proved. I

PRrRoOPOSITION(3.9). With notation as above, let I be a discrete subgroup

of G abting on G/H freely and properly discontinuously. Then
E*(Gy/Hy;R)°v @ C 5 £*(G/H;R)° ® C — £*(I'\G/H;R)® C

11
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induces a C—algebra homomorphism
Y:H*(Gy/Hy;C) — H*(I'\G/H;C).

IfT\G/H is compact and H is connected, then Y is injective.

PRrRoOOF: The first claim is an immediate consequence of the preceding
lemma. If I'\G/H is compact and H is connected, Gy/Hy and G/H have
G and Gy invariant orientation respectively. Therefore T is injective from

the Poincaré duality. I

REMARK(3.10). For the injectivity of T, the assumption of connectedness
of H can be replaced by Ad(H);q C SL(q), which means that G/H admits a

G —invariant orientation. But in general Y is neither injective nor surjective.
As the proof of our theorem in §5 shows, Y transfers the characteristic

classes on Gy /Hy to the corresponding ones on I'\G/H.

REMARK(3.11). It is easy to see that Gy/Hy is a compact symmetric

space if and only if (G, H) is a semisimple symmetric pair. It is a well
known fact due to E.Cartan that H*(Gy/Hy;C) ~ £*(Gy/Hy;R)%v @ C

if Gy/Hy is a symmetric space.
§4. STATEMENT OF RESULTS

Let (G,H) be a §-stable pair. Retain notations in §3. Let p : H —
GL(V,R), pv : Hy — GL(Vy,R) be finite dimensional representations.
We call p and py has the same complexification when there are a complex

vector space V¢, a representation p¢ : He — GL(Vg,C) and isomorphisms

12
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Y :VQRC S Ve and ¥y : Vy @ C S Ve such that the following diagram

commutes.

H = H¢ — Hy

"l lpc lPU
GL(V,R) & GL(Ve,©) « GL(Vu,R).

"l’Un

Now we are ready to state our main theorem.

THEOREM. Let (G, H) be a §-stable pair, Gy/Hy an associated Rieman-
nian space of compact type, G¢c/H¢ a complexification. Let I' be any
discrete subgi‘oup of G acting on G/H freely and properly discontinuously
from the left.

1) Let p : H — GL(V,R), py : Hy — GL(Vy,R) be finite dimensional

MGV, By &
P

representations with the same complexification. Set T E
GU X VU.

pU
If there is a relation Y aop®(Ey) = 0 in H*(Gy/Hy;R), then the equation
Y aep*(*E) = 0 in H*(T\G/H;R) holds. Here o = (aj,...,c) is a

k

multi-index and p* = p* U--- UpR* is a monomial of Pontrjagin classes.

2) Let V be a finite dimensional vector space over C, p: Hc — GL(V,C)
“M\G x V, By ¥Gy x V.

PlH P\Hy;

If there is a relation 5" aqc®(Ey) = 0 in H*(Gy/Hy; R), then the equation
Y aec*(YE) =0 in H*(T'\G/H;R) holds.

a representation of Hg. Set 'E

3)IfT\G/H is compact and H is connected, the converse statement of 1)
and 2) also holds.

13
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EXAMPLE(4.1). Let D = SO,(n,2)/S0(n) x SO(2) be a complex quadric,
I' a discrete cocompact subgroub of the automorphism group Aut(D) of
D, and M the compact Hermitian symmetric space dual to D. Then
¢;(T\D) # 0 for any j with 1 < j < n =dim¢ D because we know that the

corresponding result for M holds.

EXAMPLE(4.2). The total Chern class ¢(CP") = 1+ ¢;(CP") + --- +
cn(CP™) of a complex projective space CP" is given by
¢(CP™) = (14 )™ mod z"t!,

where z is the first Chern class of the hyperplane section bundle. Let
X(p,q9) =U(p+1,9)/UQ) xU(p,q) (p+4q=mn). Then X(n,0) = CP"
and X (0,n) be the dual Hermitian symmetric domain of noncompact type
(ref. [He] for the terminology). Let I be a discrete subgroup of U(p + 1,q)
acting on X (p, q) freely and properly discontinuouély. Then we have

j—1

G\ (p0) = ([ e O\Xmg) (1555 )
=0

If T is a uniform lattice, ¢;(T\X(p,q)) # 0 for any j with 1 < j < n. It
can be proved that there exists a uniform lattice for X(0,n), X(n,0) (Rie-
mannian case) and X (1, 2r), whereas any discrete subgroup acting properly

discontinuously on X (p,q) with p > ¢ is finite (see [Ko]).

REMARK(4.3). We do not require that I' is cocompact, so Theorem holds

even when I' = 1.

§5. PROOF OF THEOREM

Let (G, H) be a #-stable pair. We retain notations in §2 and §3. As we

14
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prepared in §2, the curvature forms Q and Qpy of G — G/H and Gy —
Gy /Hy are given by

Q(X,Y) = -[X,Y])y (X,Y €9),
Qo(Xv,Yu) = -[Xu, Yulyy, (Xu,Yv € qu),

where Zjy,Z |5U and Z)y. denote the second projections with respect to the
decompositions g = h + 4,9y = by + qu and g¢c = b + qc¢ respectively.

So the curvature forms QF, QFv of homogeneous vector bundles £ — G/H

and Fy — Gy /Hy are given by
Q7 (X,Y) = —p(IX,Y]}p) € g1(V),
Q.Y (Xv,Yy) = —pu([Xv, Yuljp,) € 81(V0),
where we identify gl(V) and gl(Vy) with End(E), an‘}d End(Ey), respec-

tively.

As Pontrjagin classes of a real vector bundle F' are determined by Chern

classes of its complexification F¢ = F ® C, we shall compare the curvatures

of EQCand Ey ®C ;

Qf@(x, Y) = —pe([X,Y]) € gl(Ve),

Q(IJE'U@Q(XU,YU) — —PC([XUayU]IbU) € gl(Ve),

where in the first equality gl(V¢) is identified with End(E® g(_Z_)ol and in the
second equality gl(Vg) is identified with End(Ey ® C), under ¢ and ¢y

respectively (notation §4). Define a linear isomorphism ¢ : q — qu by
HX+Y)=X+/IY (X eqntY eqnp).

15
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Since [X, Y]y = [X, Vjpe and [$(X), 6V, = [(X), 6(¥)]jpc, we have

[6(X), 6(Y)]jg, = (\/——1)’6(X)+6(Y)[Xa Y1jy,

and so

Q0" BE($(X), $(Y)) = (vV=1)PO+HM %L (X, Y),

where X and Y are elements of qN € or g N p and we set §(W) = 0 if
Wegqnt&, §(W)=1ifW eqnp.

By Chern-Weil theory ([D],[K-N]), characteristic classes are represented

by using curvatures. Namely, there is an C—algebra homomorphism
w: Inv(L) — H*(BL;C),

for a Lie group L, where Inv(L) denotes the ring of C—valued invariant
polynomials of the Lie algebra [ of L, and BL denotes the classifying space
of a Lie group L. When L is a complex Lie group, we denote by Invc(L)
the subring of Inv(L) consisting of holomorphic polynoimials. The Chern
classes are considered as elements of H*(BGL(n,C);R). For f € Inv(L)
and a principal L bundle P — X, the Chern class is represented by the
differential form on X corresponding to the tensorial (i.e. L—invariant and
horizontal) form f(,...,9) on P where f is identified with its polarized
multilinear form. If L is compact and connected, the homomorphism w is

an isomorphism.

For a complex vector bundle ' — X of rank n, the k-th Chern form c
of F' is represented by f(QF,...,QF) on X, where f, is the homogeneous
part of degree k in ¢ of the real valued polynomial

t

2my/—1
16

FlA) () = det (1 - 4) (A€ u(n)).
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This formula is also applicable for GL(n,C) vector bundles and gives a

representative of the total Chern class via the identification:
Invg(GL(n,C)) ~ Inv(U(n)) ~ H*(BU(n);C) ~ H*(BGL(n,C);C).

Considering f as a multilinear form as before, we have,

(5.1)  FPE, QO (@(X0), - .., $(Xa), $(Y1), - B(Y))
= (V=) F(QF®E, ... Q%S (Xy,.. ., X., Y1, Y0,
where X; € qNEY; € qNp, and f € Inv(GL(n,C)).
If [(wf)(Ey ® C)] = 0 in H*(Gy/Hy;R), there exists a G—invariant
form 7 on G/H such that dp = (wf)(E ® C) owing to lemma(3.3). Since

f(Qf % ..af ®£) and 7 are locally invariant (i.e. its pullback is
G—invariant on G/H), the characteristic class [(wf)FE ® C)] = 0 in
H*(T'\G/H;C).

Applying this to the case that [wf] is the image of ) an,c® under the

homomorphism
H*(BGL(n,C);R) — H*(BGL(n,R);R),
we get 1) in Theorem. The proof of 2) in Theorem is similar and 3) is

derived from the last statement of Proposition(3.7).
§6. PROOF OF COROLLARIES

Proof of Corollary 1.

A Riemannian manifold of constant negative (ofherwise the statement is
obvious) curvature is a quotient of the n-dimensional hyperbolic space form
H™ = SO,(n, 1)/ SO(n) by a torsion free discrete group of isometries. Thus
from the knowledge of Gy/Hy = S™, we obtain Corollary 1.

17
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Proof of Corollary 2.

The associated Riemannian space of compact type for the f-stable pair
(Ge,G) is Gu xGy /AGy, where Gy = {(g9,9) € Gu xGy; ¢ € Gy }. Since
this space is diffeomorphic to a group manifold Gy, all the Pontrjagin class

vanishes. Now, Corollary 2 is deduced from Theorem.

Proof of Corollary 3.

Corollary 3 holds when (G, H) is a #-stable pair in general. Corollary 3
is almost proved by applying 1) in Theorem to the adjoint representations
Adig : H — GL(q) and Adjy, : Hy — GL(qu). We only have to take
account of Euler classes.

As G/H admits an indefinite metric by the Killing form restricted to
q, the structure group of the tangent bundle can be reduced to SO, (p, q)
for some p,q € N, where p + ¢ = dimq. To deal with Euler classes, we

treat the complexified vector bundles again. From the fact that the rings
of invariant polynomials of SO,(p,q), SO(p + q) and the ring of the in-
variant holomorphic polynomials of SO(p + ¢,C) are isomorphic, there is
P € Invec(SO(p+ q,C)) such that

Plsop+q) = F5,

where P¢ € Inv(SO(p + q)) is the invariant polynomial corresponding to
the Euler class. Therefore in this case, we can calculate the Euler class by

using P and the SO,(p, ¢)—connection on G/H.

Proof of Corollary 4.

- Let G be a connected semisimple Lie group and G¢ a complex Lie group

with complexified Lie algebra of G. Let 6 be a Cartan involution of g, and

18
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g = t+p the corresponding Cartan decomposition. Let Gy be the compact
real form of G¢ whose Lie algebra is given by gy = & + +/—1p. Fix an
abelian subspace t(#O) in €. Let H, Hy, and H¢ be the centralizers of t in
G,Gy, and G¢ respectively. Fix a parabolic subgroup R of G¢ with Levi
part He.

Then we have a generalized Borel embedding’ :

LEMMA(6.1) (FOLKLORE). With notation as above, both Gy/Hy and
G/H are simply connected, and especially Hy and H are connected. Fur-
thermore, there exists a Gy—invariant complex structure on a compact
manifold Gy /Hy = G¢/R, and G/H is realized in an open G—orbit of the
identity coset of G¢/R.

We shall give a proof of this fact in Appendix A for the reader’s conve-
nience.

It is known that there is a Levi decomposition R = H¢- N, where N is the
unipotent radical of R. As N is a normal subgroup in R, any representation
pc : Hc — GL(V,C) is extended to R by letting N act on V trivially. We

also denote this extension by p for brevity.

As we define a complex structure on Gy/Hy by the isomorphism
Gu/Hy ~ G¢/R, the holomorphic tangent bundle of Gy/Hy is given by
Gc A(>i< gc/t ~ Gy x gc/t, and the holomorphic tangent bundle of

IR Ad|uy,

1[Griffiths-Schmid] (Acta. Math. 1969) treated when H is compact and called G/H dual
manifolds of Kdhler C-space. [Shapiro] (Comment. Math. Helv. 1971) treated when

G/H is a semisimple symmetric space which was classified on the Lie algebra level in

[Be].
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G/H is given by (GCA<>1< gc/v)ig/a =G X gc/t.

IR Ad|y
On the other hand, we have the following commutative diagrams.

ad
t —— gl(ge/v)

U Tg

b = gl(q)

via the isomorphism q ~ g¢/t induced from the inclusion q — g¢, and

ad
t —— gl(gc/r)

U T:

ad
by —— g¢l(qu)

via the isomorphism'qU ~ gc/t induced from the inclusion qy — g¢.

Therefore Corollary 3 is reduced to 2) in Theorem.

Proof of Corollary 5.

As G has a faithful finite dimensional representation, the connected com-
ponents of H is finite. Therefore the non-existence of a uniform lattice
in G/H is derived from the case where H is connected. When H is con-
nected, Hy is also connected from (3.4), and the Euler number x(Gy/Hy)
does not vanish owing to Hirsch’s formula? of the Poincaré polynomial of
the maximal rank compact reductive pair (Gy, Hy). On the other hand,
x(I'\G/H) = 0 because the tangent bundle T(I'\G/H) splits according to

the H N K module decomposition q = qN €+ qNp and because dimg q N ¢
is odd.

2H.Cartan, J.-L.Koszul, and J.Leray, Colloque de Topologie, Bruxelles, 1950
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REMARK (6.2). When rankG = rankH, it is easy to see that dimg q is
even. Therefore dimg q N € is odd if and only if dimg q N p is odd.

§7. APPENDIX

A. Proof of Lemma (6.1).

From definition we have
(Al) GNH¢c=H, GyNnHc = Hy.

Since hc = (hecNtc)+(hecNpc), both Hy and H are real forms of He. Then
H and Hy are connected because KN He = Z(t) and Gy NHe = Zg, (t)
are connected (see [He] Ch.7 Corollary 2.8.). As H and Hy contain the
center of G and Gy respectively, G/H and Gy/Hy do not depend on the
choice of coverings of G and G¢. Thus both G/H and Gy /Hy are simply

connected, and from now on we may assume that G is contained in its

simply-connected complexification G¢.

Fix a general element Z in v/—1t so that he = {X € g¢;[Z,X] = 0}.
Then g¢ is decomposed into the negative, 0, and the positive eigenspaces
of ad(Z2), nameiy, gc = n~ + hc + n. Let R (resp. R™) be a parabolic
subgroup of G¢ with Lie algebra e + n (resp. he + n7). The natural

inclusions G C G¢ D Gy induce
G/G NRC Gc/R D) Gu/GU N R.
We will show that |

(A.2) g+ (hc+n)=gy+(hc+n) = gc.

(A.3) GNR=GnHe,GyNR=Gy N He.
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Then (A.2) implies G/G N R and Gy /Gy N R are open sets in G¢/R, and
since Gy is compact we have G¢/R = Gy /Gy N R. Using (A.3), we have
G/H C G¢/R = Gy /Hy which will complete the proof of the lemma.

Now let us show (A.2), (A.3). let T be a conjugation of g¢ Wwith respect

to a real form g (or gy). Since Z € € = g N gy, we have

7(he) = b, 7(n) =n7,

and

T(n™) = n.

We also denote by 7 its lifting to an automorphism of a simply connected Lie
group G¢. Let X be any element of n~. Then X = —7(X)+ (X +7(X)) €
n+ g (or € n+ gy), which shows (A.2). Let g be any element of G N R
(or Gy N R). Acting 7 to the equation gRg™' = R, weget gR~ g™ ' = R™.
Because R and R~ are self-normalizing, g € RN R~ = Hg, proving (A.3).

REMARK (A.4). With notation as above, G/H is a semisimple symmetric
space if and only if the nilradical n¢ is abelian, and a bounded Hermitian

symmetric domain if and only if H is maximal compact in G. These sym-
metric spaces are called ‘% — Kahler’ and ‘Kahler’ respectively in Berger’s

classification ([Be]).

B. Proof of Fact (1.1).

The simply connected hyperbolic space form H™ can be embedded into
R™!, which is R**! = {(zo,...,2,);2; € R} equipped with the indefinite
metric dz2+- - -+dz?_; —dz2. As the isometry group of H™ is a subgroup of

index 2 in O(n, 1), M can be written as I'\H"™ where I is a discrete subgroup
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of O(n,1). For any fixed r > 0(r # 1), we define ¢ = ¢, : R — R™! by
the scalar multiplication of r. M x 8! is diffeomorphic to I'x < ¢ >\Ri’1,
where Ri’l is {(zo,...,Zn);zn > 0} and < ¢ > is the group generated by ¢
in GL(n+ 1,R). AsT'x < ¢ > is a subgroup of GL(n + 1, R), the standard
flat affine connection on R™*! is preserved under the action of I'x < ¢ >.

Therefore M x S! admits a flat affine connection.
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