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On algebraic extensions of

the nonstandard rational number field

MASAHIRO YASUMOTO (NAGOYA UNIVERSITY)

Let $Q$ and $Z$ denote enlargements of the rational number field $Q$ and

the integer ring $Z$ respectively where by an enlargement, we mean an

elementary extension which satisfies $\omega_{1}$ -saturation property. Let $H$ be the

height function of $Q$ ; i.e. $H( \alpha/\beta)=\max(|\alpha|, |\beta|)$ where $\alpha$ and $\beta$ are

mutually prime nonstandard integers. A subfield $Q_{1}$ of $Q$ is called H-

convex if $x\in Q_{1}$ and $H(x)>H(y)$ imply $y\in Q_{1}$ . In the rest of this paper,

$Q_{1}$ always denotes an H-convex subfield of $Q$ . Let $x$ be a nonstandard

integer not contained in $Q_{1}$ . Then $x$ is transcendental over $Q_{1}([4$ , Lemma

1]) Let $F$ be a finite algebraic extension of $Q_{1}(x)$ . ( $F$ is not necessary

included in $Q.$ ) Since $QF$ is a finite algebraic extension of $Q,$ $*QF$ is

internal. Let $\mathcal{O}$ be the ring of all algebraic integers in $QF$ . Let $K_{1}$ denote

the algebraic closure of $Q_{1}$ in $QF$ . Then $F$ is an algebraic function field of

one variable over $K_{1}$ . By a functional prime of $F$ , we mean an equivalence

class of nontrivial valuations of $F$ which are trivial on $K_{1}$ . Let $|x|_{1},$
$\ldots$ , $|x|_{s}$

be all internal archimedean absolute values of $QF$ which induce in $*Q$

the ordinary absolute value. Since $s\leq$ $[^{*}QF : *Q],$ $s$ is finite.

LEMMA 1. Let $z\not\in K_{1}$ and $z\mathcal{O}=J_{1}/J_{2}$ where $J_{1}$ and $J_{2}$ are coprime

ideals of $\mathcal{O}$ . If for all $i\leq s$ , there is $\gamma\in Z_{1}$ snch that $|z|_{i}<\gamma$ , then

$J_{2}\cap Z_{1}=\{0\}$ .
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PROOF: Assume there exists a nonzero $t\in J_{2}\cap Z_{1}$ . Then $tz\in \mathcal{O}$ . Since

$|tz|_{i}<|t|\gamma$ for all $i\leq s,$ $tz$ is algebraic over $Z_{1}$ , so $tz\in \mathcal{O}\cap K_{1}$ , hence

$z\in K_{1}$ , a contradiction.

For each $i\leq s$ , let $R_{i}=$ {$z\in*QF||z|_{i}<\gamma$ for some $\gamma\in Z_{1}$ },

then $R_{i}$ is a valuation ring whose maximal ideal is $\{z\in*QF||z|_{i}<$

$1/|\gamma|$ for all $\gamma\in Z_{1}$ }. If $F\cap R_{i}$ is not trivial, namely $F\not\subset R_{i}$ , then

$F\cap R_{i}$ is a valuation ring. Since $F\cap R_{i}\supset K_{1}$ , this valuation ring yields

a functional prime $P$ of $F$ . We say that $P$ is induced by an archimedean

absolute value.

Let $R=$ { $z\in*QF|\gamma z$ is an algebraic integer for some $\gamma\in Z_{1}$ } and

$I$ a maximal ideal of $R$ . Let $R_{I}$ denote the local ring of $R$ by $I$ . If $F\cap R_{I}$ is

not trivial, then $F\cap R_{I}$ is a valuation ring, hence it also yields a functional

prime $P$ of $F$ . We say that $P$ is induced by $I$ .

THEOREM 1. (cf. [4, Lemma $2],[2$ , Lemma 4.1]) Every functional prime

$P$ of $F$ is induced by an archimedean prime or a maximal ideal $I$ of $R$ .

PROOF: By the theorem of Riemann-Roch, there exists $z\in F$ which ad-

mits $P$ as its only pole. If there is $i\leq s$ such that $|z|_{i}>\gamma$ for all $\gamma\in Z_{1}$ ,

then $z\not\in R_{i}$ . Hence $z\not\in F\cap R_{i}$ . Then $F\cap R_{i}$ yields a functional prime

which is a pole of $z$ . Since $P$ is the only functional pole of $z,$ $P$ is induced

by an archimedean absolute value. Next assume for all $i\leq s$ there is

$\gamma\in Z_{1}$ such that $|z|_{i}<\gamma$ . Let $z\mathcal{O}=J_{1}/J_{2}$ where $J_{1}$ and $J_{2}$ are coprime

ideals of $\mathcal{O}$ . By Lemma 1, $J_{2}\cap Z_{1}=\{0\}$ . Hence $J_{2}R$ is a proper ideal.

Let $I$ be a maximal ideal of $R$ which includes $J_{2}R$ . Then the local ring of
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$I$ does not contain $z$ , so $z\in R_{I}-F$ . Hence $F\cap R_{I}$ is not trivial. By the

same arguments as above $P$ is induced by $I$ .

Theorem 1 is very useful and it has many applications, so in the following

we give one of them. For each irreducible polynomial $f(X, Y)\in R[X, Y]$ ,

we denote by $J(f)$ the set of all $r\in R$ that $f(r, Y)$ is reducible in $R[Y].$ . In

case of $R=Z,$ $Z-J(f)$ (such a set of integers is called a Hilbert subset)

is infinite (Hilbert’s irreducibility theorem), moreover it is known([l]) that

$J(f)$ is very thin. In section 1, we give a sufficient condition that $J(f)$ is

finite and give its bound. Let $F$ be a function field over $Q$ of an algebraic

curve $\Gamma$ defined by the equation $f(X, Y)=0$ , in other words, $F=Q(x, y)$

where $x$ is transcendental over $Q$ and $f(x, y)=0$ . By an functional prime

divisor of $F$ , we mean an equivalence class of nontrivial valuation of $F$

which is trivial on Q. For a functional prime divisor $P$ , we denote by

$vp$ the normalized valuation(i.e. its valuation group is Z) belonging to P.

A functional prime $P$ is called a pole of $z\in Q[X, Y]$ if $v_{P}(z)<0$ . For

each $f(X, Y)\in Z[X, Y]$ , its height denoted by $H(f)$ is defined to be the

maximum of absolute values of coefficients of $f(X, Y)$ . We prove

THEOREM 2. Let $f(X, Y)$ be an irre$du$cible polynomial with integer co-

efficients and $F=Q(x, y)its$ function fi$eld$ . Assume there are more than

$\deg_{Y}(f)/2$ poles of $x$ . Then there are only finitely many integers $n\in Z$

such that $f(n, Y)$ is reducible. Moreo$ver$ If $f(n, Y)$ is reducible, then

$|n|<(H(f)+1)^{C}$

where $C$ is a constant determined by the degree of $f(X, Y)$ .
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PROOF: Suppose Theorem 1 is false. Let $d\in$ N. For any natu-

ral number $N$ , there exist an integer $\alpha$ and an irreducible polynomial

$f(X, Y)\in Z[X, Y]$ of degree $d$ which satisfies the assumption of the theo-

rem such that $f(\alpha, Y)$ is reducible and

$|\alpha|>(H(f)+1)^{N}$ (1)

By nonstandard principle, the above assertion holds for any enlargement.

We take $N\in$ *N–N. Then $f(X, Y)\in*(Z[X, Y])$ , but since the degree

of $f(X, Y)$ is $d\in N,$ $f(X, Y)\in*z[X, Y]$ , i.e. $f(X, Y)$ is a polynomial

with coefficients $in*z$ . Let $Q_{1}$ be the smallest H-convex subfield of $Q$

which contains all coefficients of $f(X, Y)$ i.e.

$Q_{1}=$ {$z\in*Q|H(z)\leq(H(f)+1)^{n}$ for some $n\in N$ }

By (1), $\alpha\not\in Q_{1}$ . Since $Q_{1}$ is algebraically closed in $Q$ , a is transcenden-

tal over $Q_{1}$ . Let $f(\alpha, Y)=f_{1}(\alpha, Y)f_{2}(\alpha, Y)$ where $f_{1}(X, Y),$ $f_{2}(X, Y)\in$

$*z[X, Y]$ and 1 $\leq\deg_{Y}(f_{1})\leq\deg_{Y}(f_{2})$ . Let $F=Q_{1}(\alpha,\beta)$ where $\beta$

satisfies $f_{1}(\alpha, \beta)=0$ . Then

$s\leq$ $[^{*}QF : *Q]\leq\deg_{Y}(f_{1})$

$\leq\frac{1}{2}\deg_{Y}(f)$ (2)

Since $\alpha$ is a nonstandard integer, by lemma 2 every functional pole of $\alpha$

in $F$ is induced by an archimedean absolute value in $QF$ , so the number

of functional pole of $\alpha$ is not more than $s$ , hence by (2) not more than
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$\deg_{Y}(f)/2$ . Let $x$ be transcendental over $*Q$ and $y$ satisfy $f(x, y)=0$ .

Then the number of functional poles of $x$ in $Q(x, y)$ is, by the assumption

of the theorem, larger than $\deg_{Y}(f)/2$ . But there is an embedding

$\pi$ : $F=Q_{1}(\alpha,\beta)arrow*Q(x, y)$

where $\pi(\alpha)=x,$ $\pi(\beta)=y$ and for all $z\in Q_{1},$ $\pi(z)=z$ . Since $Q_{1}$ is

algebraically closed in $Q$ , the number of poles of $\alpha$ and $x$ must be same,

this is a contradiction and it completes the proof of theoreml.

In order to prove Theorem 2, we use the fact that $*Q$ has an unique

internal archimedean absolute value, so Theorem 1 cannot be generalized

for algebraic number fields of finite degree.

Let us give an example. Let

$f(X, Y)=X^{4}-Y^{4}+g(X, Y)$

be an irreducible polynomial where $\deg(f(X, Y))\leq 3$ . Let $F=Q(x, y)$

be its function field. There are 3 poles of $x$ corresponding to irreducible

factors of $X^{4}-Y^{4}$ . Hence the assumption of Theorem 1 is satisfied. So

there are only finitely many integers $n$ such that $n^{4}-Y^{4}+g(n, Y)$ is

reducible and there is a constant $C$ such that $n<(H(g)+1)^{C}$ for any

integer $n$ with $n^{4}-Y^{4}+g(n, Y)$ reducible.

Let us end this paper with an open problem.

OPEN PROBLEM. Find a $nec$essary and sufficient condition for an irre-

ducible polynomial $f(X, Y)\in Z[X, Y]$ that $f(n, Y)$ is reduci$ble$ for only

finitely many integers $n$ and give their $bo$und.
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