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On algebraic extensions of

the nonstandard rational number field

MASAHIRO YASUMOTO (NAGOYA UNIVERSITY)

Let *Q and *Z denote enlargements of the rational number field Q and
the integer ring Z respectively where by an enlargement, we mean an

elementary extension which satisfies wy-saturation property. Let H be the

“height function of *Q; i.e. H(a/B) = max(|a|,|5]|) where o and 3 are

mutually prime nonstandard integers. A subfield Q1 of *Q is called H-
convex iffc € Q1 and H(z) > H(y) imply y € Q1. In the rest of this paper,
()1 always denotes an H-convex subfield of *Q.‘ Let £ be a nonstandard
integer not contaiﬁed in Q1. Then z is transcendental over Q1{[4, Lemma
1]) Let F be a finite algebraic extension of Q1(z). (F is not necessary
included in *Q.) Since *QF is a finite algebraic extension of *Q, *QF is
internal. Let O be the ring of all algebraic integers in *QF'. Let K1 denote
the algebraic closure of Q1 in *QF. Then F is an algebraic function field of
one variable over K1. By a functional prime of F', we mean an equivalence
class of nontrivial valuations of F which are trivial on K1. Let |z|1,...,|z]|s
be all internal archimedean absolute values of *QF which induce in *Q

the ordinary absolute value. Since s < [*QF : *Q], s is finite.

LEMMA 1. Let z ¢ Ky and 20 = Ji/Jo where J1 and Jo are coprime
ideals of O. If for all i < s, there is v € Zy such that |z|; < +, then
Jo N Zy = {0}, “ |
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PRrROOF: Assume there exists a nonzero t € J9 N Z1. Then tz € O. Since
[tz|; < |t|y for all i < s, tz is algebraic over Z7, so tz € O N K, hence

z € K1, a contradiction.

For each ¢ < s, let R; = {2z € *QF||2|; < v forsome v € Z;},
then R; is a valuation ring whose maximal ideal is {z € *QF| |z|; <
1/|y| forall v € Zi}. If F N R; is not trivial, namely F ¢ R;, then
F N R; is a valuation ring. Since F N R; D K, this valuation ring yields
a functional prime P of F. We say that P is induced by an archimedean
absolute value.

Let R = {# € *QF'| vz is an algebraic integer for some v € Z1} and
I a maximal ideal of VR. Let Ry denote the local ring of R by I. If FN Ry is
not trivial, then F'N Ry is a valuation ring, hence it also yields a functional

prime P of F'. We say that P is induced by I.

THEOREM 1. (cf. [4, Lemma 2|,[2, Lemma 4.1]) Every functional prime

P of F' is induced by an archimedean prime or a maximal ideal I of R.

PRrROOF: By the theorem of Riemann-Roch, there exists z € F' which ad-
mits P as its only pole. If there is ¢ < s such that |z|; > v for all v € Z7,
then z ¢ R;. Hence z ¢ FFN R;. Then F'N R; yields a functional prime
which is a pole of z. Since P is the only functional pole of z, P is induced
by an archimedean absolute value. Next assume for all 7 < s there is
v € Z7 such that |z|; < 7. Let 20 = Ji/Js where J; and Jy are coprime
ideals of O@. By Lemma 1, Jo N Z; = {0}. Hence JQR is a proper ideal.
Let I be a maximal ideal of R which includes JoR. Then the local ring of
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I does not contain 2, so 2 € Ry — F. Hence F' N Ry is not trivial. By the

same arguments as above P is induced by 1.

Theorem 1 is very useful and it has many applications, so ih the following
we give one of them. For each irreducible polynomial f(X,Y) € R[X,Y],
we denote by J(f) the set of all r € R that f(r,Y) is reducible in R[Y].. In
case of R =7, Z — J(f) (such a set of integers is called a Hilbert subset)
is infinite (Hilbert’s irreducibility theorem), moreover it is known([1]) that
~J(f) is very thin. In section 1, we give a sufficient condition that J(f) is
finite and give its bound. Let F' be a function field over Q. of an algebraic
curve I' defined by the equation f(X,Y) = 0, in other words, F = Q(z,y)
where z is transcendental over Q and f(z,y) = 0. By an functional prime
divisor of F', we mean an equivalence class of nontrivial valuation of F
which is trivial on Q. For a functional prime divisor P, we denote by
vp the normalized valuation(i.e. its valuation group is Z) belonging to P.
A functional prime P is called a pole of z 6 Q[X,Y] if vp(z) < 0. For
each f(X,Y) € Z[X,Y], its height denoted by H(f) is defined to be the

maximum of absolute values of coefficients of f(X,Y). We prove

THEOREM 2. Let f(X,Y) be an irreducible polynomial with integer co-
efficients and F = Q(z,y) its function field. Assume there are more than
degy (f)/2 poles of z. Then there are only finitely many integers n € Z
such that f(n,Y) is reducible. Moreover If f(n,Y) is reducible, then

In| < (H(f) +1)°

where C is a constant determined by the degree of f(X,Y’).
3
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PROOF: Suppose Theorem 1 is‘ false. Let d € N. For any natu-
ral number N, there exist an integer a and an irreducible polynomial
f(X,Y) € Z|X, Y] of degree d which satisfies the assumption of the theo-

rem such that f(a,Y) is reducible and
ol > (H(f) + DY (1)

By nonstandard prihciple, the above assértioh holds for any enlargement.
We take N € *N — N. Then f(X,Y) € *(Z[X,Y]), but since the degrée
of f(X,Y)is d € N, f(X,Y) € *Z[X,Y], ie. f(X,Y) is a polynomial
with coefficients in *Z. Let Q1 be the smallest H -convex subfield of *Q

which contains all coefficients of f(X,Y) i.e.
Q1 ={2€ Q| H(2) <(H(f)+1)" forsome necN}

By (1), a € Q1. Since Q1 is algebraically closed in *Q, « is transcenden-
tal over Q1. Let f(a,Y) = fi(e,Y)fa(a,Y) where f1(X,Y), fo(X,Y) €
“Z[X,Y] and 1 < degy(fi) < degy(f2). Let F = Qi(a,B) where 8
satisfies fi(a,B) = 0. Then

s <[*QF : *Q] < degy(f1)

< —degy (f) (2)

DN | =

Since « is a nonstandard integer, by lemma 2 every functional pole of a
in F'is induced by an archimedean absolute value in *QF, so the number
of functional pole of « is not more than s, hence by (2) not more than
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degy (f)/2. Let z be transcendental over *Q and y satisfy f(z,y) = 0.
Then the number of functional poles of = in *Q(z, y) is, by the assumption

of the theorem, larger than degy (f)/2. But there is an embedding

7 F = Ql(a,ﬂ) — *Q(z,y)

where m(a) = z, 7(8) = y and for all z € Q1, 7(z) = z. Since Qg is
algebraically closed in *Q, the number of poles of & and = must be same,
“this is a contradiction and it completes the proof of theoreml.

In order to prove Theorem 2, we use the fact that *Q‘ has an unique
internal archimedean absolute value, so Theorem 1 cannot be generalized
for algebraic number fields of finite degree.

Let us give an example. Let
FXY) =X —Y*+4(X,Y)

be an irreducible polynomial where deg(f(X,Y)) < 3. Let F = Q(z,v)
be its function field. There are 3 poles of z corresponding to irreducible
factors of X4 — Y*. Hence the assumption of Theorem 1 is satisfied. So
there are only finitely many integers n such that n* — V& + g(n,Y) is
reducible and there is a constant C such that n < (H(g) + 1)¢ for any
integer n with n* — Y4 4 g(n,Y) reducible.

Let us end this paper with an open problem.

OPEN PROBLEM. Find a necessary and sufficient condition for an irre-
ducible polynomial f(X,Y) € Z[X,Y] that f(n,Y) is reducible for only

finitely many integers n and give their bound.
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