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Abstract

This paper proves that an infinitely nonoverlapping (possibly nonlinear) $TRS$

is finitely Church-Rosser. The condition infinitely nonoverlapping is a nonover-
lapping condition under unification with infinite terms. The property finitely
Church-Rosser is equivalent to uniquely normalizing with respect to equality (i.e.
$x=y\Rightarrow x\equiv y$ for any normal forms $x,$ $y$ ), and is an intermidiate property
between Church-Rosser and uniquely normalizing with respect to reduction.

1 Introduction

Equational logic has been applied in the program-specification and the other logical
frameworks. A Term Rewriting System (TRS), intuitively which is a set of directed
equations (deduction rules), have been adopted for an execution model of equational
logic. That is, a TRS converts expressions using equations only forward, whereas
equational logic permits using them both forward and backward. For these purposes,
one of the important properties of a TRS is confluence-related properties, namely,
Church-Rosser property, unique normahzability, etc. Church-Rosser property, which
is equivalent to confluence, guarantees that the congruent relation (equality) among
expressions will be examined without back-track. Unique normalizability, which is
deduced from confluence, guarantees that the result of an execution is uniquely deter-
mined if terminates.

“ Revised version of the paper presented at RIMS Sympo. on Soflware Science and Engineering,
RIMS Kyoto Univ., 20th- $22nd$ September (1988)
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Several criteria have been proposed for the confluence of a TRS and its variations

[4,5,6,8,9,10]. Generally speaking, neither confluence, unique-normalizability, nor ter-
mination is decidable. Most of known sufficient conditions for confluence of a TRS
are restricted to nonoverlapping TRSs [4,5,6].

Intuitively speaking, the nonoverlapping property means that no reducible expres-
sions (redexes) overlap on one term. This property seems to provide the implicit
commutativity of reductions. Thus, a nonoverlapping TRS would be confluent.

In fact, a nonoverlapping TRS is known to be confluent if either left-linear or
strongly-normalizing, where a TRS is said to be left-linear if every variables appear
at most once on left-hand side of reduction rules, and said to be strongly-normalizing
if every reduction paths are terminating.

Nevertheless, both possibly nonterminating and nonlinear TRSs may be neither

confluent nor uniquely-normalizing even if nonoverlapping. Typical nonconfluent cases
are shown in the following three examples.

Example 1 [9] Example 2

$R_{1}def=\{\begin{array}{ll}d(x,x) arrow 0d(x,f(x)) arrow 12 arrow f(2)\end{array}\}$ $R_{2}def=\{\begin{array}{ll}d(f(x),x) arrow 0d(x,g(x)) arrow 12 arrow f(3)3 arrow g(2)\end{array}\}$

(Critical on $d(2,2)arrow d(2,$ $f(2)).$ ) (Critical on $d(2,3)arrow d(f(3),$ $3),$ $d(2,$ $g(2)).$ )

Fig.1 $R$ overlapping Fig.2 $R$ overlapping
example $R_{1}$ example $R_{2}$

Examples 1 and 2 show the existence of unmeetable branches on nonlinear reduc-
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tion paths, although no redexes overlap. For instance, in Example 1 reductions on
leaves of some redex will produce another redex corresponding to a different reduction
rule. In fact, a redex $d(2,2)$ of the first rule is converted to a different redex $d(2, f(2))$

of the second rule by the reduction $2arrow f(2$} at a leave of $d(2,2)$ . Further in Example
2, reductions in subterms of some non-redex term will produces different redexes. In
fact, a non-redex term $d(2,3)$ is reduced to either a redex $d(f(3), 3)$ of the first rule
‘or a redex $d(2, g(2))$ of the second rule. These are said to be R-overlapping. This
concept will be further discussed in Section 4.2.

Example 3

$R_{3}def=\{\begin{array}{llll}d(x x) arrow 0 f(x) arrow d(x f(x))1 arrow f(1) \end{array}\}$

(Critical on $f(f(1)).$ )

1 $arrow^{*}$ $f^{n}(1)=f(f^{n-1}(1))$

$arrow$ $d(f^{n-1}(1), f^{n}(1))$

$arrow$ $d(f^{n}(1), f^{n}(1))$

$arrow$ $0$

Example 3 shows the case where once some redex is modified by reductions at its
leaves, then it will be never recovered as a redex. Note that such a reduction path will
never terminate. This example is analogous to the nonconfluent example of A-calculus
with a nonlinear $\delta$-reduction rule, namely $\delta_{S}xxarrow\epsilon$ by Staples [1].

One of the previously investigated approaches is restricting reduction strategies.
That is, a reduction rule is applied only when accompanied conditions are satisfied.
This is called a conditional $TRS$ . The main known result is that a restricted nonlinear
membership conditional $TRS$ is confluent [9]. Intuitively speaking, the restricted non-
linear membership conditional TRS imposes that a nonlinear reduction rule is applied
only after subterms of all nonlinear occurrences reach normal forms, by analogy of
$\lambda$-calculus with Church’s $\delta[1]$ .

This paper investigates the finite Church-Rosser property of an infinitely non-
overlapping TRS. Finite Church-Rosser property is Church-Rosser property on nor-
malizable terms. That is, congruence between two terms is examined by syntactical
comparison between their normal forms (if exist). This property implies uniqueness of
the normal form. The assumption, infinitely nonoverlapping, is a natural extension of
the left-linear nonoverlapping, and is decidable. The only difference between them is
that the unification with $infi_{I1}ite$ terms [2,3,7] is applied instead of usual unifications.
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The main theorm investigated here is

An infinitely nonoverlapping $TRS$ is finitely Church-Rosser.

For the investigation, a key concepts R-nonoverlapping is also proposed. A TRS $R$

is said to be R-nonoverlapping iff all reduction paths have no substantially separated

branches.
First, an infinitely nonoverlapping TRS $R$ is shown to be R-nonoverlapping. Sec-

ond, an R-nonoverlapping TRS is shown to be finitely Church-Rosser.
Note that Example 1 and 2 above are both infinitely overlapping, though nonover-

lapping. In fact, $d(x, x)$ and $d(x, f(x))$ have an infinite unifier $x=f(f(f(\cdots)))$ . Also,
$d(f(x), x)$ and $d(x, g(x))$ have an infinite unifier $x=f(g(f(g(\cdots))))$ .

Example 3 is infinitely nonoverlapping and is not confluent. This causes from
that once a reduction path enters an unmeetable path, the reduction sequence always
falls into an infinite loop, and never terminates. Thus, by restricting discussion to
normalizable terms, $R_{3}$ is shown to be finitely Church-Rosser.

2 Unification with infinite terms

2.1 Variation of unifications

Unifications are classified into following three classes. They are,

Unification without occur check.
Unification with occur check.
Unification with infinite terms (called infinite unification).

Unification without occur check does not care on name conflicts. Thus, even
for finite terms, this is not correct for non-linear terms. For instance, $f(x, x)$ and
$f(g(y), h(y))$ are unifiied“ as $\{x=g(y), x=h(y)\}$ . In other words, consistency of
binding environments is not preserved.

In contrast, unification with occur check treats name conflicts as unification failed.
This is correct on finite terms, but not correct on infinite terms. For instance, unifica-
tion between $f(x, x)$ and $f(z, g(z))$ is failed, though it can be unified with the infinite
term $f(g(g(g(\cdots))), g(g(g(\cdots))))$ .

There have been proposed several algorithms for unification with infinite terms
[2,3,7]. The substantial difference on infinite unification is that expressions defining a
binding environment can refer the environment itself recursively. Therefore, a looped
infinite term such as $g(g(g(\cdots)))$ (the solution for $x=g(x)$ ) is permitted as a unifier.
A‘ looped infinite term can be represented by a cyclic finite graph as an internal form.
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Thus, the algorithm of infinite unification terminates as same as usual unification

algorithms do.
In the next section, the algorithm called UNIFYO for unification with infinite

terms by Martelli and Rossi is briefly introduced. For details, refer [7].

2.2 Algorithm of unification with infinite terms

The algorithm UNIFYO computes the common parts and frontiers iteratively. This
terminates when frontiers reach solved forms or fails during the iterative processes.

The common part of a set of terms $M$ is a dual concept to the usual unifier.
Intuitively, the common part is obtained by superposing all terms of $M$ and by taking
the part which is common to all of them starting from the root.

For instance, the common part of $M=\{f(x, g(h(a), v), y), f(h(y), g(x, b), z)\}$ is
$C$ : $f(x, g(x, v), y)$ , where variables are noted by $x,$ $y,$ $z,$ $u,$ $v$ and constants are noted
by $a,$ $b,$ $c$ . Notice that the common part does not exist iff two terms have different
function symbols at the roots, such as $M=\{f(x, y), g(z, u)\}$ .

The frontier is intuitively an environment for variables in the common part. More
specifically, the frontier is a set of multiequations (which are pairs $\{S_{i}=M_{i}\}$ of a set
of variables $S_{i}(\neq\phi)$ and a set of non-variable terms $M_{i}$ ), where every multiequation is
associated with a leaf of the common part and consists of all subterms corresponding
to that leaf.

For instance, the frontier of $M$ above is $F$ : $\{\{x\}=\{h(y), h(a)\},$ $\{v\}=b,$ $\{y, z\}=$

$\phi\}$ . In $F,$ $\{y, z\}=\phi$ means $y=z$ , but no non-variable terms are substituted.
With definitions above, the unification algorithm UNIFYO starts with a set of

multiequations and repeatedly applies transformations until all multiequations become
solved forms, or fails during the iterative processes. A frontier $\{S_{i}=M_{i}\}$ is said to
be a solved form iff $S_{i}\cap S_{j}=\phi$ for $\forall i,j$ s.t. $i\neq j$ and card$(M_{i})=1$ for $\forall i$ .

Transformers produce equivalent multiequations, which means a set of all unifiers
is preserved. In UNIFYO, the following two transformations are used.

COMPA CTION Given a set $L$ containing two multiequations $S=M$ and $S’=M’$ ,
with $S\cap S’\neq\phi$ . The new set $L’$ of multiequations is obtained by replacing these two
multiequations with a multi equation S U $S’=M\cup M’$ .

RED UCTI0N Given a set $L$ containing a multiequation $S=M$, such that $M\neq$

$\phi$ and $M$ has a common part $C$ and a frontier $F$ . The new set of multiequations
$L’$ is obtained by replacing $S=M$ with the multiequation $S=\{C\}$ and with all
multiequations of $F$ . If there does not exist the common part, then stop with failed.
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ALGORITHM : UNIFYO Let $P,$ $Q$ be terms. Set $L$ as all frontiers of a pair
$(P, Q)$ , perform on $L$ any of the following actions. If neither applies, then stop with
success. When success, $P$ and $Q$ are said to be infinitely unifiable.

If there are two multiequations $S=M$ and $S’=M’$ with $S\cap S’\neq\phi$ , then
apply COMPA CTION.

If there is a multiequation $S=M$ such that $M$ includes more than two terms,
then compute the common part and the frontier of $M$ . And then if $M$ has no
common part then stop with failure. Else apply RED UCTION.

Remark Note that every right hand side of frontiers are subterms of either given
terms $P$ or $Q$ .

Example Unify two terms $P=g(x, f(z, h(x)), x),$ $Q=g(f(h(y), z),$ $y,$ $y$ ). Then,
the common part $C$ of $M=\{P, Q\}$ is $\{g(x, y, x)\}$ , and the frontier $F^{(0)}$ of them is

$F^{(0)}=$ $\{$ $\{x\}$ $=$ $\{f(h(y), z)\}$ ,
$\{y\}$ $=$ $\{f(z, h(x))\}$ ,
$\{x,y\}$ $=$ $\phi$ }

Then,

Step la COMPA CTION $F^{(1)}=$ $\{ \{x,y\} = \{f(h(y), z), f(z, h(x))\} \}$

Step lb RED UCTION $F^{(2)}=$ $\{$ $\{x, y\}$ $=$ $\{f(z, z)\}$

$\{z\}$ $=$ $\{h(y)\}$

$\{z\}$ $=$ $\{h(x)\}$ }

Step $2a$ COMPA CTION $F^{(3)}=$ $\{$ $\{x, y\}$ $=$ $\{f(z, z)\}$

$\{z\}$ $=$ $\{h(x), h(y)\}$ }

Step $2b$ RED UCTION $F^{(4)}=$ $\{$ $\{x, y\}$ $=$ $\{f(z, z)\}$

$\{x, y\}$ $=$ $\phi$

$\{z\}$ $=$ $\{h(x)\}$ }

Step $3a$ COMPA CTION $F^{(5)}=$ $\{$ $\{x, y\}$ $=$ $\{f(z, z)\}$

$\{z\}$ $=$ $\{h(x)\}$ (solved form) }

Finish $M$ and $N$ are unified to $g(f(h(f\cdots), h(f\cdots)),$ $f(h(f\cdots), h(f\cdots))1$

6



107

3 Basic definitions and results on confluence

A reduction system is a structure $R=\{A,$ $arrow\rangle$ consisting of an object set $A$ and any
binary $relationarrow onA$ (i.e., $arrow\subseteq A\cross A$), called a reduction relation. A reduction
(starting with $x_{0}$ ) in $R$ is a finite or an infinite sequence $x_{0}arrow x_{1}arrow x_{2}arrow\cdots$ The
transitive closure $ofarrow is$ noted $asarrow^{*}$ . A less-than n-step reduction is defined as $xarrow ny$

iff $\exists m\leq n\exists z_{1},$ $z_{2},$ $\cdots,$ $z_{m-1}$ s.t. $xarrow z_{1}arrow z_{2}arrow\cdotsarrow z_{m-1}arrow y$ .
A congruent $relationrightarrow^{*}inR$ is the transitive reflexive closure of the binary relation

$rightarrow wherexrightarrow y$ is defined to be $xarrow y\vee yarrow x$ . A less-than n-step congruent relation
is defined as $xrightarrow ny$ iff $\exists m\leq n\exists z_{1},$ $z_{2},$ $\cdots,$ $z_{m-1}$ s.t. $xrightarrow z_{1}rightarrow z_{2}rightarrow\cdotsrightarrow z_{m-1}rightarrow y$ .

A set of normal forms of $R$ is defined as $NF(R)^{d}=^{ef}$ { $x\in A|\neg\exists y$ s.t. $xarrow y$}

The important properties of a reduction system $R=\{A,$ $arrow\rangle$ are termination-
related properties (e.g. weakly-normalizing, strongly-normalizing), and confluence-
related properties (e.g. confluent, Church-Rosser, uniquely-normahzing).

Deflnition A reduction system $R=\langle A,$ $arrow$ } is said to be weakly-normalizing (WN)
iff $\forall x\in A\exists y\in NF(R)$ s.t. $xarrow^{*}y$ . A TRS $R=\langle A,$ $arrow$ } is said to be strongly
normahzing (SN) iff all reduction paths are terminating. i.e. $\forall x_{0}arrow x_{1}arrow x_{2}arrow\cdots$

$\exists n$ s.t. $x_{n}\in NF(R)$ .

Deflnition $R=\{A,$ $arrow\rangle$ is said to be confluent iff $\forall x,$ $y,$ $z\in A$ s.t. $xarrow^{*}y\wedge xarrow^{*}z$

$\Rightarrow y\downarrow z$ (i.e. $\exists w\in A$ s.t. $yarrow^{*}w$ and $zarrow^{*}w$ ).
$R=\langle A,$ $arrow$ } is said to be Church-Rosser (CR) iff $\forall x,$ $y,$ $z\in A$ s.t. $xrightarrow^{*}y\Rightarrow x\downarrow y$ .

Definition $R=\langle A,$ $arrow$ } is said to be uniquely-normalizing (UN) iff $\forall x\in A\forall y,$ $z\in$

$NF(R)$ s.t. $xarrow y\wedge xarrow z\Rightarrow y\equiv z$ . ( $x\equiv y$ iff $x$ and $y$ are syntactically same.)

Deflnition $R=\langle A, arrow\rangle$ is said to be locally-confluent iff $\forall x,$ $y,$ $z\in A$ s.t. $xarrow y\wedge$

$xarrow z\Rightarrow y\downarrow z$ .

Fact 1 $UN\wedge WN$ $\Rightarrow$ CR $\Rightarrow$ UN
$\Downarrow$

$locally- confluent\wedge SN$ $\Rightarrow$ confluent $\Rightarrow$ locally-confluent

However, the inverse of implication arrows above are not satisfied [4].

Definition An occurrence occur$(M, N)$ of a subterm $N$ in a term $M$ is defined
inductively as
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occur $(M, N)def=\{i\cdot u\epsilon$ $ifN=Mifu=occur(N_{i}, N)$

and $M=f(N_{1}, \cdots, N_{n})$

The subterm $N$ of $M$ at occurrence $u$ is noted as $M/u$ . (That is, $u=occur(M,$ $N).$ )

Deflnition The order on occurrences $u,$ $v$ is defined as $u\preceq v\Leftrightarrow\exists w$ s.t. $v=u\cdot w$ .
If $u\preceq v\wedge u\neq v$ then it is noted as $u\prec v$ . The occurrences $u,$ $v$ is said to be disjoint
and noted $u|v$ iff $u\not\leq v$ and $v\not\leq u$ .

Notation $V(M)$ $def=$ { $x|$ variable $x$ which is contained in $M$}
$V_{NL}(M)$

$def=$ { $x|$ variable $x$ which occur more than once in $M$}
$O(M)$ $def=$ {occur$(M,$ $N)|$ for $\forall N$ : subterm of $M$ }
$\overline{O}(M)$

$def=$ {occur$(M,$ $N)|N\not\in V(M)$ }
$O_{NL}(M, x)$

$def=$ {occur$(M,$ $x)|x\in V_{NL}(M)$ }
$u\cdot V$

$def=$
$\{u\cdot v|v\in V\}$

$U\cdot v$
$def=$

$\{u\cdot v|u\in U\}$

$U\cdot V$
$dcf=$

$\{u\cdot v|u\in U, v\in V\}$

${\rm Min}(U)$
$def=$ { $w\in U|w’\neq w$ for $\forall w’\in U$ }

where $u,$ $v\in O(M)$ and $U,$ $V\subseteq O(M)$ for a term $M$ .

Deflnition A finite set $R=\{(\alpha_{i}, \beta_{i})\}$ of ordered pairs of two terms is said to be
a Term Rewriting System $(TRS)$ iff each $\alpha_{i}$ is not a variable and $V(\alpha_{i})\supseteq V(\beta_{i})$ is
satisfied for $\forall i$ .

A reduction is defined on a term $M$ as $Marrow N$ at $u$ iff there exists a substitution
$\sigma$ and an occurrence $u\in\overline{O}(M)$ s.t. $\sigma(\alpha_{i})\equiv M/u$ and $N\equiv M[uarrow\sigma(\beta_{i})]$ .

A congruent relation is defined on terms $M$ and $N$ as $Mrightarrow N$ at $u$ iff $Marrow N$ at
$u$ or $Narrow M$ at $u$ .

In the situation above, $M/u$ is said to be a redex. A set of all occurrences of redexes
for $\alpha_{i}arrow\beta_{i}$ in $M$ is noted as Redex $(M, \alpha_{i})$ , and Redex $(M)^{d}=^{ef} \bigcup_{i}Redex(Af, \alpha_{i})$ .

Deflnition A pair of reduction rules $\alpha_{i}arrow\beta_{i}$ and $\alpha_{j}arrow\beta_{j}$ is said to be nonoverlapp-
ing iff “ $\exists u\in\overline{O}(\alpha_{t})$ s.t. $\alpha_{i}/u$ and $\alpha_{j}$ are $unifiable\Leftrightarrow i=j$ and $u=\epsilon$

’ is satisfied. A
TRS $R$ is said to be nonoverlapping iff all pairs of reduction rules are nonoverlapping.

Remark If a TRS is nonoverlapping, then Redex$(M, \alpha_{i})\cap Redex(M, \alpha_{j})=\phi$ for
$\forall M\forall i,j$ s.t. $i\neq j$ .

Definition A reduction rule $\alpha_{i}arrow\beta_{i}$ is said to be left-hnear iff $\forall x\in V(\alpha_{i})$ appears
only once in $\alpha_{i}$ . A TRS $R$ is said to be left-linear iff all reduction rules in $R$ are

lefl-hnear.
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Fact 2 A nonoverlapping TRS is locally-confluent.
A left-hnear nonoverlapping TRS is confluent[4].

4 Finite Church-Rosser Property of a TRS

4.1 Finite Church-Rosser property of an infinitely nonover-
lapping TRS

Deflnition A TRS $R$ is said to be finitely confluent iff $\forall x,$ $y,$ $z$ s.t. $xarrow^{*}y\wedge xarrow^{*}z$

satisfy the condition

$(\exists y’, z’\in NF(R)s.t$ . $yarrow^{*}y’\wedge zarrow^{*}z’$) implies $y\downarrow z$ .

Remark Finitely confluent is equivalent to uniquely normalizing. Then, for a
strongly-normalizing TRS $R$ , finitely confluent, locally confluent, and confluent are
equivalent.

As an analogy to the reiation between confluence and finite confluence, finite
Church-Rosser property is defined as follows.

Definition A TRS $R$ is said to finitely Church-Rosser $iff\forall x,$ $y,$ $x’y’$ s.t. $xarrow^{*}x’\wedge yarrow^{*}$

$y’$ satisfy the condition

$(xrightarrow*y\wedge x’, y’\in NF(R))$ implies $x’\equiv y’$ .

Note that, Finite Church-Rosser property is equivalent to “UN in [8]”, and finite
confluence is equivalent to (

$UN^{arrow}$ in [8].

Remark Church-Rosser $\Rightarrow$ finitely Church-Rosser $\Rightarrow$ finitely confluent,
However, Church-Rosser $\neq=$: finitely Church-Rosser $\neq=$ finitely confluent.

For instance, the example $R_{3}$ is finitely Church-Rosser, but not Church-Rosser (See
section 4.2). And, the example $R_{4}$ is finitely confluent, but not finitely Church-Rosser
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If a TRS $R$ is weakly-normalizing, then

Church-Rosser $\Leftrightarrow$ finitely Church-Rosser $\Leftrightarrow$ finitely confluent.
Note that neither $R_{3}$ nor $R_{4}$ is weakly-normalizing.

Deflnition A pair of reduction rules $\alpha_{i}arrow\beta_{i}$ and $\alpha_{j}arrow\beta_{j}$ is said to be infinitely
nonoverlapping iff “

$\exists u\in\overline{O}(\alpha_{i})$ s.t. $\alpha_{i}/u$ and $\alpha_{j}$ are infinitely $unifiable\Leftrightarrow i=j$

and $u=\epsilon$
’ is satisfied. A TRS $R$ is said to be infinitely nonoverlapping iff all pairs of

reduction rules are infinitely nonoverlapping.

An infinitely nonoverlapping TRS is nonoverlapping. And in case of a left-linear
TRS, infinitely nonoverlapping is equivalent to nonoverlapping. Thus, a class of in-
finitely nonoverlapping TRSs is a natural extension of left-linear nonoverlapping TRSs
to nonlinear TRSs. Our main conjecture is the next claim.

Conjecture An infinitely nonoverlapping $TRS$ is finitely Church-Rosser.

In the following sections, we will prove this conjecture. Among these investiga-
tion, R-nonoverlapping is a key concept.

Intuitively, a TRS $R$ is said to be R-nonoverlapping if there do not exist branches
of reduction paths in which applications of reduction rules are implicitly overlapping.
They are the cases of reduction paths starting with $d(2,2)$ in Example 1 and $d(2,3)$

in Example 2. (See Fig.1 and 2)
First, an infinitely nonoverlapping TRS $R$ is proved to be R-nonoverlapping. Sec-

ond, an R-nonoverlapping TRS $R$ is proved to be finitely Church-Rosser.

4.2 Proof of conjecture

Definition Let $Mrightarrow^{*}N$ be $M\equiv M_{0}rightarrow M_{1}rightarrow M_{2}rightarrow\cdotsrightarrow M_{n}\equiv N$ where
$\forall i$ s.t. $M_{i-1}rightarrow M_{i}$ at $u_{i}$ . Then, reduced occurrence sequence $\overline{REDEX}(Mrightarrow^{*}N),$ re-
duced term sequence $\overline{TERM}(Mrightarrow^{*}N)$ , invariant occurrences $O_{inv}(Mrightarrow^{*}N)$ , boundary
occurrences $\partial O(Mrightarrow^{*}N)$ , are defined as follows.

$\overline{REDEX}(Mrightarrow^{*}N)$ $def=$
$(u_{1}, u_{2}, \cdots, u_{n})$

$\overline{TERM}(Mrightarrow^{*}N)$ $def=$
$(M_{0}, M_{1}, M_{2}, \cdots, \Lambda f_{n})$

$O_{inv}(Mrightarrow^{*}N)$
$def=$ { $u\in\overline{O}(M)|u_{i}\not\leq u$ for $\forall u_{i}\in\overline{REDEX}(Marrow^{*}N)$ }

$\partial O(Mrightarrow^{*}N)$ $def={\rm Min}(\overline{REDEX}(Marrow^{*}N))$

Definition Assume $U=\{u_{1}, u_{2}, \cdots u_{k}\}\subseteq\overline{O}(M)$ s.t $i\neq j\Rightarrow u;|u_{j}$ for $\forall u;,$ $u_{j}\in U$ .
A parallel reduction is defined to be $Marrow N$ at $U$ iff $M\equiv M_{0}arrow M_{1}arrow M_{2}arrow$

. . . $arrow M_{k}\equiv N$ where $\forall i$ s.t. $M_{i-1}arrow M$; at $u_{i}$ . A less-than n-step parallel reduction
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is noted as $Marrow^{n}N$ .

A parallel congruent relation is defined to be $M$ $\leftarrow \mbox{\boldmath $\theta$} $N$ at $U$ iff $M\equiv M_{0}rightarrow M_{1}rightarrow$

$M_{2}rightarrow\cdotsrightarrow M_{k}\equiv N$ where $\forall i$ s.t. $M_{i-1}rightarrow M_{i}$ at $u_{i}$ . A less-than n-step parallel
congruent relation is noted as $Munderline{n}*N$ .

Definition Let $R$ be a TRS, and $M,$ $N$ be a term s.t. $M\{+^{n}arrow N$ for $n\geq 0$ . $R$ is said

to be \langle $R$ , n}-nonoverlapping at $M$ , iff $\forall u,$ $v\in O_{inv}$ ( $M$ $\langle \rightarrow m $N$ ) s.t. $u\in Redex(M, \alpha_{i})$ ,
$v\in Redex(N, \alpha_{j}),$ $0\leq m\leq n$ satisfies the following condition

$(v\in u\cdot\overline{O}(\alpha_{i})\vee u\in v\cdot\overline{O}(\alpha_{j}))\Rightarrow(u=v\wedge i=j)$ .

If $R$ is \langle $R$ , n}-nonoverlapping for $\forall n\geq 0,$ $R$ is said to be R-nonoverlapping.

Proposition 1 An infinitely nonoverlapping TRS $R$ is R-nonoverlapping.

Before entering the proof, several technical lemmas should be prepared.

Lemma 1 Let a TRS $R$ be ( $R,$ $n- 1\}- nonoverlapping$ , and $M^{n}\{arrow$)\rangle $N$ .
Assume $\exists u,$ $v\in O_{inv}(M\langle\succ\underline{m}N),$ $\exists\alpha_{i}arrow\beta_{i},$ $\alpha_{j}arrow\beta_{j}\in R$ s.t. $u\in v\cdot\overline{O}(\alpha_{j})$ .
Then, $u\cdot\overline{O}(\alpha_{i})\cap v\cdot\overline{O}(\alpha_{j})\subseteq O_{inv}(M\mapsto^{n}N)$ .

Lemma 2 Let a TRS $R$ be $\langle R, n\rangle$ -nonoverlapping.
Assume $\exists\sigma,$ $\sigma’\exists\alpha_{i}arrow\beta_{i}\in R,$ $0\leq\exists m\leq n$ s.t. $\sigma(\alpha_{i})\{arrow m\rangle\nu\sigma’(\alpha_{i})$ .
Then, $\epsilon\in O_{inv}(\sigma(\alpha_{i})\{iarrow m\sigma’(\alpha;))\Rightarrow\sigma(\beta_{i})\mapsto^{m’}\sigma’(\beta_{i})$ for some $m’<m$ .

Lemma 3 Let a TRS $R$ be \langle $R,$ $n- 1$ } $- nonoverlapping$ .
Assume $Marrow marrow N$ for some $m\leq n$ , and $\exists u\in\overline{O}(M)\cap\overline{O}(N)$ s.t. $M/u$ and $N/u$ have
different function symbols at the roots. Then, $eith_{\backslash }er(a)$ or (b) is satisfied for some
$m’,$ $n’<m$ and some $v\preceq u$ s.t. $m’+n’<m$ .

(a) $\exists M’,$ $N’\in\overline{TERM}(M/v{arrow fm_{N/v)}’$

s.t. $M/v\mapsto^{m’}M’arrow N’\mapsto^{n’}N/v$ and $M’arrow N’$ at $\epsilon\in O_{inv}(M/vrangle$$\underline{m’}_{M’)}$ .
(b) $\exists M’,$ $N’\in\overline{TERM}(M/v\langlearrow m’arrow N/v)$

s.t. $M/v 6arrow’M’marrow N^{J_{\{\rangle}}\underline{n’}N/v$ and $N’arrow M’$ at $\epsilon\in O_{inv}(N’\underline{n’}N/v)$ .

Furthermore, $\overline{TERM}(M/v6arrow marrow’M’rightarrow N’)\subseteq\overline{TERM}(M/v\{arrow marrow*’N/v)$ .

Proof of lemma. 3 The proof is due to the induction on $m$ . For $m=1$ , the
statement is obvious. Let the statement be satisfied when less than $m$ .

From the assumption, $\exists!v\in\partial O(M\{\rangle\underline{m}N)$ s.t. $v\preceq u$ . Then, $M/v\underline{m}$
’

$N/v$ .
Assume any subsequence of $M/v$ { $\rangle$

$\underline{m}\prime N/v$ satisfies neither (a) nor (b).
Then, $\exists M’,$ $M”,$ $N’,$ $N”\in\overline{TERM}(M/v\{arrow m^{J}arrow N/v)$
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s.t. $M/v\{6arrow mN/v’\equiv M/v\mapsto^{m_{1}}M’arrow M’\prime^{\underline{m_{2}}}nu N’’arrow N^{;^{m_{3}}}\arrow\rangle\}N/v$

for $M’arrow M”$ and $N’arrow N”$ both at $\epsilon\in O_{inv}(M/varrow m_{1}*M’)\cap O_{inv}(N’\langle\underline{m_{3\rangle}}N/v)$.
Thus, there exist a subsequence $P’arrow P^{m}\arrowarrow’\prime Qarrow Q’$ in $M’arrow M^{\prime\prime^{m_{2}}}\arrowarrow\rangle$ $N”arrow N’$

for $Parrow P’$ and $Qarrow Q’$ both at $\epsilon\in O_{inv}(P^{\underline{m’}}\langle\rangle Q)$ .
From $\{R, n- 1\}- nonoverlapping$ property and the relation $m’<m\leq n$ , there exist

$\exists\sigma,$

$\sigma’\exists_{u}\alpha_{i}marrow\beta_{i}\in R$
s.t. $P/v\equiv\sigma(\alpha;)$ and $Q/v\equiv\sigma’(\alpha_{i})$ . Then, $\exists m’’<m$ s.t

$M/v\{\succ N/v$ from lemma 2. Form the induction hypothesis, lemma 3 is proved.
(q.e. $d.$ )

Proof of proposition 1 we will prove that $R$ is { $R,$ $n\rangle$ -nonoverlapping by induction
on $n$ . Since { $R,$ $0\rangle$ -nonoverlapping is equivalent to nonoverlapping, the statement is
obvious for $n=0$.

Assume $R$ be { $R,$ n-l\rangle -nonoverlapping as an induction hypothesis, and let $R$ be
not { $R$ , n}-nonoverlapping. Then, $\exists M,$ $N$ s.t. $M\earrow^{n}N$ and $\exists u,$ $v\in o_{:}nv(M\underline{n}N)$

s.t. $u\in Redex(M, \alpha_{i})\wedge v\in Redex(N, \alpha_{j})\wedge\neg(u=v\wedge i=j)\wedge u\in v\cdot\overline{O}(\alpha_{j})$ (or
$v\in u\cdot\overline{O}(\alpha;))$ .

From assumption, $\alpha_{i}$ and $\alpha_{j}$ are infinitely nonoverlapping (except $\alpha_{i}$ overlaps with
itself at the root). Thus, along the execution of the infinite unification algorithm on
$\alpha_{i}$ and $\alpha_{j}/w$ s.t. $u=v\cdot w$ and $\neg(w=\epsilon\wedge i=j)$ , there exist non-variable subterms
$P,$ $P’$ of $\alpha_{i}$ or $\alpha_{j}/w$ s.t. some frontier $\{x\}=(P, P’)$ failed. (That is, $P$ and $P’$ have
different function symbols at their roots.)

There are three cases the frontier $\{x\}=(P, P’)$ fails. Let $M/u\equiv\sigma(\alpha_{i})$ and $N/$

$v\equiv\sigma’(\alpha_{j})$ .

[case 1] $P\in\alpha_{i},$ $P’\in\alpha_{j}$ .
$i.e$ . $\exists s\in u\cdot\overline{O}(\alpha_{i})\cap v\cdot\overline{O}(\alpha_{j})$ $s.t$ . $Q=\sigma(P)=M/s,$ $Q’=\sigma’(P’)=N/s$ .

[case 2] $P,$ $P’\in\alpha_{i}$ .
i.e. $\exists s,$ $s’\in u\cdot\overline{O}(\alpha_{i}),$ $\exists r\in\overline{O}(\alpha_{i}$ }, $\exists t,$ $t’\in v\cdot O_{NL}(\alpha_{j}, x)$

$s.t$ . $\{\begin{array}{l}s=t\cdot r,s’=t’\cdot r,t\neq t’Q=\sigma(P)=M/s,Q’=\sigma(P’)=M/s’,N/t\equiv N/t’\end{array}$

[case 3] $P,$ $P’\in\alpha_{j}$ .
i.e. $\exists t,$ $t’\in v\cdot\overline{O}(\alpha_{j}),$ $\exists r\in\overline{O}(\alpha_{j}),$ $\exists s,$ $s’\in u\cdot O_{NL}(\alpha;, x)$

$s.t$ . $\{\begin{array}{l}t=s\cdot r,t’=s’\cdot r,s\neq s’Q=\sigma’(P)=\Lambda^{\gamma}/t,Q’=\sigma’(P’)=N/t’,M/s\equiv M/s’\end{array}$

Then, contradiction will be deduced case-by-case from the fact that $Q$ and $Q’$ have
different function symbols at their $ro$ots.

[case 1] $Q$ and $Q’$ have different function symbols at their roots. Then, $t1\prec\exists t\preceq s$
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s.t. $t\not\in O_{inv}(M\{+arrow^{n}N)$ . However, this contradicts to lemma 1 from the induction
hypothesis.

[case 2] $Q$ and $Q’$ have different function symbols at their roots and $S=S’$ . Then,
from lemma 1, there exists $W\equiv M/p$ and $W’\equiv M/p’$ s.t. $t\preceq p\preceq s,$ $t’\preceq p’\preceq s’$

and $W\underline{m}W’$ for $0<m\leq n$ .
From Lemma 3, there exist $W”\in\overline{TERM}(W\mapsto^{m}W’)$ s.t. $W”langlearrow’mW$ (or $W’$ )

and $\exists r’\in Redex(W’’, \alpha_{k})\cap o_{inv}(6\rangle$ ( $(orW’)$ where $r’\preceq r,$ $0\leq m’\leq m$ .
Then, $\alpha_{i}$ and $\alpha_{k}$ are { $R,$ $m’\rangle$ -overlapping at $s\cdot r’$ (or $s’\cdot r’$). This leads a contradiction.

[case 3] Same as in [case 2]. (q.e.d)

Proposition 2 An R-nonoverlapping TRS $R$ is finitely Church-Rosser.

Proof Let $M,$ $N\in NF(R)$ s.t. $Mrightarrow nN$ . We will prove $M\equiv N$ by induction on $n$ .
Then, $R$ is proved to be finitely Church-Rosser.

As an initial induction step, $M\equiv N$ is obvious for $n=0$ .
As an induction hypothesis, let $M\equiv N’$ hold for $\forall m<n\forall N’$ s.t. $Mrightarrow mN’$ and

$M,$ $N’\in NF(R)$ .
Assume $Mrightarrow nN$ and $1M\not\equiv N$ where $M,$ $N\in NF(R)$ . From lemma 3, $\exists m<n$

$\exists u\in\partial O(Mrightarrow nN)$ s.t. $M/urightarrow m\Lambda_{\langle}I’arrow N’$ and $M’arrow N$ ‘ ’at $\epsilon\in O_{inv}(M/urightarrow mM’)$ .
Let $M’arrow N’$ at $\epsilon$ be by the rule $\alpha_{i}arrow\beta_{i}$ . If $\alpha_{i}arrow\beta_{i}$ is a left-hnear reduction rule,

then R-nonoverlapping property and $\epsilon\in O_{inv}(M/urightarrow mM’)$ implies $\epsilon\in Redex(M/$

$u,$ $\alpha_{i}$ ). This contradicts to the assumption $M/u\in NF(R)$ .
Then, $\alpha_{i}arrow\beta_{i}$ must be a nonlinear rule. And from R-nonoverlapp$ing$ property

and $M/u\in NF(R)$ ,
$\exists x\in V(\alpha_{i})$ $\exists v,$ $v’\in O_{NL}(\alpha_{i}, x)$ $\exists w,$ $w’\in\partial O(M/vrightarrow mM’)$

s.t. $v\preceq w,$ $v’\preceq w’,$ $v\neq v’$ , and $M/u\cdot w\not\equiv\Lambda f/u\cdot w’$ .
Note that $M’/\grave{v}\equiv M’/v’$ . Then, $\exists p,$

$q$ s.t. $M/u\cdot vprightarrow M’/v\equiv M’/v’rightarrow qM/u\cdot v’$ and
$p+q\leq m<n$ . This contradicts to the induction hypothesis. (q.e. $d.$ )

Theorm An infinitely nonoverlapping TRS is finitely Church-Rosser.

Corollary 1 An infinitely nonoverlapping TRS $R$ is uniquely-normalizing.

Corollary 2 If an infinitely nonoverlapping TRS $R$ is weakly-normalizing, then $R$

is confluent.
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5 Conclusion

In this paper, the finite Church-Rosser property of a nonhnear TRS was investigated.
Main result was

An infinitely nonoverlapping $TRS$ is finitely Church-Rosser.

Finite Church-Rosser property guarantees that congruence between two terms is
examined by syntactical comparison between their normal forms (if exists). The con-
dition infinitely nonoverlapping is a natural extension of left-hnear nonoverlapping.
The difference between infinitely nonoverlapping and nonoverlapping is that the uni-
fication with infinite terms [2,3,7] is applied instead of a usual unification with occur
check.
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