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Summary

Much work has been done on special-purpose reasoning assistant systems whose underlying logics are
fixed. In contrast with such a trend, this paper is devoted to a new dimension of computer-assisted reasoning

research, that is, a general-purpose reasoning assistant system that aUows a user to defme his or her own logical

system relevant for the objects in the problem domain and to reason about them.

In the first half of the paper, the need, significance and design principle of EUODHLOS : a general-

purpose system for computer-assisted reasoning, are discussed, then the system overview is described, placing

emphases on the following three points: (1) formal system description language, (2) proving methodology based

on several sheets for logical thought, (3) visual human-computer interface for reasoning. In the latter half, the

potentials and usefulness ofEUODHLOS are demonstrated through experiments and experiences of its use by a

number of logics and proof examples therein, which have been used or devised in computer science, nificial

inteMgence and so on.

$m\cdot IRODUC\Pi ON$

A new dimension of computer-assisted reasonin$g$ research is being explored in this paper.

It aims at a general-purpose reasoning assistant system that aUows a user to interactively defme

the syntax and inference rules of a formal system and to consffuct proofs in the defmed system.

We have named such a system EUODHILOS, an acronym reflecting our philosophy or
observation that every universe ae$4iscourseAasirs\Phi^{icalgtructure}$, which turns out to spell

and sound like a Greek philosopher‘s name.
In these days, various logics play important and even essential roles in computer science

and artificial intelligence (e.g., [Tumer 84], [Genesereth 87], [Smets 88], [Thisdewaite 88]),
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and surprisingly in aesthetics which is thought of as being in a directly opposite position to logic
($e.g.$ , [Langer 25], [Kunst 76], [Rahn 79]). Specifically, it can be said that they provide
expressive devices for objects and their properties, and inference capabilities for reasoning about
them. It is also the case that symbols manipulating methods provided in logics are basically
common to all scientific activities. So far, they have made use of a wide variety of logics,
including frst-order, higher-order, equational, temporal, modal, intuitionistic, relevant, type
theoretic logics and so on. However, implementing an interactive system for developing proofs
is a daunting and laborious task for any style of presentation of these logics. For example, one
must implement a parser, term and formula manipulation operations (such as substitution,

replacement, juxtaposition, etc.), definitions, inference rules, rewriting rules, proofs, proof
$s\alpha ategies$ and so on, depending on the logic to be needed. Thus, it is desirable to find a general
theory of logics and a general-purpose reasoning assistant system that captures the unifomities
of a large class of logics so that much of this effort can be expended once and for $aU$. This is
completely the same observation and motivation as in [Griffm 87]. We aim at building an easy
to use and general reasoning system which handles as many of these logics as possible.

There are three major subjects to be pursued for such an interactive and general reasonin$g$

support system. One is, of cource, a language expressive enough to describe a large class of
logics. The second is the kind of reasoning styles suitable for human reasoners which should be
taken into account. More generally, reasoning (proving) methodology, which reminds us of
programming methodology, needs to be investigated. The third subject is reasoning-oriented
human-computer interface that may be well established as an aspect of reasoning supporting
facilities. An easy to use system with good interface would be helpful for one to conceive ideas
in reasoning and promote them further.

We believe that a general-purpose reasoning assistant system incorporating these points
should cater to the mathematician or programmer who wants to do proofs, and also to the
logician or computer theorist who wants to experiment with different logical systems according
to the respective problem domains.

The remainder of this paper is organized as follows. In the first half of the paper,
following the discussion of the need, significance and design philosophy of EUODHILOS, a
system summary of $EUODfm_{d}$OS under development is described, where we place emphases
on the following three points: (1) fornal system description language, (2) proving methodology
based on several sheets for logical thought, (3) visual human-computer interface for reasoning.
In the latter half, the potentials and usefulness of EUODHLOS are shown through experiments
and experiences of its use by a number of logics and proof examples therein, which have been
used or devised in computer science, artificial intelligence and so on. They includes a logical
puzzle, an inductive proof and the halting problem with frst-order logic, second-order logic,
propositional modal logic, intuitionistic type theory, program verification with Hoare logic and
dynamic logic, and a reflective proof and Montague’s semantics with intensional logic.
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NEED, SIGNIFICAN(E AND DESIGN PHILOSOPHY

Much work has been devoted to special-purpose reasoning assistant systems whose
underlying logics are fixed (e.g., [Gordon 79], [Weyhraich 80], [Constable 82], [Ketonen 84],

[Trybulec 85]). At this stage, why are we about to pursue or explore a new dimension such as a
general-purpose reasoning assistant system ?

We first take up some issues concerned with the generality in reasoning assistant system

and $seve_{\backslash }r$al aspects to view such a generality. We have already found and recognized that in
these days a logic or logical methodology is foIming a kind of paradigm for promoting computer
science, artificial intelligence and so on. And we stated that it is desirable to find a general theory
of logics and a general-purpose reasoning assistant system that captures the unifomities of a
large class of logics so that much effort for providing reasonin$g$ facilities can be expended once
and for $aU$, and hence we aim at building an easy to use and general reasonmg system which
handles as many of these logics as possible. This was our flrst motivation for pursuing the
generality in reasonmg assistant system. The second issue comes ffom the rigorous approach to
program consffuction. Abrial [Abrial 84] claims that a general-purpose proof checker be perhaps
one of a set of tools for computer aided programming when we consider program construction
ffom various theories. We are certainly in a situation that before embarhng on the construction
of a program we need to study its underlying theory, that is to give a number of defmitions,

axioms and theorems which are relevant to the problem at hand. The third issue is concerned
with the construction of a logical model, or more generaUy methodology of science. We observe
that the whole phases of human reasoning process consist of the following three phases: (1)

making mental images about the objects or concepts, (2) making logical models which describe
the mental images, (3) examining the models to make sure that they coincide with mental
images. It is not conceivable that the phase (1) could be aided mechanically since some part of
the phase (1) is very creative. On the other hand, it is very likely that the phases (2) and (3) are
largely supported mechanicaUy by aUowing to modify or revise the defmition of the language
used for the modelin$g$ and by $in\alpha oducing$ certain reasoning devices. These are just the points
that a general-purpose reasoning assistant system is intended to support. A philosophical aspect

of the generality ffom a logical point of view can be found in [Langer 25] and Wittgenstein’s
philosophy. Langer stated that “every universe of discourse has its logical structure“. It

eventuaUy supports our discussions about the need and significance of the generality in
reasoning assistant system from the philosophical point of view.

Taking these needs, observations and philosophy into consideration, the fundamental
design principles of EUODfmOS are set up as follows:

-Realization of a general reasoning sytem, $reflec\dot{o}ng$ the philosophy that every universe of
discourse has its logical structure.

-Support of logical thought, symbolic or logical manipulations done by human reasoners
-Provision of an easy to use environment for supporting $pr\infty fconsm_{1}ctions$
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-Environment for experimenting logical model construction and methodology of science
which lead us to the research and development of general-purpose reasonin$g$ assistant system

EUODfmOS with the following outstandng features:
-Formal system description language based on the definite clause grammar (DCG)

-Provin$g$ methodology using sheets of thought
-Reasoning-oriented human-computer interface
In what follows, we will sketch each of these issues in more detail.

OVERVIEW OF $EUOD\mathbb{R}OS$

Functional features
We list the main features of EUODfmOS and explain them briefly (see [Satoh $88a$] and

[Satoh $88b$] for the details). We start by describing the language of a logic to EUODH[LOS.

Fundamentally, EUODHILOS has almost no defaults, so it must be told everythuing,

Formal system &scriprin language
What on earth is alogic ? Or what language should be expressive enough to describe or

deal with logics ? The answers to these questions, in general, could turn out to settle the fornal
system description language for capturing the unifomities of alarge class of logics so that it can
be used as the basis for implementing proof systems. There have been some attempts to pursue
it, sharing a common goal with our EUODHILOS (e.g., Prolog is employed as a logic
description language in [Sawamura 86], $\lambda Pro\log$ in [Felty 88] and [Miller 87], Martin-L\"ofs

intuitionistic type theory in [Harper 87] and [Griffln 87], a specification language for a wide
variety of logics in [Abrial 84], an atffibute grammar formalism in [Reps 84] and a
metalanguage ML in [Gordon 82]). McRobbie ([McRobbie 88]) communicated to us his
approach to the construction of a general purpose theorem prover for non-classical logics.

A contemporary logic, in general, may be considered as having a logical ffamework
consisting of proof theory and model theory. Proof theory is to specify a syntactical part of

logic and model theory a semantical part of logic. In this paper we are mainly concerned with
specifying the syntactical aspect of logic. From a syntactic point of view, a formal system

(logical system), in general, is supposed to be specified by the two constituents: Language

system and derivation system.
(1) Language system

A language is a tool for talking about objects and is formed from underlying primitive
symbols. It is usually specified by utilizing some of the following items: variables, constants

and functions as individual symbols, predicates (including equality), logical connectives,

auxiliary symbols. The atnibutes such as type, sort, arity, operator precedence are sometrmes

associated with some of these symbols. Once these primitive symbols are specified, complexies
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such as terms, formulas, etc., are consffucted from them by fomation rule. Besides,

mechanisms for defining or abbreviating symbols, are usually required. One of the main
questions that may be raised at this point is the followmg: what kind of metalanguage is natural
and sufficient enough to describe such an object language ?

(2) Derivation system

Derivation system gives us a means to manipulate logical languages, which are specified
by axioms, $\dot{n}$ference rules, derived rules, rewriting rules, and concepts of proofs, etc. Insofar
as we are confined ourself to the existing types of formal system, we can enumerate primitive
operations included in them, for instance, substitution, replacement, juxtaposition, detachment,

renaming, unification, instantiation, etc. are common operations among various logics except

for the differences of languages. Since we consider a general-purpose reasoning system for
logics, we have to provide a general method for such symbol manipulations. So, one of the
main questions that may be raised at this point is the following : what sort of primitive
operations and $cons\sigma aints$ on objects should be sufficient to manipulate logics and how they can
be provided in a gene $c$ manner ?

In addition to them, we would need to pay $atten\dot{u}on$ to the following concepts proper in
logics, such as $\Re e’’$ and “bound”, “something is ffee for a variable in an expression“, etc.,

although these can be often dealt with in a recursive fashion. In what follows, we will give a
partial but feasible answer to $speci\theta\dot{m}g$ logics.

Specifying a logical syntax and expressiveness ofthe $d\phi nite$ clause grammar
In EUODHLOS, a language system to be used is designed and defined by a user, a

current solution for formal system description language is to employ so caUed defnite clause
grammar formalism (DCG) [Pereira 80], where the problem of recognizing, or parsing a sffing
of a language is then transformed into the problem of proving that a certain theorem follows
from the defmite clause axioms which describe the language. The DCG formalism for $\Psi^{am_{-}mars}$

is a natural extension of context-ffee grammar (CFG). As such, DCG inherits the properties
which makes CFG so important for language theory such as the modularity of a grammar
description and the recursive embedding of phrases which is characteristic of almost all
interesting languages, including languages of logics. It is, however, well known that CFG is
not fully adequate for describing natural language, nor even many artificial languages. DCG
overcomes this inadequacy by $extend\dot{n}g$ CFG in the $fo\mathbb{I}ow\dot{m}g$ three points [Pereira 80].

(i) context-dependency
(ii) parameterized nonteminal
(iii) procedure attachment
These also yield great advantages for specifying logical grammars, compared with those

$men\dot{u}oned$ above. DCG provides for context-dependency in a gammar, so that the pemissible
forms for a phrase may depend on the context in which that phrase occurs in the $s\alpha\dot{m}g$. DCG is
somewhat similar to attribute grammar in the sense that context free $\Psi^{anmar}$ is made context
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sensitive by associating with grammar rules a semantical facility [Reps 84]. The necessity of
context-dependency is often encountered in defining logical syntax. The following examples
show how naturally and economically DCG allows us to express context-dependency occuning
in the ordinary logical practice and allows arbitray $\alpha ee$ smIcture to be build in the course of the
parsing, with the help of (ii) and (iii).

Let us describe some concrete examples of the syntax definition in order to see the
paradigm of defnite clause $\Psi^{ammar}$ formalism The defining clause of first-order terns such as
“If $f$ is a function symbol of arity 2 and $t$ and $s$ are terms, then $f(t, s)$ is a term“ is represented as

term$(f\sigma,s))-->functor(f\gamma,$
$\prime\prime$ ( $\prime\prime$

, term(T), ‘’,”, term(S), “)“, {arity$(f,$ $2)$ }.
The $deffi\dot{u}ng$ clause of terms in intensional logic such as “If A is a term of type $(a, b)$ and $B$ a
term of type $a$, then $A\bullet Bi\dot{s}$ a term of type $b”$ is represented as

term$(A\bullet B, b)-->term(A, (a,b)),\bullet,$ $term(B, b)$ .

Once a defmite clause definition for a logical syntax have been given, then the bottom-up
parser [Matsumoto 83] and unparser for the defined language are automatically generated, which
are to be internally used in $aU$ the phases of symbol manipulations. The reason why we do not

generate a top-down parser for the defmed language is as usual to avoid the anomaly of left-
recursiveness which often appears in the ordinary defmition of a logical syntax. The internal
$s\alpha uctures$ of the expressions of the language are automatically constructed as well just at the
same $\dot{u}me$ as the automatic generation of the parser and unparser. These functions gready lighten
a user’s burden in setting up his own language. (The details of the methods are presented in
[Satoh 88].)

Speciffing a derivation system

A derivation system consists of an inference system and a rewriting system. They are
given in a natural deduction style presentation [Prawitz 65] by a user. Especially, an inference
rule is stated as a triple consisting of three elements, where the frst is the derivations of the
premises of a rule, the second the conclusion of a rule, and finally the thuird the restrictions that
are imposed on the derivations of the premises, such as variable occurrence condition
(eigenvariable) and substitutability such as $t$ is ffee for $x$ in $P”$ . Well-known typical styles of
logic presentations such as Hilbert’s style, Gentzen’s style, Equational style could be treated
within this ffamework.

Inference rules are presented in terms of the schematic rule description language in a
natural deduction style as follows:

$[Assumption_{1}][Assumption_{2}]$ [Assumption]
: : :

$Premise_{1}$ $Premise_{2}$ $Premise_{n}$

Conclusion
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where brakets are used to encompass a temporary assumption to be discharged, “:“ denotes a
sequence or a $sub\alpha ee$ of formulas which is a part of a proof Rom the assumption and each
assumption is optional. If a premise has the assumption, its subtree of a proof indicates a
conditional derivation. In a forward reasonin$g$, an inference rule may be permitted to apply if all
the premises are obtained in this manner and the application condition is satisfied. Then, the
dependency of a conclusion on temporary assumptions is automatically calculated by the
ordinary method [Ketonen 84]. In a backward reasoning, discharging the asumptions,
generating some assumptions and checking the application conditions are in general impossible
and hence delayed until completing the partial proof $\alpha ee$ under constuction. The defmitions of
derived rules are also pemitted if they are justified for validity on a sheet of thought described
below. They are convenient to shorten the lengthy and tedious derivation steps to some extent

Similarly, rewriting rules are presented in the following schematic format:

$\exp_{1}$

$\exp_{2}$

where $\exp_{1}$ and $\exp_{2}$ denote the subexpresions occurring in the expressions before and after
rewritng an expression respectively.

Proofconstructionfaciliries
The major drawback of reasoning in formal logic is that derivations tend to be lengthy and

tedious because of the detailed level of derivations to be required in reasoning. Furthernore,

performing formal derivations is time-consuming and error-prone. The readers may notice that
such a situation is quite similar to the one in the formal development of programs in which
programs can be derived or $\sigma ansformed$ and properties of progIams can be established. Using
computers for formal reasoning is expected to overcome the problems with errors and the time-
consuming task. The current version of $EUODffl_{d}OS$ has the following unique facilities which
support natural and efficient constructions of $pr\infty fs$ in the defined formal system

(1) Sheets of thought (or proof sheet)

This originated ffom a metaphor of work or calcularion sheet and is apparently analogous
to the concept of sheet of assertion which is due to C. S. Peirce [Peirce 74]. A sheet of thought,
in our case, is supposed to be a field of thought where we are allowed to draft a proof, to

compose proof fragments or detach a proof, or to reason using lemmas, etc., while a sheet of
assertion is a field of thought where existential graph as an icon of thought is supposed to be
drawn. Obviously, proving by the use of sheets of thought yields proof modularization
considered to be useful for proving in large, which is analogous to the concept of program
modularization, to borrow the term of software engineering. TechnicaUy, a sheet of thought is a
window with multi-functions for reasoning in the multi-window environment of a Personal
Sequential Inference machine (PSI).

$- 7-$
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(2) Tree-form proof
As mentioned above, inference and rewriting rules are presented in a natural deduction

style. This naturally induces a constuction of a proof into a $\alpha ee$-form proof with ajustification
for each line (node) indicated in the right margin. Consequentlly it leads to representing a proof
$s\alpha uct\iota ue$ explicitly, in other words, proof visualization.

(3) Proving methodology
It is desirable that reasoning or proof consffuction can be done along the natural way of

thinkin$g$. of human reasoners. Therefore EUODHILOS supports the typical method for
reasoning, that is, top-down reasoning (backward reasoning), bottom-up reasonin$g$ (forward

reasonmg) and reasoning in a mixture of them. They are accomplished interactively on seveml
sheets of thought. $EUODH\mathbb{L}OS$ also allows us to construct an abstract proof in the sense that
metavariables ranging over syntactic domain$s$ of an object logic are pemitted to occur in the
process of the proof, that is, we can make a partiaUy instantiated proof. Such a $prov\dot{n}g$ facihty
is very convenient for $ha\dot{w}ng$ an indeterminate or unknown predicate (such as invariant assertion
in Hoare logic) unspecified temporarily in the proof constructing process.

It is planed to incorporate not only cuch a proving methodology but also methodology of
science (e.g., Lakatos’ mathematical philosophy of science [Lakatos 76], Kitagawa’s relativistic
logic ofmutual specification [Kitagawa 63], etc.).

As an example of deduction process on sheets of thought, let us illustrate how one can
proceed a deduction by using connection and separation $hnc\dot{\mathfrak{a}}ons$ of sheets of thought. In order
to deduce forward by applying an inference rule, one has to start by selecting the formulas used
as premises of the rule. Then one may select an appropriate inference rule from the rule menu
which has been automatically generated at the time of logic definition, or he may input a fonnula
as the conclusion. If one selects a rule, then the system applies the rule to the premises and
derive the conclusion. If he gives the conclusion, then the system searches the rules and $\sigma ies$ to

fmd one which coincides with this deduction. In the case of backward reasonig, the reasonin$g$

process is converse to the forward reasoning, so that the intermediate proof may turn out to be
separated into partially justified proof ffagments and the complete justificiation of those pnilly
justified proof fragments is delayed to the completion of a final proof $\propto ee$.

(i) Comection
(a) Connection by complete matching: Two proof fragments can be connected through a

commom formula occumng in them when one of them is a hypothesis and the other a
conclusion. The process begins by selecting the two formulas and invoking the proper
operations. As a result, the proof fragments are connected into the one proof fragment.
SchematicaUy, This amounts to attaining the following inference figure which can be viewed as
valid:
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$\Gamma|-C$ (on a sheet of thought)

$\Delta,$ $C,$ $\sum|-$ A (on a sheet of thought)

$\Gamma,$ $\Delta,$ $\sum|-$ A (on a sheet of thought)

where $\Gamma,$ $\Delta$ and $\Sigma$ represent sequences of formulas (possibly empty), and A and $C$ denote
formulas in some defined logical system.

(b) Connection by the use of a rule of inference: This is essentially a forward reasoning
and may be called a distributed forward reasoning. The process is similar to the above except

that the connection is done ffom the distributed proof fragments through an appropriate rule of
inference. Let us take an example schema ofmodus ponens:

$\Gamma|-A\supset B$ (on a sheet of thought)

$\Delta|-$ A (on a sheet of thought)

$\Gamma,$ $\Delta|-A$ (on a sheet of thought)

with the same proviso, adding that $B$ represents a formula. Besides, connection methods such
as analogical matchin$g$, instantiation, etc., would beome exffemely beneficial to intelligent
reasonin$g$ system, which are left as future subjects.

(ii) Separation
The separation is the converse to the connection by complete matching. The separation

process begins by selecting a formula occurring in a sheet of thought and invoking the proper
operations. As a result, the proof fragment are detached into the two fragments. Schematically,
Thuis amounts to the converse to the connection by complete matching above. So we omit it

Hsnan-computer inteffacefor reasoning
In order to make the system user-friendly and easy to use, we have paid much attention to

the visualization of interface. In $EUODfm_{d}oS$ the $fo\mathbb{I}ow\dot{m}g$ facihties are available as human-
computer interface for ease in communicating and reasoning with a computer, in panicular
facihties for inputin$g$ formulas and formula visualization.

(1) Formula editor
This is a $s\sigma ucture$ editor for logical formulas and makes it easy to input, modify and

display complicated formulas. In addition to ordinary editing functions, it provides some proper
functions for formulas such as rewriting functions.

(2) Software keyboard and Font editor
These are used to make and input special symbols often appearing in various formal

systems. It is a mater of course that provision of special symbol which reasoners are
accustomed to use makes it possible to reason as usual on a computer.

(3) Stationery for reasoning
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Independently of a logic under consideration, various reasoning tools such as decision
procedures become helpful and useful in reasoning processes. In a sense it may also play a role
of a model which makes up for a semantical aspect of reasoning. Currently, a calculator for
Boolean logic is realized as a desk accessory.

?he screen layout in Appendix 1 shows a proof in which formula editor and software
keyboard are being used.

Implenentation
Exploiting the bit-map display with multi-window environment, mouse, icon, pop-up-

menu, etc., EUODrmOS is implemented in ESP language (an object-oriented Prolog) on PSI-
WSIMPOS, and its current size is about $5MB$ . The system configuration of EUODHILOS is
illustrated in Appendix 2. The system consists of two major parts; one for defining a user’s
logical system,and the other for constructing proofs on sheets of thought.

We have tried to apply EUODHMOS to various types of reasoning. Logics and proof
examples therein that we have dealt with so far on EUODMLOS include various pure logical
formulas, the unsolvability of the halting problem and an inductive proof with flrst-order logic
(NK), the equivalence between the principle of mathematical induction and the principle of
complete induction with second-order logic, modal reasoning about programs with
propositional modal logic (T), the reflective proof of a metatheorem and Montague’s semantics
of natural language with intensional Logic (IL), Martin-L\"ofs intuitionistic type theory,
reasoning about program properties with Hoare logic and dynamic logic. These logics
constitute a currendy well-known and wide range of logics or formal systems.

In the former part of this section, taking up typical fornal systems ffom various fields,

we demonstrate how EUODfnLOS can be used to specify a logic and $consm_{1}ct$ a proof under

the specified logic, together with brief annotations. In the latter part, we list some other proof

experiments with different logics. The important point here is not the complexity of the

examples, but rather the holistic understanding of a whole story played with EUODtflLOS.
These proof experiments with different logical systems could help to convince the readers of the

potential and usefulness of EUODHLOS in a much wider range of applications.

Martin-L\"of’s intuitionistic type theory and a constructive proof
The frst reasoning system we have chosen as an example is a tiny subset of constructive

type theory described in [Martin-Lof 84] and [Backhouse 88]. The principal expression in
intuitionistic type theory is ajudgement of the form $a\in p’’$ , reads “a is a proof of a proposition
“ in one interpretation, where $a”$ is an expression in $\lambda$-calculus and $p”$ is a frst-order formula
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interpreted as a type. The judgement is naturally and well described in the framework of DCG.
Intuitionistic type theory is defined by a number of natural deduction style inference rules
[Martin-L\"of 84] which are of course best suited to our treatment of rules. In Appendix 2, the
screen layout of the proof of the theorem $\sim\sim(P\vee\sim P)$ is shown, which means that the law of

excluded middle cannot be refuted, and is an instance of Glivenko‘s theorem that if $P$ is any
tautology of the classical propositional calculus then the proposition $\sim\sim P$ is always
constructively valid.

First we set up the language for proving the theorem frst in terms of BNF for reference
and then its DCG description.

Tiny languagefor type theory $(BNF)$

$<judgemen\triangleright;;=<tem>\in<\ddagger ype>$

$<tem>;;=<variable>I<cons\tan\triangleright I\sim<tem>I<func\dot{u}on>\bullet<tem>I\lambda<variable>.<tem>I$

$inl(<tem\triangleright)1im(<tem>)1<meta- tem>$

$<variable>::=x$
$<cons\tan\triangleright::=a1b$

$<function>::=f$

$<\ddagger ype>;;=<basic- type>1<\ddagger ype>\vee<rype>1<\ddagger ype>\supset<type>1<meta- type>$

$<basic- type>::=P|\perp$

$<meta- tem>::=F$

$<meta- type>::=A$ I $B$

Tiny languagefor type theory $(DCG)$

The $fo\mathbb{I}ow\dot{m}g$ DCG definition may be somewhat tedious and roundabout for the
reasons of the abilities of the current bottom-up parser and unparser generators. For
exampe, the production rule “judgement–$>tenn,$ $\in$ , type” have to be described in terns

of the two clauses as follows:
judgement $—>term$, in, type ;

in–$>\in$ ;$\prime\prime\prime’$

and the terminal $\in"$ have to be declared as an operator. It, however, will be easily

improved so as to be more natural in the next version of EUODHLOS, making it possible to

use the deflnite clause $\Psi^{ammar}$ augmented by adding operator precedence.

Syntax ofobject langauge :

judgement —$>term$, in, type ;
$in–>\in$ ;$\prime\prime\prime’$

tern–$>lanbda$, variable, “.“, terml;

lambda–$>’’\lambda’’$ ;
tern–$>terml$ ;
terml–$>terml$ , apply, term2;
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apply–$>\bullet$ ;$\prime\prime\prime$

terml-$>tem2$ ;
term2–$>\prime\prime$(“, term, “)“ ;

term2–$>or$-intro, ( , term, “)” ;
$or- in\alpha 0-->\prime\prime inr’’|$ “inl“ ;
term2 $–>variable$ ;
term2 $–>constant$ ;

variable–$>x1$ fl a1 $b$ ;
type $–>typel$ , imply, type ;

$imp_{e-->tpe^{l}}1y-->\supset_{1’}\ddagger ypy’’$

,
typel–$>type2$ , or, typel ;

or–$>\vee’’$ ;$\prime\prime$

typel–$>type3$ ;
type3–$>\prime\prime$(“, type, “)” ;

type3–$>not$, type3;

$not>type3-->^{\sim}b’’a^{;}sic- type;\prime\prime$

basic-type–$>\prime\prime p’’I’’1’’$ ;

$s_{yn_{t^{t}m1er}}e^{a_{I}xofmetalangua_{I}ge}-->me\ddagger a- tn’’$

(“, meta-var, ,,)” ;
tem2–$>meta$-term;

meta-term–$>\prime\prime F’$ ;

type3 $–>meta$-type ;

meta-type–$>\prime\prime A’’|’’B’’$ .
Note that the syntax definition for meta language is needed for defining inference rules

schematicaUy.

Inference Rules
Intuitionistic type theory is defined by a number of natural deduction style inference rules

[Martin-L\"of 84]. For our purpose of iUustration we consider just four rules and one rewrite
rule. These are the rules for function introduction and elimination, the two rules $for\vee$

introduction, and the rewrite rule in lieu of the definition $\sim A=A\supset\perp$.

$[x\in:A]$

$F(x)\in B$

($\lambda$-introduction $(\lambda- I)$)
$\lambda x$ . $(x)\in A\supset B$

$a\in$ A $f\in A\supset B$

($\supset$-elimination $(\supset- E)$)
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$f\bullet a\in B$

$a\in A$

$———————–$ ($inl- in\alpha oduction$ (inl-I))

in$1(a)\in$ A $\vee B$

$b\in B$

$———————-$ ($inr- in\alpha oduction$ (inr-I))

$inr(b)\in$ A $\vee B$

$A\supset\perp$

(definition as rewrite rule)
$\sim A$

We have specifled both the language system and derivation system possibly sufficient to

the proof below. We may often want ro revise or modify the defined logical system, due to the
inconveniences encountered later. By the inconveniences, we mean the logical system is too

weak, strong, redundant, or irrelevent to deal with the objects under consideration. Once a
logical system has been specified, the revision or modification of it is critical and carefully must

be done since the already established facts may not be guaranteed to hold. The current version
of EUODrmOS have not supported such a theory revision yet. Note that it is always safe in
case that the logical system is augmented by adding symbols, axioms and inference rules to the
old system as far as the addition is consistent with the old one.

Proof
The manual proof of a tree form is descrikd below and the overall screen layout is shown

in Appendix 3.

$[x\in P]^{1}$

$-(inl- I\{1\})$
$[f\in(P\vee(P\supset\perp))\supset\perp]^{2}$ inl(x) $\in P\vee(P\supset\perp)$

$-\ovalbox{\tt\small REJECT}$ $(>E\{21\})$

$f\cdot\dot{m}1(x)\in\perp$

–$(\lambda- I\{2\})$

$\lambda x.f\cdot\dot{m}1(x)\in P\supset\perp$

$-(inr- I\{2\})$
in$r(\lambda x.f\cdot inl(x))\in Pv(P\supset\perp)$ $[f\in(Pv(P\supset\perp))\supset\perp]^{2}$

$\ovalbox{\tt\small REJECT}_{f\cdot inr(\lambda x.f\cdot in1(x))\in\perp}-(>E\{2\})$

$\ovalbox{\tt\small REJECT}(\lambda- I0)$
$\lambda f.f\cdot inr(\lambda x. f\cdot inl(x))\in G\vee(P\supset\perp)\supset\perp)\supset\perp$

$\overline{\lambda f.f\cdot inr(\lambda x.f\cdot inl(x))\in\sim\sim}\overline{(Pv\sim P)}$

–(def {})
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where the justifications of the form (a rule name {dependencies}) are indicated in the right
margm of the proof tree.

Hoare logic and program verification
Hoare logic [Hoare 69] is the most well known logic for the axiomatic semantics of a

programming language and the verification of a program. Here we exemplify how such a
notationaUy complicated formal logic can be easily dealt with on $EUOD\ddagger nLOS$ . The principal
formula in Hoare logic is a form of $P\{S\}Q$, reads “if $P$ holds, then after executing the program
$S,$ $Q$ holds“, where $P$ and $Q$ are frst-order formulas and $S$ is a program in an ALGOL-like

as well as the inference rules for Hoare logic. The screen layout of the correctness proof of a
factorial program with the precondition “ffue“ and the postcondition $z=x!\prime\prime$ is shown in
Appendix 4.

Syntax &fmition in terms ofDCG:
h-formula–$>formula$, left-brace, program, right-brace, formula;
left-brace–$>\prime\prime t^{t\prime}$ ;
right-brace–$>\prime\prime\}’’$ ;
formula–$>fornula$, imply, formulal;
imply–$>’’\supset’’$ ;
formula–$>fomlulal$ ;
fornulal–$>formulal$ , or, formula2;
or–$>’’v’’$ ;
formulal–$>formula2$ ;
formula2–$>formula2$ , and, formula3;
and–$>\prime\prime A’’$ ;
formula2–$>formula3$ ;
formula3–$>\prime\prime$(“, formula, “)“ ;

formula3–$>not$, formula3;
not–$>’’\sim’’$ ;
formula3–$>\prime\prime\alpha ue’’$ ;

formula3–$>term$, equal, tern;
equal–$>\prime\prime\prime’=$ ;
formula3–$>meta$-formula, ( , meta-term, “)” ;

formula3–$>meta$-formula;

term $–>variable$ ;

term $–>constant$ ;

term $–>term$, plus, term ;
plus–$>+$ ;$\prime\prime\prime’$

term $–>tenn$, multiply, tern ;
multiply–$>\prime\prime X’’$ ;
tern $–>term$, factorial ;
factorial–$>t’\iota\prime\prime$ ;
term $–>meta$-tern ;
variable–$>\prime\prime x’’$ I $y”1’ z”|$ meta-var;
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constant–$>\prime\prime 1’’1’’0’’$ ;

progam $–>assigment$-statement ;

program, sequence,, program ;
while, formula, “do“, program, “od“ ;
if, formula, “then“, program, “else“, program, $fi”$ ;

meta-program;

assignment-statement–>variable, assignment, term ;

sequence–$>\prime\prime\prime’$; ;

while $–>$ “while” ;

if–$>’’if’$ ;

assignment–$>\prime\prime\prime’;=$ ;
$meta- pro_{\Psi^{am-->}}\prime\prime A’’|’’B’$ ;

meta-var–$>\prime x\prime\prime$ ;

meta-tern–$>\prime\prime\prime\Gamma’$ ;

meta-formula–$>’’P’’$ I $\prime\prime E’’|’’F’|’’G’’$.

Axioms and Theorems

(1) $E\wedge F\supset E$ (Conjuction-elimination)

(2) $P(X)\wedge X=T\supset P(T)$ (Substitution)

(3) $P(T)\{X;=T\}P\propto)$ (Assignment axiom)

(4) $ffue\supset 1=0!$ (Arithmetic)

Rewriting $mle$

$\underline{z=y!}$
(Arithmetic rule)

$z\cross(y+1)=(y+1)!$

Inference Rules

$E\supset F$ $F\{A\}G$

$———————–$ (Consequence rule 1)

$E\{A\}G$

$E\{A\}F$ $F\supset G$

$————————-$ (Consequence rule2)

$E\{A\}G$

$E\{A\}FF\{B\}G$
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(Composition rule)

$E\{A;B\}G$

$E\wedge F\{A\}GE\wedge\sim F\{B\}G$

—-(Conditional rule)

$E$ {if $F$ then A else $Bfi$ } $G$

F $\wedge G\{A\}F$

–(Repetition rule)

$F$ { $whileG$ do A $od$ } $F\wedge\sim G$

In Appendix 4, we show the screen layout of the correctness proof of a factorial program
with the precondition “true“ and postcondition $z=x!\prime\prime$ .

Dynamic logic and reasoning about programs
Dynamic logic [Harel 84] is a kind of raulti-modal logic which is an extension to classical

logic. The principal formulas in dynamic logic are the dynamic formulas of the form $[a]p$ and
the dual $<a>p$ , read infomaUy “after executing the program a the proposition $p$ holds“, where a
is a regular or context-ffee program and $p$ is a frst-order or dynamic formula. They can be
easily dealt with in the framework of DCG as follows.

Syntax defmition in terms ofDCG
formula-l–$>left$-diamond, regular-program, right-diamond, formula-l;
left-diamond–$>\prime\prime\prime<$ ;
right-diamond–$>\prime\prime\prime>$ ;
formula-l-$>left$-box, regular-program, right-box, formula-l;
left-box–$>\prime\prime[\prime\prime$ ;
right-box–$>\prime\prime]’’$ ;
formula-l–$>fonnda$ ;
formula–$>formula$, equivalence, formula0;

equivalence–$>\prime\prime\prime’\equiv$ ;
formula–$>fonnulaO$ ;

formulaO–$>fornulaO$, imply, formulal;

imply–$>’’\supset’’$ ;
formulaO–$>formulal$ ;

formulal–$>formulal$ , or, fornula2;

or–$>’’v’$ ;
formulal–$>formula2$ ;

formula2–$>fonnula2$ , and, formula3;

and–$>\prime\prime\prime’\wedge$ ;
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formula2–$>formula3$ ;

formula3–$>\prime\prime$(‘, fornula, “)“ ;

formula3 $–>not$, fornula3 ;

not–$>\prime\prime\sim’’$ ;
formula3–$>\prime\prime ffue’’$ ;

formula3–$>teIm$, equality, term;

equality–$>\prime\prime=’’$ ;

formula3–$>term$, greater, term;

greater–$>\prime\prime\prime’>$ ;

formula3-$>tem$, greater-or-equal, term ;

greater-or-equal $–>\prime\prime\geq$
’ ;

formula3–$>meta$-formula, $n$ ( , term, “)” ;

formula3–$>meta$-fornula;

term $–>variable$ ;
term $–>\omega nstant$ ;

term $–>terl4$ plus, term ;

$plus–>+$ ;$\prime\prime\prime’$

term $–>term$, mmus, tern ;

mnus–$>\prime\prime-$
“ ;

term $–>teIm,$ $mul\dot{\mathfrak{a}}ply$, term ;

multiply–$>\prime\prime X’’$ ;
term–$>terIk$ factorial;

factorial–$>’’\iota\prime\prime$ ;

term–$>meta$-term;

variable–$>’’x’’1’’y’’\mathfrak{l}’’z’’1’’n’’|$ meta-var;

constant–$>\prime\prime 1’’|’’0’’$ ;

regular-program $–>assi_{\Psi}ment$-statement ;

regular-program–$>formula$, guard;
guard–$>\prime\prime?\prime\prime$ ;

regular-program-$>regular$-program, sequence, regular-program ;

sequence–$>$ ; ;
$reg_{ar- progam-->regular-P^{n)}\Psi^{am,nondetemi\dot{m}s\dot{u}c}}$-selection, regular-prograir
$non\det\propto muus\dot{n}c- selec\dot{u}on-->\prime\prime I’’$ ;

regular-program $–>regular$-program, unbounded-repetition ;

unbounded-repetition $–>n*\prime\prime$ ;

regular-program-$>meta$-program ;

assignment-statement $–>variable$, assigment, term ;

asignment–$>’’;=’’$ ;

meta-program–$>’’A’’|’’B’$ ‘ ;
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meta-var–$>\prime\prime x\prime\prime$ ;

meta-term–$>t\prime\prime\Gamma’$ ;

meta-formula–$>\prime\prime p’’1Q’’1’’R’’I’’S’’$ .

Axioms and Theorems

(1) $[Q?]P\equiv(Q\supset P)$ (test)

(2) [X:$=T$]$P(X)\equiv P(T)$ (assignment axiom)

(3) $[A;B]P\equiv[A][B]P$ (composition)

(4) $<A;B>P\equiv<A><B>P$ (composition)

(5) [A I $B$] $P\equiv([A]P\wedge[B]P)$ (nondeterministic $sel\infty tion$)

(6) $P(X)\wedge X=T\supset P(T)$ (substitution)

(7) $x=0\supset(x=0\supset\alpha ue)$ (arith)

(8) $<(x=0)?>m_{1}e\equiv(x=0\supset ffue)$ (theorem)

(9) $n\geq 0\wedge x=n+1\supset<(x>0)?>(x=n+1)$ (theorem)

(10) $x=n+1\supset<z:=x\cross z>(x=n+1)$ (theorem)

(11) $x=n+1\supset<x:=x-1>(x=n)$ (theorem)

(12) $z\cross x!=n!\wedge x>0\supset[z:=x\cross z](z\cross(x-1)!=n!)$ (theorem)

(13) $z\cross(x-1)!=n!\supset[x:=x-1](z\cross x!=n!)$ (theorem)

(14) $x=n\supset[z:=1](z\cross x!=n!)$ (theorem)

(15) $z\cross x!=n!\supset[(x=0)?](z=n!)$ (theorem)

Rewriting rule

$\underline{[A]P}$
(&t)

$\sim<A>\sim P$

$\sim P\equiv\sim Q$

–(neg-elim)
$P\equiv Q$

$\sim\sim P$

$————–$ (double-neg-elim)
$P$

$n\geq 0\wedge x=n$

$————————-$ (arithmetic)

$x\geq 0$

Oue A $P$
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(true-elim)

$P$

Inference Rules

P $P\supset Q$

$———————–$ (modusponens)

$Q$

$P\supset Q$

(necessitation)

$[A]P\supset[A]Q$

$P\supset[A]P$

$————————$ (invariance)

$P\supset[A^{*}]P$

$n\geq 0\wedge P(n+1)\supset<A>P(n)$

$——————————————-$ (convergence)

$n\geq 0\wedge P(n)\supset<A^{*}>P(O)$

$P\supset<A>Q$ $Q\supset<B>R$

$————————————–$ (composition 1)

$P\supset<A;B>R$

$P\supset[A]Q$ $Q\supset[B]R$

$————————————–$ (composition 2)

$P\supset[A;B]R$

$P\supset<A>Q$ $R\supset[A]S$

$————————————–$ (derived-n4e1)

$P\wedge R\supset<A>(Q_{A}R)$

$P(Q)$ $Q\equiv R$

(replacement 1)

$P(R)$

$P\supset Q$ $Q\equiv R$

$——————————$ (replacement2)
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$P\supset R$

$P\equiv Q$

–(symmetricity)

$Q\cong P$

In Appendix 5, we show the screen layom of the proofs of the following properties of a
factorial program:

Termination: $x\geq 0\supset<z:=1$ ; $((x>0)?;z:=x\cross z;x;=x- 1)^{*};$ $(x=0)?>\sigma ue$

Partial Correctness: $x=n\supset[z:=1 ; ((x>0)?;z:=x\cross z;x:=x- 1)^{*} ; (x=0)?](z=n!)$

Total Correcmess: $x\geq 0\wedge x=n\supset<z:=1$ ; $((x>0)?;z:=x\cross z;x:=x- 1)^{*};$ $(x=0)?>(z=n!)$

Intensional Iogic, reflective proof and Montague‘s semantics ([Gallin 75])

The intensional logic is a higher-order modal logic based on the type theory, which
requires context-sensitive consraints on terms. It includes a lot of complicated logical concepts

which however are all well described within the framework of DCG and the rule description
conventions.

Syntax $d\Phi nition$ in terms of$DCG$

Mera language:

meta-formula-$>pred$-const, ( , term, “)“ ;
meta-fornula–$>meta$-formula, meta-imply, meta-formula;

pred-const–$>’’beweis’’$ ;

meta-imply $->\Rightarrow’’\prime\prime$ ;
$meta- variable\cup-->\prime\prime x’’|’’Y’$ ;
meta-term(-)–$>R’|’’S’’$ I $A’|’’B’’$ I $P”$ I $F”|’’G’’$ ;

meta-term(-) $–>meta$-variable(-) ;
meta-term(T)–$>meta$-term(-), colon, type(T);
$meta-\ddagger ype\cup-->\prime\prime\prime a’ 1b’’$ I $c”$ ;

meta-type(-)–$>t\prime T’’|’’T1’’I’’T2’’|’’T3’’$ ;

Object language (ofIL) :

term(T2) $–>tenn((s,(Tl,T2)))$, left-brace, term(Tl), right-brace ;
left-brace–$>\prime\prime t’’$ ;

right-brace–$>\prime\prime\}’’$ ;
term(t)–$>\iota e{\rm Im}(t)$ , imply, terml (t);

imply–$>’’\supset’’$ ;
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term(t)-$>teml(t)$ ;
terml(t)–$>terml(t)$ , or, term2(t);

or–$>’’v^{n}$ ;
terml(t)–$>te\mathfrak{X}(t)$ ;
$tem2(t)–>tem2(t)$ , and, term3(t) ;

and–$>\prime\prime A$
“ ;

$te\mathfrak{X}(t)-->oem3(t)$ ;

tern3$(\Gamma)-->tem3\circ$, equality, tern4(T) ;

equality–$>1\prime\prime\prime=$ ;
$tem3(D->tem4\circ)$ ;

term4(T2) $–>term4((Tl,T2))$, apply, term5(T1) ;
apply–$>\bullet\prime\prime\prime$

’

$term4(D–>tem5(D$ :
$te{\rm Im} 5(D->\prime\prime$ ( $\prime\prime$ , term(T), “)“ ;

$term5(t)–>not,$ $oem5(t)$ ;

not–$>\prime\prime\sim’’$ ;
$tem5(t)–>bind- op$, variable(T), “.“, term5(t);

$bind- op–>\prime\prime\forall’$ ;
$bind- op–>\prime\prime\exists\prime\prime$ ;
$telm5((Tl,T2))–>lamMa$, variable(Tl), “.”, $tem5(?2)$ ;

lambda–$>\prime\prime\lambda’’$ ;
term5$((s,T))–>intension$, term5($\mathfrak{D}$ ;

intension–$>\prime\prime A’’$ ;
tem5$(T)–>extension$ tem5$((s,T))$ ;

extension–$>\prime\prime v$
“ ;

term5$(t)–>necessary$, term5(t) ;
necessary $–>\prime\prime O’’$ ;
term5(t) $–>possible,$ $tem5(t)$ ;

$possible–><>$ ;$\prime\prime\prime$

term5$\sigma$) $->variable\sigma$) ;

$tenn5(D–>constant(D$ :
$tenn5(\eta-->meta$-terml(T), ( , meta-term(-), ‘’)” ;
meta-terml $\sigma$) $–>meta$-term(T) ;
term5(T) $–>meta- term\circ;$

variable(T) $–>var$-sym, colon, type(T) ;
variable($D–>meta$-variable, colon, type(T) ;
constant(t) $–>\alpha ue$, colon, $t$ ;
$\alpha ue-->\sigma ue’’$ ;$\prime\prime$

t–$>’’t’’$ ;
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constant(t)–$>fake$, colon, $t$ ;
false-$>\prime\prime fdse’’$ ;

constant $(T)–>$ const-sym, colon, type(T);
type(e)–$>\prime\prime e’’$ ;

type(t)–$>\prime\prime t’’$ ;

\ddagger ype((Tl,$T2$)) $–>$ ( , type(Tl), comma, , type(T2), “)“ ;
comma–$>\prime\prime\prime$

’ ;

type$((s,T))–>\prime\prime$ ($\prime\prime,$ $s$ , comma, type(T), “)“ ;
type(T) $–>meta- type\cup;$

s–$>s’’$ ;$\prime\prime$

$var- sym–>\prime\prime x’’|’’y’’I’’p’’$ ;
const-sym–$>$ “fish“ 1“klieve” I“walk”1 $j”$ ;
colon–$>":$ “ ;

Axioms and Theorems

Axioms:

(1) $G:(t,t)$ $\bullet$ $oue;t\wedge G:(t,t)\bullet$ $false;t=\forall X;t.G:(t,t)\bullet X;t$

(2) $X:a=Y:a\supset F:(a,t)\bullet X:a=F;(a,t)\bullet Y;a$

(3) $\forall X:a.(F:(a,b)\bullet X;a=G;(a,b)\bullet X:a)=(F;(a,b)=G:(a,b))$

(4) $(\lambda X:a. A(X:a))\bullet B=A(B)$

(5) a$(F:(s,a)=G;(s,a))=(F:(s,a)=G:(s,a))$
(6) $A:a=A:a$

Theorems:

(1) $(P;t=ffue;t)=P;t$

(2) $\lambda X:a.Q:b=\lambda X:a.Q;b$

Inference rules

Meta-Rule:

beweis(A)
(Reflection-l)

A

–

A
(Reflection-2)

beweis(A)

[A]

:
$B$
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$(=>I)$

$A\Rightarrow B$

Object-Rule (ILRule):

A(R) $R=S$
(Replace-l)

A(S)

$A(B)=A(R)$ $R=S$

$————————————-$ (Replace-2)

$A(B)=A(S)$

$R=S$

$————$ $(Symme\alpha icity)$

$S=R$

Rewriting rules

$\alpha;a_{\triangleleft}P;t=\alpha;a$ . $\alpha ue;t$$—-$ ($\forall$-Defmition)

$\forall X:a$. $P;t$

A ( $R$ }

$——————–$ (Brace $conven\dot{u}on$)

$(^{\vee}A)\bullet R$

$F\bullet G$

$————$ (Notational convention)

$F(G)$

The following metatheorem is ingeniously proved with the help of the reflection principle
([Weyhrauch 80]) whosse screen layout is shown in Appendix 6.

$|-P;t\Rightarrow[-\forall x:a$. $P;t$ (Generalization rule)

In Montague’s language theory, natural language sentences are frst translated into
expressions in intensional logic, which in tum are analyzed with the posible world semantics.
With the defined intensional logic, the following intensional fornula:

$(\lambda p:(s,(e,t)).\exists x:e.(fish:(e,t)\bullet x:e\wedge p:(s,(e,t))\{x:e\}))\bullet\wedge\lambda y:e.(believe:((s,t),(e,t))$ $\bullet$

$\wedge(walk:(e,t)\bullet$ $y:e$) $\bullet$ $j:e$),
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which is a ffanslation of a natural language sentence “John believes that a fish walks“, reduces
to a more simple one:

$\exists x:e$. $(fish:(e,t)\bullet x:e\wedge$ believe:((s,t),(e,t)) $\bullet$ $A(walk:(e,t)\bullet$ $x:e$) $\bullet$ $j:e$).

For other logical experiments, we $wiU$ only list the theorems which were actuaUy proved
by using EUODHLOS.

First-order logic (with NK)

(1) Smullyan’s logical puzzles (originally examples in combinatory logic) [Smullyan 85]

Axioms:
$1.\forall xm\bullet x=x\bullet x$ (Mockingbird condition)

$2.\forall x\forall y\exists z\forall wz\bullet w=x\bullet(y\bullet w)$ (Composition)

Theorems:
1. $|-\forall x\exists y(x\bullet y=y)$ (Every bird oftheforest isfond ofat ’east one bird)

2. $|-\exists x(x\bullet x=x)$ (At least one bird is egocentric or $narcis\dot{\alpha s}tic$)

(2) Unsolvability of the halting problem [Burkholder 87]

Premises:
1. \exists x(A(x)&Vy(C(y)\supset VzD(x,y,z)))\supset \exists w(C(w)&Vy(C(y)\supset VzD(w,y,z)))

(Church’s thesis)

2. \forall w(C(w)&\forall y(C(y)\supset \forall zD(w,y,z))\supset \forall y\forall z((C(y)&H(y,z)\supset H(w,y,z)&O(w,g))

& $(C(y)\ \sim H(y,z)$ \supset H(w,y,z)&O(w,b))))

3. $\exists w(C(w)\ \forall y((C(y)\ H(y,y)\supset H(w,y,y)\ O(w,g))\ (C(y)\ \sim H(y,y)\supset$

$H$($w,y$,y)&O(w,b)))) $\supset\exists v(C(v)\ \forall y((C(y)\ H(y,y)\supset H(v,y)\ O(v,g))\$

$(C(y)\ \sim H(y,y)\supset H(v,y)\ O(v,b))))$

4. $\exists v(C(v)\ \forall y((C(y)\ H(y,y)\supset H(v,y)\ O(v,g))\ (C(y)\ \sim H(y,y)\supset H(v,y)\$

$O(v,b)))\supset\exists u(C(u)$ &\forall y((C(y)&H(y,y)\supset \sim H(u,y))&(C(y)&\sim H(y,y)\supset H(u,y)

&O(u,b)))

Conclusion :
$1-\sim\exists x(A(x)\ \forall y(C(y)\supset\forall zD(x,y,z)))$

(no algorithm to solve the halting problem exists)

(3) Proof by sffuctural induction on list [Eriksson 82]

$I-\forall x\forall y\forall z$ . $append(append(x,y),z)=append(x,append(y,z))$

(associativiry ofappendfunction)
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Second-order logic and a simple equivalence proof

$\forall P[P(0)\wedge\forall n(P(n)\supset P(n+1))\supset\forall nP(n)]\equiv\forall R[\forall n(\forall j(!<n\supset R(i))\supset R(n))\supset\forall nR(n)]$

(The principle ofthe mathematical induction is equivalent to the principle of the complete induction)

Propositional modal logic (T) and modal reasoning about programs ([Burstall

74])

$|-<> p\wedge\prod(p\supset q)\supset\Leftrightarrow(P^{A}q)$

(A strong correctness assertion is impliedfrom a $ten\dot{mn}at\dot{w}n$ assertion and a weak correctness assertion)

In the future we plan to attack a logic of knowledge and belief, various other logics of
programs such as algorithmic logics based on infnitary logic, non-monotonic logic, relevant
logic and so on.

RELATED WORKS

Much work has been devoted to buildmg systems for checking and building formal proofs
in various logical systems. A number of ways which may be used for assisting human
reasonin$g$, including automatic theorem proving, proof checker [de Bruijn 80][Weyhrauch 80]

[Ketonen 84][Trybulec 85][Sawamura 86], proof consffuctor [Gordon 79][Constable

82][Constable 86] and general system for computer-aided reasoning [Coquand 85][Sawamura

$87][G\dot{n}ffm87][Harper87][Minmi88][Satoh88a]$ , are comparatively exmined in [Minami

88]. Here we are confned ourselves to various approaches to the general system for computer-
assisted reasonin$g$ to which much attention have been recendy paid. Let us briefly see only the
distinction of a formal system description language in each approach since there have not yet

been so much work as to the other aspects such as proving methodology in computer-assisted
reasonin$g$ and reasonmg-oriented human-computer interface, to such an extent that comparative
studies become possible.

In [Sawamura 86], Prolog is employed as a logic description language as well as an
implementation language of a proof $consm\iota ctor$. In [Felty 88] and [MiUer 87], $\lambda Prolog$, which
is a higher-order version of Prolog and hence more expressive than Prolog, is proposed to

specify theorem provers. In [Harper 87] and [Griffm 87], Martin-L6fs intuitionistic type
theory is applied for building alogical framework (LF) which allows for a general $\alpha eament$ of
syntax, inference rules, and proofs in terms of a typed $\lambda$-calculus with dependem types. It also
has the advantage of a smooth treatment of discharge and variable occurrence conditions in
rules. In [Reps 84], the axioms and inference rules of a formal logical system can be expressed
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as productions and semantic equations of an $at\sigma ibute$ grammar. Then, dependencies among
attributes, as defined in the semantic equations of such a grammar, express dependencies among
parts of a proof. Among these works, those of [Harper 87], [Griffn 87] and [Reps 84] are
closely related to our work What they are aiming principally at seems to be automatic check of
rule conditions basically in one way reasoning, with which we are confronted in applying a
rule. In our approach, we have to attain it in the ffamework of our proving methodology, that
is, in the environment that allows us to reason forward, reason backward, or reason in a
mixture of them. The uniform $\sigma eatment$ in this situation, however, is left open. In a current

version of $EUOD\mathbb{E}moS$ , the problem of automatically checkmg the application conditions for
rules is avoided by alerting to a user when he or she applies a rule with the conditions, in other
words, a user is supposed to be responsible for applying the rules. Note that this $is$ not our fnal
solution to that. In [Gordon 82], the metalanguage (ML) for interactive proof in LCF [Gordon

79], a polymorphically typed, functional programming language, are used to show how logical
calculi can be represented and manipulated within it. In [Abrial 84], consructing a general-
purpose proof checker is undertaken through devising a theory of proofs. It is “general
purpose“ in that it may take as input the axiomatization of a forInal theory together with a proof
written $witl\dot{u}n$ this theory. A theory of proofs is a kind of a specification language for formal
system ffom the viewpoint of software engineering, and also a fornal system description
language. His approach is based on the rigorious approach to program construction: to define a
theory and then to apply it.

In addition to such a purely theoretical interest as what a general theory of logics is, an
important benefit of these treatments of formal systems is, although their approaches are
different, that logic-independent tools for proof editors, proof chekers, and proof constructors
can be cons$\alpha ucted$. As to logic-dependem tools, we think that it would be better to provide them
by designing an appropriate metalanguage such as ML [Gordon 79].

Among these general-purpose reasoning assistant sytems, it seems fair to say that it is
only our system EUODHILOS that incorporates such a distinctive feature as proving
methodology plus logic defining capability, emphasizing visual interface for reasoning.

RESEARCH

We have presented the unique features of a general-purpose reasoning assistant system

EUODImOS which is under development. And also we have shown its advantages of our
approach and potentials through a number of formal systems and their proof examples. Our
conclusion of this paper is embodied in the following emblem:

$\forall Universe\exists Lo\dot{g}c$ . EUODMLOS(Universe, Logic)

meaning that EUODHILOS helps to realize alogic relevent for a universe of discourse.
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As a matter of fact, we have been confimed in the following intended points by those
experiments.

(i) Advantages of generality
The generality of EUODrmOS have been tested by using it to define various logics and

to verify proofs expressed within them. Almost every logic together with its proof example was
created in several hours. If we had have to develope a reasonin$g$ system with same functions as
EUODHILOS for each logic ffom scratch, how much time would it have taken to do it ? And
we would have to do another job in the almost same manner if we had needed other logic.
Therefore we may conclude that EUODHLOS have demonstrated the usefulness of its
generality in a much wider range of applications.

(1i) Definite clause $\ovalbox{\tt\small REJECT}$ approach to the defiIuition of logical syntax

Defmite clause grammar is more natural and easier for users to defme a logical $s$yntax,

compared with other approaches to logical system description languages mentioned above. And
also it requires less knowledge to describe logics.A formula editor and a facility to test the
defmed language serve to check the intended syntax. It has been proved that these gready lighten
a user’s burden in setting up his own language.

(iii) Proving methodology based on sheets of thought
Lots of experiments for proving have convinced us that reasoning by several sheets of

thought naturally coincides with the ways of human dunking such as from the parts to the whole
(typically found in the (Far) Eastern ideas) and ffom the whole to the pans (typicaUy found in
the Western ideas). It may be also expected that they tum out to give a promising way towards
proving in large.

(iv) Visual interface
The visual interface for reasoning not only has been useful but also served to define the

logics and to conceive ideas for constructing the proofs described in the previous Section.

An attempt of consffucting a general-purpose reasonin$g$ assistant system is, however, only
at the iniltial stage of research and development, and is lacking a number of significant issues
which should be taken into consideration. We $shaU$ touch upon some of future research themes
which may be helpful to augment and raise the current level of $EUOD\mathbb{E}m_{\lrcorner}oS$ .

(1) Augmentation of fornal system description language
The $cuI\tau ent$ state of the fornal system description language is defficient in some respects.

Much efforts have to be payed on $m\ \dot{m}g$ the logic description language more expressive. For

example, in the currem ffamework, rule descriptions for tablaux method, some formulation of
relevant logic, etc., seem not to be expressible. Furthermore, automatic mechanism for checking

rule application conditions is not incorporated in EUODHLOS as remarked in the previous
section. To overcome these deficiencies, we would need some more powerful rule description
language and method.

(2) Investigation of higher-level supporting functions for reasoning
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Developing a language for proof strategies, $incorpon\dot{\mathfrak{a}}ng$ metatheory, etc., are important
subjects since these could attain increasing the naturalness and efficiency of proofs.

(3) Maintaining a relational dependency among various theories
Various theories or logics are used to be involved in a proof. Let us consider the following

situation : There exists a number of theories or logics together with various kinds of databases,

they may be mutually dependent in the sense of the referential relations and we want to modify
or revise a theory or underlying logic. Then what happen$s$? Obviously, relational inconsistencies
among $th_{\backslash }eories$ may arise with such a modification and revision of theories or logics. The reader
$wiU$ notice that this is a kind of non-monotonic phenomenon.

(4) Openin$g$ up a new application field of reasonin$g$ by $EUOD\ddagger moS$

The unique features and potentials of $EUOD\mathbb{R}OS$ could suggest a new $direc\dot{u}on$ to CAI
system for logics. We are now particularly interested in clarifying the feasibility of using
$EUOD\mathbb{E}mos$ as a $t\infty 1$ of logical model construction and specialized use of EUODEI,OS such

(5) Improvement and refmement of human-computer interface for the reasoning system
We have tried to analyze intrinsicaUy how $reasoning- 0_{\wedge}\urcorner ented$ human-computer interface

should be. However, it seems to lack a uniform and systematic point of view for such an
interface in the present form.
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