
221

A Declarative Semantics of
Parallel Logic Programs based on

Failure/Deadlock Set

Masaki Murakami

Institute for New Generation Computer Technology
$21F$, Mita Kokusai Building

1-4-28 Mita, Minato-ku, Tokyo 108 Japan
e-mail: murakami@icot.junet

October 31, 1988

Abstract

This paper presents a declarative semantics of Flat GHC programs.
The semantics presented here is based on the failure/deadlock set of a
Flat GHC program, namely the set of the I/O histories representing
computations which fail or fall into deadlock within finite steps.

1 Introduction
We reported the success set semantics of Flat GHC programs $[Mura1\backslash ’alni88]$.
The semantics presented in the paper is an extension or a modification of
the lnodel theoretic semantics of pure Horn logic programs [Apt 82, Lloyd
84], namely the semantics of a program is a model of the set of formulas that
define the program. We defined that a goal clause is true on the model if
and only if the goal clause is ru-successful (the goal clause ca.n be executed
without deadlock or failure). The domain of I/O history is introduced instead
of the sta,ndard Herbra,nd universe. The denotation of a program, $t1_{1}e\omega-$

1

数理解析研究所講究録
第 709巻 1989年 221-234

222

success set is defined as a set of I/O histories. Using the semantics, the
solutions of programs that contain perpetual processes controlled by guard
commit mechanisms can be characterized as the logical consequence of the
programs.

However, in the case of programs of committed choice language such as
GHC, the set of successful goals and the set of goals which have possibility
to fall into deadlock or failure can have non-empty intersection. Thus it is
impossible to discuss whether a goal clause can fall into deadlock or fail with
success set only [Falaschi 88]. Thus [Falaschi 88] reported a new approach
to give a semantics to committed choice logic languages. In that paper, the
semantics of program is defined as a tuple of the success set and the failure
set. A goal clause is t rzte if it can be fail in that approach. However in
that paper, the model is defined as a set of formulas which contain only the
information of the final results which are obtained when the computation
is terminated. Thus non-terminating computations cannot be discussed in
that approach. For instance, a goal clause g_{1},g_{2} is not true‘ if g_{1} does not
terminate and g_{2} fails.

In this paper, we define the failure/deadlock set, the set of goals which
can fall into deadlock or finite failure. Namely, we define that a goal clause
is true on the model of a program when on of the goal clause has possibility
of deadlock or finite failure with the program. The set of failure/deadlock
set of a program is defined as the least model of the program.

Thus the semantics of programs defined as a tuple of the ω -success
set and failure/deadlock set as [Falaschi 88]. Existence of processes which
have possibility of failure/deadlock can be discussed for the programs with
perpetual processes.

2 Guarded Streams
In this section, we define the notion of the guarded streams. Guarded streams
are introduced in [Murakami 88] first. However, in that paper, only computa-
tions without failure/deadlock are represented with guarded streams. A new
definition of guarded streams is presented in order to discuss computations
with failure/deadlock.

Let $Va\tau$ be an enumerable set of variables, $\Gamma^{i}uJ1$ be a set of function sym-

2

223

bols. Each element of Fun has its arity. Let Terms be the set of terms defined
from Fun and Var in standard way. A term τ is simple if it is a O-ary func-
tion symbol or the form of $f(X_{1}, \ldots , X_{n})$ where $f\in\Gamma^{l}un$ and $X_{1},$ \ldots,X_{n} are
different variables. Substitutions on Terms are defined as usual.

In this paper, we consider programs on the domain of lists of $\{a, b\}$ as
examples, thus a$,b$, cons $\in Fun.$ The arity of a $,$

b and nil is 0 , and the
arity of cons is 2. cons(X, Y) is denoted $[X|Y]$ and nil is denoted $[]$ as
usual.
Def. 1

Let τ be a simple term and $X\in Var$.

$X=\tau$

is a substitution form. $X=X$ is denoted true.
A substitution σ is denoted using a, finite set of simple substitution forms,

for example,

$\sigma=$ { $X=$ cons (Y , Z) , $Y=a$}.

Def. 2
Let σ be a set of simple substitution forms. If σ is a substitution or

equal to $\bigcup_{karrow\infty}\theta_{k}$ defined below for some substitution θ , then σ is be an
ω -substitution.

$\theta_{0}=\theta$

$\theta_{k+1}=\theta_{k}\cup$

{ $X=\tau|X$ occurs in $\tau’$ for some $(Y=\tau’)\in\theta_{k}$,
$(X=\tau’’)\not\in 0_{k}$ and no variabies occurring in τ

occur in the left part of θ_{k} }

A ω -substitution defines a mapping from a term to an infinite term.
The notion of I/O history introduced in this paper corresponds t6 the

notion of element of the Herbrand base for pure Horn logic programs. I/O

history is an extension or modification of a guarded a$,t_{ol}n$ of [Levi 88]. An
I/O history is denoted as follows with head part H , which denotes a form
of a process, and the body part GU , which denotes a trace of inputs and
outputs of the process:

3

224

$H:-GU$.
GU is a set of tuples $<\sigma|U_{b}>where\sigma$ is a substitution which is required

to solve the guards that appear before committing some clause and U_{b} is a
expression which express an execution of unification in the body part of the
clause to which the goal committed. Intuitively, $<\sigma|U_{b}>means$ that if the
arguments of $t1_{1}e$ process are instantiated with σ then unification U_{b} can be
executed. For instance, in the following program:

pl (X , Y) :-X $=$ [A $|X1$] , A $=$ a $|Y=[B|Y1]$, $B=b$, pl (Xl , Yl).

pl (X, Y) :-X $=[B|X1]$, $B=b|Y=$ [A $|Y1$] , A $=a$, pl (Xl , Yl).

The following is an example of I/O history which denotes the computation
such that pl reads a in input stream X first, writes b in output stream Y ,
then reads b and writes a .

pl (X, Y) : $-\{<\{X=[A|X1], A=a\}|Y=[B|Y1]>$,
$<\{X=[A|X1], A=a\}|B=b>$,

$<$ { $X=[A|X1]\rangle A=a$, Xl $=[B1|X2]$, Bl $=b$ } $|Y1=[A1|Y2]>$,
$<$ { $X=[A|X1],$ $A=a$, Xl $=[B1|X2]$, Bl $=b$ } $|A1=a>,$ \ldots }

An I/O history of a process H represents a possible execution of the
process. Thus, there exist different I/O histories for different executions
which commit to different clauses. There may be different I/O histories for
different scheduling.

In this paper, we informally define that a computation fails or falls into
deadlock when a goal commits to some clause such that there is no $(\omega-)$

successful computation after the commit. A computation which fails or falls
into deadlock is represented by a guarded stream which contains \perp instead
of U_{b} .

For instance, consider the following prograIn:

p (X , Y) :-X $=$ a $|Y=[b, Z]$, ql (Z).

p (X , Y) :-X $=$ a $|Y=[a_{J}Z]$, q2 (Z).

ql (Z) : - true $|Z=b,$ $r(W)$.

4

225

$q2(Z)$:-true $|Z=b$.

$r(W):-W=$ a $|$ true.

For this program, a goal $p(a, Y)$ cannot avoid deadlock if it comlnits
to the first clause. This situation is represented with the following guarded
stream.

$\{<\{X=a\}|\perp>\}$

On the other hand, if it commits to the second clause, the computation
continues. This situation is represented with the following guarded stream.

$\{<\{X=a\}|Y=[a, Z]>, <\{X=a\}|Z=b>\}$

Def. 3
Let τ be a simple term and $X\in Var$.

$X?=\tau$

is a simple test form or a test form simply.
Def. 4

Let σ be a substitution and $uni(X, \tau)$ be a substitution form $X=\tau$ or a
test form $X?=\tau$ for $X\in Var$ and a simple term τ . $<\sigma|U>$ is a guarded
unification where U is $uni(X, \tau)$ or \perp . σ is the guard part of $<\sigma|U>$ and
U is the active part.

Intuitively, if $u\uparrow ri(X, \tau)$ is a, substitution form, it denotes a unification
which actually insta,ntiates X , and if it is a test form, it denotes a test unifi-
cation. If the active part $is\perp,$ $itlneans$ that a goal such tha.t failure/deadlock
is unavoidable is invoked.
Def. 5

Let $<\sigma|U>be$ a guarded unification. $|<\sigma|U>$ } is the set of substitu-
tion/test forms defined as following.

$|<\sigma|U>|=\{U\}U\sigma$

if U is a test $folm$ or a substitution form, and

$|<\sigma|U>|=\sigma$

5

2 $2\underline{6}$

if $U=\perp$.

The body part of an I/O history represents a execution of Flat GHC pro-
grams, thus GU is well founded with the partial order of execution, namely,
for any $<\sigma_{1}|U_{b1}>,$ $<\sigma_{2}|U_{b2}>\in GU$, if $\sigma_{1}\subset\sigma_{2}$, then U_{b1} is executable
before U_{b2} .
Def. 6

Let GU be a set of guarded unifications. For $<\sigma_{1}|u_{1}>,$ $<\sigma_{2}|u_{2}>\in GU$,

$<\sigma_{1}|u_{1}>\prec<\sigma_{2}|u_{2}>$

holds if and only if $\sigma_{1}\subset\sigma_{2}$ and $\sigma_{1}\neq\sigma_{2}$.
It is easy to show that $\prec is$ a well founded ordering.

Def. 7
A^{\cdot} set of guarded unifications GU is a guarded stream if the following are

true.

1) For any $<\sigma_{1}|U_{1}>,$ $<\sigma_{2}|U_{2}>\in GU$, if $<\sigma_{1}|U_{1}>\neq<\sigma_{2}|U_{2}>$

and U_{1} and U_{2} have same varia.ble on their left hand side, then
U_{1} or U_{2} is a test form and their right hand sides are unifiable.
Furthermore if U_{1} is a substitution form and U_{2} is a test form
then

$<\sigma_{2}|U_{2}>\prec<\sigma_{1}|U_{1}>$

does not hold.

2) If $<\sigma|U>\in GU$, then $(X=\tau)\not\in\sigma$ for any $<\theta|X=\tau>\in GU$.

3) For any $<\theta|X?=\tau>\in GU$, if τ and $\tau’$ are not unifiable, then
$(X=\tau’)\not\in\sigma$ for $<\sigma|U>\in GU$.

4) For any $<\sigma_{1}|U_{1}>,$ $<\sigma_{2}|U_{2}>\in GU$, if $(X=\tau)$ $\in\sigma_{1}$ and
$(X=\tau’)\in\sigma_{2}$, then τ a.nd $\tau’$ are unifiable.

Conditions 1), $\ldots,4$) mean that a,ll variable in GHC programs are logical
variables and if they are instantiated, the values are never changed.

6

227

The following notion is defined to obtain the guarded stream representing
the computation of a goal clause from the guarded strea,ms which represent
the computation of each goal in the goal clause.

U denotes a substitution form, test form $or\perp$.
Def. 8

Let $GU_{1},$
$\ldots,$

GU_{n} be guardedj streams, and $Gu_{k}(1\leq k)$ be as follows:

$Gu_{1}=\{<\sigma|U>|\exists i,$ $\exists<\sigma|U>\in GU_{i}$,
$\forall(X=\tau)\in\sigma,$ $\forall j,$ $<\sigma’|X=\tau>\not\in GU_{j}$ }

$Gu_{k+1}=,$ $Gu_{k}\cup\{<\sigma|U>|\exists i,$ $\exists<\sigma’|U>\in GU_{i},\forall(X=\tau)\in\sigma’$,
$((\forall j,<\sigma^{u}|X=\tau>\not\in GU_{j})\vee$

$<\sigma’’|X=\tau>\in Gu_{k})\wedge$

$\sigma=(\sigma’-\{X=\tau|<\sigma’’|X=\tau>\in Gu_{k}\})\cup$

$\{U|U\in\sigma’’<\sigma’’|X=\tau>\in Gu_{k}\}\}$

and let GU be as follows.

$GU= \bigcup_{karrow\infty}Gu_{k}$

lf GU is a guarded stream and if

$\{U|<\sigma|U>\in GU\}=\{U|\exists i<\sigma|U>\in GU_{i}\}$

then GU is a synchronized merge of $GU_{1},$
$\ldots,$

GU_{n} , and is denoted:

$GU_{1}\Vert\ldots\Vert GU_{n}$.

If $n=1$, then the synchronized merge can alwa.ys be defined and it is
equal to GU_{1} itself.

$*$.
Def. 9

Let GU be a guarded stream and θ be a set of simple substitution form.
The set $GU\mathbb{N}\theta$ is a set of guarded unifications defined as follows.

7

228

$GU\mathbb{N}\theta=\{<\sigma|U>|<\sigma’|U>\in GU, \sigma=0\cup\sigma’\}$

Def. 10
Let GU be a guarded stream and V be a finite set of variables. The

restriction of GU by $V:GU\downarrow V$ is the set defined as follows.

$GU\downarrow V=\{<\sigma|U>|<\sigma|U>\in GU$, if $U=cmi(X, \tau)$ then $X\in$

$l^{\gamma_{k}}$ for some k }

where

$V_{0}=V$

$V_{i+1}=V_{i}\cup\{X|\exists gu\in GU,$ $\exists uni(Y, \tau)\in|gu|$,
X appears in $\tau,$ $Y\in V_{i}$ and $\forall gu’\in GU$,
if $gu’\prec gu$, then X does not occur in gu }

If GU is a guarded stream then $GU\downarrow V$ is also a guarded stream.

3 Model Theoretic Semantics
This section introduces notions which correspond to the Herbrand base and
unit clauses for parallel logic language based on the notion of guarded streams.
First, a parallel language based on Horn logic is presented. The language is
essentially a subset of Flat GHC [Ueda 88] with only one system predicate, $=$:
unification of a variable term and a simple term. Furthermore all clauses are
assumed to be in a normal form, namely all arguments in the head part are
different variable terms. However it is not diffic.ult to show that the la,nguage
presented here does not lose any generality compared to Flat GHC using the
modification of the transformation algorithm to the strong normal from [Levi
88]. We denote set of predicate symbols as Pred.
Def. 11 Let $H,$ $B_{1},$ $B_{2},$

$\ldots,$
B_{n} be atomic formulas constructed with Terms

and Pred where all arguments of H are different variables, and $U_{g1},$
\ldots , U_{gm} ,

$U_{b1},$
$\ldots,$

U_{bh} be simple substitution forms. The following formula is a guarded
clause.

H $:-U_{J^{1}}(’\ldots,$ $U_{gm}|U_{b1},$
$\ldots,$

$U_{bh},$ $B_{1},$ $B_{2}’,$
\ldots , B_{n}

8

229

A progmm is a finite set of guarded clauses.
We define $Var(H)=\{X_{1}, X_{2}, \ldots,X_{k}\}$ when H is $p(X_{1}, X_{2}, \ldots , X_{k}.)$.

Def. 12
Let p be an element of Pred with arity $k,$ $X_{1},$ $X_{2},$

$\ldots,$
X_{k} be different

variables and σ be an ω-substitution. Then $\sigma p(X_{1},X_{2}, \ldots , X_{k})$ is a goal.
Def. 13

A sequence of goals: $g_{1},$ \ldots,g_{n} is a goal clause.
Def. 14

For a guarded stream GU and an atom $p(X_{1},X_{2}, \ldots , X_{k})$, a I/O history:
t is

$p(X_{1},X_{2}, \ldots, X_{k})$ $:-GU$

where $p,\in Pz\cdot ed$ with arity $k,$ $X_{1},$ $X_{2},$ \ldots,X_{k} are different variables, and

$GU\downarrow Var(p(X_{1}, X_{2}, \ldots, X_{k}))=GU$.
$p(X_{1)}X_{2,}X_{k})$ is called the head part of t and GU is called the body

part of t . Intuitively, GU only contains variables which are visible from
outside through the head part.

The concept of I/O histories corresponds to the concept of unit clauses of
the standard model theoretic semantics of pure Horn logic programs. How-
ever in I/O history, the same computation can be represented in several ways.
In other words, if t_{1} and t_{2} are identical except for the names of variables
which do not appear in the head parts, they are considered to represent
the same computation. Thus the equivalent relation based on renalning of
va,riables should be introduced. In the following, we denote the set of rep-
resentatives of equivalence classes of all I/O histories defined from Fun, Var
and Pred as $I/Ohist$.

Def. 15
Let H : $-GU$ be an I/O history. If U is a substitution form or a test

form for al} $<\sigma|U>\in GU$, then H $:-GU$ is a successful history. If there is
$a<\sigma|U>such$ that $Uis\perp$, then $H:-GU$ is a unsuccessful history.

$I/Ohist$ is divided into two disjoint subsets, $I/Ohist_{\infty}$: the set of all
successful histories and $I/Ohist_{\perp}:$ the set of all unsuccessful histories.
Def. 16

9

230

Any subset of $I/Ohist_{\infty}$ is an ∞ interpretation. Any subset of $I/Ohist_{\perp}$

is $a\perp$ interpretation.
Def. 17

Let t be an I/O history and g be a goal. H : $-GU$ is a tmce of g if the
following (1),. ..,(3) hold.

(1) There exists an ω -substitution σ such that $\sigma H=g$.

(2) For any $<\theta|U>\in GU,$ $\theta\subset\sigma$.

(3) For any $<\theta|U>\in GU$, if U is a substitution form $X=\tau_{)}$ then
σ does not instantiate X , and if U is a test form then $\sigma X=\sigma\tau$.

σ does not instantiate a variable X if $\sigma X=Y(Y\in Var)$ and there does
not exist Z such that $\sigma Z=Y$ except X .

Let t be a trace of a goal g . If t is a successful history, it is a successful
trace of g . If t is a unsuccessful history, it is a unsuccessful tmce of g .
Def. 18

Let I_{\perp} be $a\perp interpretation$ and g be a goal. g is true on I_{\perp} if there exists
an ω -substitution, σ and there exists an unsuccessful Crace of $\sigma g\in I_{\perp}$. g

is true on a successful interpretation I_{∞} when there exists a successful trace
of $\sigma g\in I_{\infty}$ for some w-substitution: σ .
Def. 19

Let I_{∞} be a successful interpretation and $g_{1},$ \ldots,g_{n} be a goal clause.
$g_{1},$ $\ldots,$ g_{n} is true on I_{∞} if there exists a trace $t_{i}\in I_{\infty}$ for every $\sigma g_{i}(1\leq$

$i\leq n)$ for some w-substitution: σ , and there exists a synchronized merge
$GU_{1}||\ldots||GU_{n}$ where $GU_{1},$

$\ldots,$
GU_{n} are body parts of $t_{1},$

\ldots , t_{n} .

The empty goal clause is true on any successful interpretation.
Def. 20

Let I_{\perp} be $a\perp interpretation$ and I_{∞} be a ∞ interpretation. I_{∞} and I_{1}

is consistent if for any 0 such that $\sigma\subset\theta$, if I_{∞} dose not contain any trace of
θH then

H $:-<\sigma|\perp>\in I_{\perp}$.
Let $(I_{\perp}, I_{\infty}.)$ be a consistent tuple $of\perp$ interpretation I_{\perp} and I_{∞} inter-

pretation I_{∞} .
Def. 21

10

231

A goal clause $g_{1},$ \ldots,g_{n} is true on \langle $1_{\perp},$ I_{∞} } if there exists an $\omega-substi-$

tution: σ such that for each $g_{i}(1\leq i\leq n)$, a trace of σg_{i} : t_{i} is in $I_{\perp}\cup I_{\infty}$,
there exists $j(1\leq j\leq n)$ such that $t_{j}\in I_{\perp}$ a,nd there exists a synchronized
merge $GU_{1}||\ldots\Vert GU_{n}$ where $GU_{1},$

$\ldots,$
GU_{n} are body parts of $t_{1},$ \ldots,t_{n} .

The empty goal clause is false on any $\langle I_{\perp}, I_{\infty}\rangle$.
Def. 22

A guarded clause:

H $:-U_{g1,}U_{gm}|U_{b1},$
$\ldots,$

$U_{bh},$ $B_{1},$
$\ldots,$

B_{k}

is true on { $I_{\perp},$ I_{∞}) if the following condition is true.
If there exists an ω -substitution: σ which does not instantiate variables

which are invisible from outside through H and makes $B_{1},$
$\ldots,$

B_{k} true and
GU is a guarded stream then:

$H:-GU\in I_{\perp}$,

where GU is a set of guarded unifications such as:

$GU=\{<\{U_{g1},\ldots, U_{gm}, \}|U_{b1}>,)<\{U_{g1}, \ldots, U_{gm}, \}|U_{bh}>\}\cup$

$((GU_{1}||\ldots\Vert GU_{k})M\{U_{g1}, \ldots, U_{gm}\})\downarrow Var(H)$

and GU_{i} is a body part of a trace $(\in I_{\perp}\cup I_{\infty})$ of a goal σB_{i} .

ω-success set of program D is the maximum model of D defined in
[Murakami 88].
Def. 23

Let D be a GHC program, $1\uparrow l_{\infty}^{D}$ be the ω -success set of D . $\perp interpre-$

$ta,tion:I_{\perp}$ is $a\perp model$ of D if following conditions are true.

(1) I_{\perp} and M_{∞}^{D} is consistent.

(2) All clause in D is true on $\langle I_{\perp}, M_{\infty}^{D}\rangle$.

(3) $]_{\lrcorner}etH$: $-U_{g1)}\ldots,$ U_{gm} } $U_{b1)}\ldots,$ $U_{bh},$ $B_{1},$
$\ldots,$

$B_{k}\in D$, and σ be
a ω -substitution. For any ω -substitution: θ such tha,$t\sigma\subseteq\theta$

a,nd 0 does not instantiate va,riables whiclt are invisible from H , if
$0’B_{1},$. $.,$ $,$

$\theta’B_{k}$ is not true on $17\ell_{\infty}^{D}$ where $0’=\theta\cup\{U_{g1}, \ldots, U_{gm}\}\cup$

$\{U_{b1}, \ldots, U_{bh}\}$ then

H $:-<\sigma\cup\{U_{g1,}U_{gn}\}U\{U_{b1)}\ldots, U_{bh}\}|\perp>\in J_{\perp}$.

11

232

The following proposition is easy to show from the definition of models.
Prop. 1

Let $M_{i}(i\in Ind)$ be a class $of\perp$ models of D for a set of indices Ind .
Then,

$\bigcap_{i\in Ind}M_{i}$

is also $a\perp model$ of D .

From Prop. 1, it is easy to show that there exists a unique $least\perp model$

for a given D . The least $\perp model$ of D is the failure/deadlock set of D and
denoted as M_{\perp}^{D} . The semantics of D is defined with $\langle M_{\perp}^{D}, M_{\infty}^{D}\rangle$.

4 Conclusion: Relation to the Operational
Semantics

This paper presented a new model theoretic semantics for Flat GHC pro-
grams based on ω -success set and failure/dea,dlock set.

We defined the notion of true for goal clauses and sets of guarded clauses
to characterize failure/deadlock of programs. We denote failure/deadlock
with the symbol \perp . Note that \perp does not mean that failure/deadlock has
happened at this moment. $\perp mea,ns$ that a goal made a commit which makes
deadlock/fail unavoidable. In other words a goal clause is true on ($M_{\perp}^{D},$ $M_{\infty}^{D}\rangle$

if and only if a subgoal g can be spawned which makes a commit such that
any instantiation to the arguments of g cannot keep the computation from
failure/deadlock any longer. Actua,lly fail/deadlock will happen within fnite
steps after the conlmit\cdot.

Yet another model theoretic cha,racterization of failure/deadlock may
be possible. We expect further discussion on the characterization of fail-
ure/deadlock. A fixpoint characterization of the failure/deadlock set is also
expected in the future.

5 Acknowledgments

I would like to thank Dr. Furukawa, the researchers of the First Laboratory
of ICOT and Professor Levi of Universit\‘a di Pisa for their helpful discussions.

12

233

${\rm Re}$ferences
$|$

[Apt 82] K. Apt a.nd M. H. Van Emden, Contributions to the theory
of logic programming, J. Assoc. Comput. Mach. 29, (1982)

[Fa,la.schi 88] M. Fa,la.schi and G. Levi, Operationa,1 and fixpoint semantics
of a class of committed-choice logic langua.ges, Dipartimento
di Informatica, Universit\‘a di Pisa, Italy, Techn. Report, Jan-

. ua.ry 1988

[Levi 87] G. Levi and C. Palamidessi, An Approach to the Declarative
$Selnant\cdot,ics$ of Synchronization in Logic Languages, Proc. of
International Conf. on Logic $p_{rog\prime}ra_{1}nn1ing$ S7, 1987

[Levi 88] G. Levi, A new decla.rative semantics of Flat Guarded Horn
Clauses, ICOT Technical Report, 1988

[Lloyd 84] J. W. Lloyd,]$*\urcorner 0\iota\iota ndations$ of logic programming, Springer-
Verlag, 1984

[Maher 87] M. J. Ma.her, Logic Semantics for a $Cl\overline{a}ss$ of Committed-
Choice Progra.ms, Proc. of International Conf. on Logic Pro-
gra.$[nn]i_{1l}g$ S7, 1987

[Mura,kami 88] M. $\backslash 1/Itl\cdot a,1\backslash a.1\urcorner\urcorner i$, A New Declarative Semantics of Para.llel
$I_{r}ogic]_{1}^{)}\cdot og_{1}\cdot a,nls$ with Per_{1}) $etua1$ Processes, to appear in Int.
Con $1^{\cdot}.0||$ Fi $1^{\cdot}111$ Generation $Colnpntcr$ Systeni 1988, 19S8

[Sara,s wa.t S5] V. Λ . (
$\supset a1^{\cdot}t.SWi\iota.l$, Pa.rtial $c_{ollt_{arrow ctnessSelt1alt1,i}^{1}}(\overline{s}1^{\cdot}0\iota\cdot$

$(_{\vee}^{\sim_{I}},P[J,, |, \]$, $1_{rC_{J}^{-\backslash }}c\cdot,tnle$ Notes in Comp. Sci., No. 206, $J9$S5

[Sara,swat 87] V. A. Sa.ra.swat, The Concurrent logic programming CP: $del\cdot-$

i nition a.ncl opera,tiona,1 $sen\iota a,\iota llics,$ $I_{1}^{)}\cdot oc$. of ACM Symp. on
$1_{1}^{\supset}\cdot i_{I1(.I|)}1_{C^{-\backslash }}.,s$ oi‘ $P_{Iog_{1}\cdot a.ll1111}..ingI_{\dot{C}}\iota ng\iota\tau_{\dot{\mathfrak{c}}}\backslash .geb$, 1987

[$\urcorner.1^{\underline{t}^{\backslash }}$. Shiba.yiun $\iota.$, A Composi 1_{ι} iona.l Seina.11 $li_{C^{t^{\backslash }}}.01^{\cdot}C,11(:--$ Proc.
of $\angle Il1\iota(_{J}^{t}01-\neg.1SSS^{r}I^{\iota})J987$

$[Ue\mathfrak{c}1_{r\urcorner}. 8\llcorner\backslash]$ K. 1Jeda,, G ua.rded $HorJ1$ Cla.uses, MIT Press, 1988

13

$\ovalbox{\tt\small REJECT} 34$

[Ueda 88] K. Ueda, Transformation Rules for GHC Programs, to ap-
pear in Int. Conf.on Fifth Generation Computer System
1988, 1988

