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1 INTRODUCTION

In our monograph we have studied linear delay equations through the Laplace trans-
form. This method applied within the right framework turned out to be very useful.
This paper intents to present the main ideas. For complete proofs and extensions we
refer to our monograph [21] and our forthcoming paper [22].

We start to rewrite a retarded functional differential equation as a renewal equa-
tion and then use the renewal equation to derive an analytic continuation for the
Laplace transform of the solution. It turns out that this approach yields an easy proof
of the large time behaviour of the solutions. Moreover, careful analysis yields neces-
sary and sufficient conditions for completeness [20] and convergence results for series
of spectral projections [22].

In section 2 we obtain a more natural interpretation of the structural operators
which will be defined in a way which differs slightly from the one of Delfour and Man-
itius $[6, 7]$ , see Diekmann $[8, 9]$ . In section 3 we discuss the types of completeness one
can consider within this framework and we present necessary and sufficient conditions
for both completeness and F-completeness. In addition, we present some tools to ver-
ify pointwise completeness. FinaUy, section 4 contains the case $n=2$ which we will
work out completely.

Consider a linear autonomous retarded functional differential equation (RFDE)

$\dot{x}(t)=\int_{0}^{h}d\zeta(\theta)x(t-\theta)$ (1.1)
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satisfying the $initi_{-}aJ$ condition

$x(t)=\varphi(t)$ for $-h\leq t\leq 0$ , (1.2)

where $\varphi\in C=C[-h, 0]$ and the matrix-valued function $\zeta$ belongs to $NBV[0, h]$ , that
is, each element $\zeta;j$ is of bounded variation, satisfies $\zeta_{ij}(0)=0$ and is continuous from
the left.

In the study of the behaviour of the solution of the above RFDE it turns out to
be useful to rewrite the problem as a Volterra convolution integral equation (or, as it
is frequently called, a renewel equation).

We split up the integral to separate the part involving the known $\varphi$ from the part
involving the unknown $x$ :

$\dot{x}(t)=\int^{t}d\zeta(\theta)x(t-\theta)+\int^{h}d((\theta)\varphi(t-\theta)$

$=- \int_{0}^{t}d_{\theta}((t-\theta)x(\theta)-\int_{-h}^{0}d_{\theta}\zeta(t-\theta)\varphi(\theta)$

(recall that $\zeta$ is defined to be constant on $[h,$ $\infty$ )).
Next we integrate from $0$ to $t$ and obtain

$x(t)- \varphi(O)=-\int_{0}^{t}\int_{0}^{\sigma}d_{\theta}\zeta(\sigma-\theta)x(\theta)d\sigma-\int_{0}^{t}\int_{-h}^{0}d_{\theta}\zeta(\sigma-\theta)\varphi(\theta)d\sigma$.

So, because of [21; 2.7]

$x(t)- \varphi(O)=-\int_{0}^{t}d_{\theta}\int^{t}\zeta(\sigma-\theta)d\sigma x(\theta)-\int_{-h}^{0}d_{\theta}\int_{0}^{t}\zeta(\sigma-\theta)d\sigma\varphi(\theta)$

$=- \int_{0}^{t}\zeta(t-\theta)x(\theta)d\theta+\int_{-h}^{0}(\zeta(t-\theta)-\zeta(-\theta))\varphi(\theta)d\theta$ .

We summarize the end result of our manipulations as follows. The solution $x$ of (2.1)
satisfies the renewal equation

$x-(*x=f$, (1.3)

where $\zeta*x=\int_{0}^{t}((\theta)x(t-\theta)$ and

$f=F \varphi=\varphi(0)+\int_{-h}^{0}(((t-\theta)-((-\theta))\varphi(\theta)d\theta$ . (1.4)

REMARKS 1.1.

(i) The so-called forcing function $F\varphi$ defined by (1.4) is constant for $t\geq h$ and
absolutely continuous.
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(ii) The formula (1.4) makes perfect sense if $\varphi(0)$ is given as an element of $R$ “ while
$\varphi(\theta)$ for $-h\leq\theta\leq 0$ is given as an integrable function. Moreover, Delfour and
Manitius $[6, 7]$ proved that $F\varphi$ is still absolutely continuous, although there is no
explicit formula for $\dot{F}\varphi$ anymore. Thus, the existence of the operator $F$ makes
it possible to extend the state space of (1.1) to $M_{p}=R^{n}\cross L^{p}[-h,0]$ . Following
Delfour and Manitius we call $F$ which differs slightly from the one they studied,
a structural operator.

(iii) Partial integration shows that the derivative of the solution of the linear au-
tonomous RFDE (1.1) also satisfies a renewal equation of the form

th $-\zeta*\dot{x}=h$ ,

where $h$ is defined on $[0, \infty$ ) and is constant on the interval $[h, \infty$ ). Diekmann
[8, 9, 10] extended his idea to associate a renewal equation with (1.1) into a con-
plete frame-work which shows the natural connection between different choices
for the state space of (1.1).

Next we derive the analytic continuation for the Laplace transform of the solution
$x($ . ; $f)$ of equation (1.1). Since $e^{\gamma}x(\cdot ; f)\in L^{1}$ , we can Laplace transform the equation
to obtain for $\Re(z)>\gamma$

$L \{x\}(z)=\Delta^{-1}(z)(f(h)+z\int_{0}^{h}e^{-z\ell}(f(t)-f(h))dt)$ , (1.5)

where $\Delta(z)$ denotes the characteristic matrix

$\Delta(z)=zI-\int_{0}^{h}e^{-z\ell}d((t)$ . (1.6)

The expression at the right hand side of (1.5) yields the analytic continuation of $L\{x\}$

to the whole complex plane. We denote this analytic continuation by $H_{f}(z)$ . In order
to be able to apply the Laplace inversion formula we first have to analyse the inverse
$\Delta^{-1}(z)$ of the characteristic matrix (1.6). See [21] for the details.

LEMMA 1.2. The determinant of the $ch$aracteristic matrix $\Delta(z)$ , can be written as
follows

$\det\Delta(z)=z^{n}-\sum_{j=1}^{n}\int_{0}^{jh}e^{-zt}d\eta_{j}(t)z^{n-j}$ . (1.7)

LEMMA 1.3. There exist constants $C_{1},$ $C_{2}>0$ such that

$|\det\Delta(z)|\geq C_{2}|z|^{n}$

for $|z|\geq C_{1}|e^{-hz}|$ .
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$Co$ROLLARY 1.4. The entire $func$tion $\det\Delta(z)$ has no zeros in the domain

$\{z:|z|>C_{1}e^{-h\Re(z)}\}$

for $C_{1}$ suMcien$tIy$ Iarge. Conseq uen $tIy$, there are only finite$Iy$ many zeros in each strip

$-\infty<\gamma_{1}<\Re(z)<\gamma_{2}<\infty$

an$d\det\Delta(z)h$as a zero free right half plan$e\Re(z)>\gamma$ .

Now we turn to a representation for $\triangle^{-1}(z)$ . Rewrite

$\Delta^{-1}(z)=\frac{adj\triangle(z)}{\det\Delta(z)}$ (1.8)

where $adj\triangle(z)$ denotes the matrix of cofactors of $\triangle(z)$ , i.e. the coefficients of adj $\Delta(z)$

are the $(n-1)\cross(n-1)$ subdeterminants of $\triangle(z)$ . Because of the exponential type
calculus presented in Chapter 4 of [21] we have the following representation for the
cofactors:

$( adj\Delta(z))_{ij}=\delta_{ij}z^{n-1}+\sum_{k=1}^{n-1}\int_{0}^{kh}e^{-zt}d\eta_{ijk}(t)z^{n-1-k}$ , (1.9)

where

$\delta_{ij}=\{\begin{array}{l}lfori=j0fori\neq j\end{array}$

Rewrite equation (1.5) as follows

$L \{x\}(z)=\frac{adj\triangle(z)}{\det\Delta(z)}(f(0)+\int_{0}^{h}e^{-zt}df(t))$ . $-(1.10)$

Using Corollary 1.4 we can choose $\gamma$ such that $\det\triangle(z)$ has no zeros in the right half
plane $\Re(z)>\gamma$ . Hence, the Laplace transform $L\{x\}$ is analytic in this half plane.
So, from the Laplace inversion theorem, we obtain the following representation for the
solution $x=x($ . ; $f)$ of the renewal equation (1.3)

$x(t)= \frac{1}{2\pi i}\int_{L(\gamma)}e^{zt}\frac{adj\Delta(z)}{\det\Delta(z)}(f(0)+\int_{0}^{h}e^{-zt}df(t))dz$ for $t>0$ . (1.11)

Next we analyze the singularities of

$H(z,t)=e^{zt} \frac{adj\triangle(z)}{\det\triangle(z)}(f(0)+\int_{0}^{h}e^{-z\ell}df(t))$ . (1.12)

Clearly the only singularities are poles of finite order, given by the zeros of $\det\Delta(z)$ .
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LEMMA 1.5. If $\lambda_{j}$ is a zero of $\det\triangle(z)$ of order $m_{\lambda_{j}}$ , ffien the residue of $H(z, t)$ for
$z=\lambda_{j}$ equals

${\rm Res} H(z, t)=p_{j}(t)e^{\lambda_{j}t}$ , (1.13)
$z=\lambda_{j}$

where $p_{j}$ is a polynomial in $t$ of degree less than or equal to $(m_{\lambda_{j}}-1)$ .

Denote the zeros of $\det\Delta(z)$ by $\lambda_{1},$ $\lambda_{2},$
$\ldots$ . Using Corollary 1.4 we can define a

sequence $\{\gamma\iota\}$ such that the nunber of zeros of $\det\triangle(z)$ with real part strictly between
$\gamma\iota$ and $\gamma$ equals $l$ . Define $\Gamma(\gamma,\gamma_{l})$ to be the closed contour in the complex plane, which
is composed of four straight lines and connects the points $\gamma_{l}-iN,$ $\gamma-iN,$ $\gamma+iN$ , and
$\gamma_{l}+iN$ , where $N$ is larger than $\max_{1\leq j\leq l}|\Im(\lambda_{j})|$ .

From the above lemma and the Cauchy theorem of residues we obtain

$\frac{1}{2\pi i}\int_{\Gamma(\gamma,\gamma_{l})}H(z, t)dz=\sum_{j=1}^{l}p_{j}(t)e^{\lambda_{j}\ell}$ . (1.14)

In order to be able to shift the contour $L(\gamma)$ to $L(\gamma_{l})$ we have to derive estimates for

$|H(\sigma+i\omega;t)|$ for large values of $|\omega|$ .

LEMMA 1.6. $If-\infty<\gamma\iota<\gamma<\infty$ . Th en

$\lim|H(z, t)|=0$
$|z|arrow\infty$

uniformly in $\gamma\iota\leq\Re(z)\leq_{f}\gamma$ .

From equation (1.14) and the above lemma we obtain by taking the limit $Narrow\infty$

in (1.14) that

$x(t)= \sum_{j=1}^{l}p_{j}(t)e^{\lambda_{j}t}+\frac{1}{2\pi i}\int_{L(\gamma_{l})}H(z,t)dz$. (1.15)

So it remains to prove estimates for the remainder integral and we derive the foUowing
result [21; 6.12].

THEOREM 1.7. Fix some $\gamma\in R$ such that $\det\triangle(z)\neq 0$ on $L(\gamma)$ . Then we have the
foIIowi$ng$ asymptoti$c$ expansion for the $solu$ tion $x$ of the $re$newal equation (1.3)

$x(t)= \sum_{\Re(\lambda_{j})>\gamma}p_{j}(t)e^{\lambda_{j}t}+o(e^{\gamma\ell})$
as $tarrow\infty$ . (1.16)
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2 THE STRUCTURAL OPERATORS F AND $G$

In a natural way, through translation along the solution we can associate strongly
continuous semigroups with (1.1) and (1.3). Define $T(t)$ : $Carrow C$ by

$T(t)\varphi=x_{t}(\cdot ; \varphi)$, (2.1)

where $x_{t}(\theta)=x(t+\theta)$ for $-h\leq\theta\leq 0$ . Suggested by Remark l.l(i) we define
the forcing function space for (1.3) to be $\mathcal{F}$, the supremum normed Banach space of
continuous functions on $[0, \infty$) which are constant on $[h, \infty$ ). Define $S(t)$ : $\mathcal{F}arrow \mathcal{F}$ by

$S(t)f=x^{t}-(*x^{t}$ , (2.2)

where $x^{t}(s)=x(t+s)$ for $0\leq s<\infty$ .
In addition to $F$ : $Carrow \mathcal{F}$ we can also define a structural operator $G$ : $\mathcal{F}arrow C$

from the renewal equation (1.3) into the RFDE (1.1) by

$Gf=x(\cdot+h;f)$ , (2.3)

i.e. $G$ translates the solution of (1.3) corresponding to $f$ backwards over a distance $h$ .
It is easy to verify that $G$ is injective and onto. We formulate the result in a proposition
to show the interplay between the structural operators and the semigroups.

PROPOSITION 2.1.

(i) $FT(t)=S(t)G$;
(ii) $FG=S(h)$ ;
(iii) $GF=T(h)$ ;
(iii) $T(t)=GS(t)G^{-1}$ .

The infinitesimal generator for $T(t)$ is given by $A\varphi=\dot{\varphi}$ defined on

$\mathcal{D}(A)=$ { $\varphi\in C:\dot{\varphi}\in C$ and $\dot{\varphi}(0)=\int_{0}^{h}d((\theta)\varphi(-\theta)$ }. (2.4)

There are important duality relations between the introduced $C_{0}$ -semigroups and
the structural operators. We describe the main result see Delfour and Manitius $[6, 7]$ ,
Diekmann $[8, 9]$ . Let $S^{T}(t)$ denote the $C_{0}$ -semigroup associated with the transposed
renewal equation

$x-(*x=f$,

where $f\in NBV[0, h]$ and constant on $[h, \infty$ ) and $T^{T}(t)$ the $C_{0^{-}}$ semigroup associated
with the transposed delay equation

$\dot{x}(t)=\int_{0}^{h}d\zeta^{T}(\theta)x(t-\theta)$ .

Similar as above we can introduce structural operators $F^{T}$ and $G^{T}$ .
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PROPOSITION 2.2.
(i) $F^{T}=F^{*}$ ;
(ii) $G^{T}=G^{*}$ .

Furthermore, the following duality principle holds

THEOREM 2.3. The $C_{0}$ -semigroups $T^{*}(t)$ and $S^{T}(t)$ are $equ$al.

Next we describe the spectrum of $A$ . Let

$\Delta(z)=zI-\int_{0}^{h}e^{-zt}d((t)$ (2.5)

denote the characteristic matrix associated with the RFDE (1.1) and let

$R(z, A)$ : $Carrow D(A)$

denote the resolvent
$R(z, A)=(zI-A)^{-1}$ (2.6)

of $A$ . The following theorem yields an explicit formula for the resolvent of $A$ .
THEOREM 2.4. If $\varphi\in C$ and if $\lambda\in C$ is such that $\det\Delta(\lambda)\neq 0$ . Then $\lambda\in\rho(A)$ an $d$

$R(\lambda, A)\varphi$ is given explici$tly$ by

$R( \lambda, A)\varphi=e^{\lambda t}\{\Delta^{-1}(\lambda)K(\varphi)-\int_{0}^{\ell}e^{-\lambda s}\varphi(s)ds\}$ , (2.7)

where

$K( \varphi)=\lambda\int_{0}^{\infty}e^{-\lambda t}F\varphi(t)dt$ . (2.8)

PROOF. Let $\psi=R(\lambda, A)\varphi$ . From the definition of $A$ it follows that
$(\lambda I-A)\psi=\varphi$

if and only if $\psi$ satisfies the conditions

(i) $\lambda\psi-\dot{\psi}=\varphi$ ;

(ii) $\lambda\psi(0)-\int_{0}^{h}d\zeta(\theta)\psi(-\theta)=\varphi(0)$;

(iii) $\dot{\psi}\in C$ .
Define

$\psi(t)=e^{\lambda t}\psi(0)+\int^{0}e^{\lambda(\ell-s)}\varphi(s)ds$, (2.9)

where $-h\leq t\leq 0$ . Then $\psi$ satisfies the conditions (i) and (iii). Also, condition (ii)
becomes

$\Delta(\lambda)\psi(0)=K(\varphi)$ . (2.10)

Since $\det\Delta(\lambda)\neq 0$ , we can solve
$\psi(0)=\Delta^{-1}(\lambda)K(\varphi)$ . (2.11)

1
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COROLLARY 2.5. The spectrum of $A$ is all point spectrum an$d$ is given by

$\sigma(A)=P\sigma(A)=\{\lambda\in C:\det\triangle(\lambda)\neq 0\}$ . (2.12)

PROOF. Because of the proof of Theorem 2.4 we have

$\{\lambda\in C:\det\Delta(\lambda)\neq 0\}\subset\rho(A)$ .

To prove the reverse inclusion choose $\lambda\in C$ such that $\det\Delta(\lambda)=0$ and define

$\varphi(t)=e^{\lambda t}\varphi^{0}$ for $-h\leq t\leq 0$ ,

where $\varphi^{0}\neq 0$ is an element of the nullspace of $\triangle(\lambda)$ . Then

$A\varphi=\dot{\varphi}=\lambda\varphi$ .

Therefore, we conclude that $\lambda\in P\sigma(A)$ . I

COROLLARY 2.6.

$\mathcal{N}((\lambda I-A))=$ { $\varphi\in C:\varphi(t)=e^{\lambda t}\varphi^{0}$ an $d\varphi^{0}\in \mathcal{N}(\Delta(\lambda))$ }.

Let $\varphi\in C$ be fixed and consider the function $R(z, A)\varphi$ as a function of $z$ . By
Theorem 2.4 we have that $R(z, A)\varphi$ is a meromorphic function with poles $\lambda$ satisfying
the equation

$\det\Delta(z)=0$ .

This property of $R(z, A)$ makes it possible to apply [19; V.10.1].

THEOREM 2.7. $If\lambda$ is a pole $ofR(z, A)$ of order $m$ . Then for some $k$ with $1\leq k\leq m$

(i) $N((\lambda I-A)^{k})=\mathcal{N}((\lambda I-A)^{k+1})$ ;

(ii) $\mathcal{R}((\lambda I-A)^{k})=\mathcal{R}((\lambda I-A)^{k+1})$ ;

(iii) $\mathcal{R}((\lambda I-A)^{k})$ is closed;

(iv) $C=\mathcal{N}((\lambda I-A)^{k})\oplus \mathcal{R}((\lambda I-A)^{k})$ ;

(v) The spectral projection $P_{\lambda}$ correspondin$g$ to the decomposition in (iv) can be
represented by the contour integral

$P_{\lambda} \varphi=\frac{1}{2\pi i}\int_{\Gamma_{\lambda}}R(z, A)\varphi dz$
, (2.13)

where $\Gamma_{\lambda}$ is a circle enclosing $\lambda$ but no other poin $f$ of the discrete set $\sigma(A)$ .

8



76

Let $\mathcal{M}_{\lambda}$ denote the generalized eigenspace $\mathcal{N}((\lambda I-A)^{m})$ corresponding to an
eigenvalue $\lambda$ of $A$ . By Theorem 2.4 and the definition of $A$ we have that elements of
$\Lambda t_{\lambda}$ involve combinations of

$t^{l}e^{\lambda t}d_{l}$ , (2.14)

where $l=1,2,$ $\ldots$ , $m$ and the constants $d_{l}\in R^{n}$ satisfy a system of linear equations.
So $\mathcal{M}_{\lambda}$ is finite dimensional and by using this system of linear equations one can
construct an explicit base for $\Lambda 4_{\lambda}$ that shows that the dimension of MA equals $m_{\lambda}$ ,
the multiplicity of $\lambda$ as zero of $\det\Delta(z)$ , see [12].

Let $Q_{\lambda}$ denote $\mathcal{R}((\lambda I-A)^{k})$ . Since the generator $A$ and the $C_{0}$-semigroup $T(t)$

commute, the linear subspaces $\mathcal{M}_{\lambda}$ and $Q_{\lambda}$ are $T(t)$-invariant. Before we continue with
the characterization of these $T(t)$-invariant subspaces, we first extend the equivaJence
between linear autonomous RFDEs and renewal equations (a similar result was proved
by Banks and Manitius [1]). As a consequence of this extension we can translate the
convergence results derived in [21] to results on spectral projection series for a state
of the RFDE (1.1).

PROPOSITION 2.8. The $\lambda_{j}$ -th term of the $Fouri$er type series expansion of $x($ . ; $f)$ of
the renewaI equation (1.3) $equ$als the $\lambda_{j}$ -th spect$ral$ projection of the corresponding
state of th $e$ RFDE (1.1), i.e.

$P_{\lambda_{j}}(Gf)(t-h)={\rm Res}_{z=\lambda_{j}} \{e^{zt}\triangle^{-1}(z)z\int^{\infty}e^{-zt}f(t)dt\}$ . (2.15)

As a result of the above proposition, residue calculus of the renewal equation and
analysis of the spectrum of the resolvent $R(z, A)$ yield the same information. The only
difference is that instead of the solution $x$ we now analyze the state $x_{\ell}=x(t+\theta)$ as a
function on the interval $[-h, 0]$ . In Theorem 1.7 we derived an exponential estimate for
the remainder term of $x($ . ; $f)$ and of course at the same time this yields an estimate
for the state

$T(t)Gf=x_{t}(\cdot ; f)$ .

Recall fron Proposition 2.1 that the $C_{0}$ -semigroups are intertwined, i.e.

$T(t)=GS(t)G^{-1}$ . (2.16)

COROLLARY 2.9. $Let.\Lambda(\gamma)$ be the finite set of eigenvalues defined by

$\Lambda=\Lambda(\gamma)=\{\lambda\in\sigma(A) : \Re(\lambda)>\gamma\}$.

Then the state space $C$ can be deco$mp$osed into two closed $T(t)$-invariant subspaces
$\mathcal{M}_{\Lambda}$ and $Q_{\Lambda}$

$c=\prime v_{\Lambda}\oplus Q_{\Lambda}$ , (2.17)
where
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$\mathcal{M}_{\Lambda}=\oplus \mathcal{M}_{\lambda}$

$\lambda\in\Lambda$

and
$Q_{\Lambda}= \bigoplus_{\lambda\in\Lambda}Q_{\lambda}$

.

The spectral $p$rojection $P_{\Lambda}$ on $\mathcal{M}_{\Lambda}$ is give$n$ by

$P_{\Lambda}= \sum_{\lambda\in\Lambda}P_{\lambda}$
.

Besides, if
$\varphi=P_{\Lambda}\varphi+(I-P_{\Lambda})\varphi$ ,

accordi$ng$ to the above decomposition. Then

$\Vert T(t)(I-P_{\Lambda})\varphi||\leq Ke^{\gamma t}||(I-P_{\Lambda})\varphi\Vert$ (2.18)

for some positi$ve$ constan$tK$ an$dt\geq 0$ .

Assume that all roots have negative real part, then we can choose $\gamma<0$ in
Corollary 2.9 and we derive exponential asymptotic stability: for all $\varphi\in C$

$||T(t)\varphi\Vert\leq Ke^{\gamma t}$ II $\varphi\Vert$ (2.19)

for some positive constant $K$ and negative $\gamma$ .

Let $\mathcal{M}_{C}$ denote the linear subspace generated by $\Lambda 4_{\lambda}$ , i.e.

$\mathcal{M}_{C}=\bigoplus_{\lambda\in\sigma(A)}\mathcal{M}_{\lambda}$
. (2.20)

This linear subspace is called the generalized eigenspace of $A$ .
DEFINITION 2.10. The generalized eigenspace $\mathcal{M}c$ is called complete if and only if
$\mathcal{M}_{C}$ is dense in $C$ , that is $\overline{\Lambda t}_{C}=C$ .

DEFINITION 2.11. A small solution $x$ of (1.1) is a solution $x$ such that

$\lim_{tarrow\infty}e^{kt}x(t)=0$

for all $k\in R$ .
We can now characterize the subspace $\mathcal{N}(T(\alpha))$ .

THEOREM 2.12.

$\mathcal{N}(T(\alpha))=$ { $\varphi\in C:z\vdash*R(z,$ $A)\varphi$ is entire}.
PROOF. From Theorem 2.4 it follows that only the fact

$\varphi\in \mathcal{N}(T(\alpha))$ if and only if $x(\cdot ; F\varphi)$ is a small solution

remains to be proved. But this is clear from the definitions of $F$ and $\alpha$ . El
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From the exponential estimates derived in Corollary 2.9 we can also characterize
the dosed subspace

$\bigcap_{\lambda\in\sigma(A)}Q_{\lambda}$
. (2.21)

COROLLARY 2.13.
$\cap$ $Q_{\lambda}=\mathcal{N}(T(\alpha))$ .

$\lambda\in\sigma(A)$

PROOF. Let $\varphi\in \mathcal{N}(T(\alpha))$ . From Theorem 2.12 and the representation (2.15) we
derive for all $\lambda\in\sigma(A)$

$P_{\lambda}\varphi=0$ .

Hence
$\varphi\in$ $\cap$ $Q_{\lambda}$ .

$\lambda\in\sigma(A)$

On the other hand if $\varphi\in\bigcap_{\lambda\in\sigma(A)}Q_{\lambda}$ , then we derive from Corollary 2.9 the exponen-
tial estimate

$||T(t)\varphi||\leq Ke^{\gamma\ell}$ for $t\geq 0$ (2.22)

for every $\gamma\in R$ and some positive constant $K$ . Therefore, $x($ . ; $\varphi)$ is a small solution
and Henry’s theorem on small solutions yields $\varphi\in \mathcal{N}(T(\alpha))$ . I

3 TYPES OF COMPLETENESS

DEFINITION 3.1. An entire function $F$ : $Carrow C$ is of order 1 if and only if

$\lim_{farrow}\sup_{\infty}\frac{\log\log M(r)}{\log r}=1$ , (3.1)

where
$M(r)=0 \leq\theta\leq 2\pi\max\{|F(re^{i\theta})|\}$ . (3.2)

An entire function of order 1 is of exponential type if and only if

$\lim_{farrow}\sup_{\infty}\frac{\log M(r)}{r}=E(F)$ , (3.3)

where $0\leq E(F)<\infty$ . In that case $E(F)$ is called the exponential type of $F$ . A
vector-valued function $F=(F_{1}, \ldots, F_{n}):Carrow C^{n}$ will be called an entire function of
exponential type if and only if the components $F_{j}$ of $F$ are entire functions of order 1
that are of exponential type. Furthermore, the exponential type will be defined by

$E(F)=1\leq j\leq n\max E(F_{j})$ . (3.4)

11
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Next we shall give a characterization of the smallest possible time $t_{0}$ such that all
small solutions vanish for $t\geq t_{0}$ . This characterization of $t_{0}$ is needed in order to es-
tablish the results concerning completeness of the system of generalized eigenfunctions
which we present shortly.

The function $\det\Delta(z)$ is an entire function of exponential type less than or equal
to $nh$. Define $\epsilon$ by

$E(\det\triangle(z))=nh-\epsilon$ . (3.5)

Let $adj\Delta(z)$ denote the matrix of cofactors of $\Delta(z)$ . Since the cofactors $C_{ij}(z)$ are
$(n-1)\cross(n-1)$-subdeterminants of $\Delta(z)$ , it follows that the exponential type of the
cofactors is less than or equal to $(n-1)h$. Define $\sigma$ by

$1 \leq i,j\leq n\max E(C_{ij})=(n-1)h-\sigma$ . (3.6)

LEMMA 3.2. If $\epsilon>0$ , then $\sigma<\epsilon$ .

PROOF. Suppose $\sigma=\epsilon$ . We shall calculate $E(\det adj\triangle(z))$ in two different ways.
Since $\sigma=\epsilon$ we have

$E(\det adj\triangle(z))\leq n((n-1)h-\epsilon)$

(3.7)
$=(n-1)(nh-\epsilon)-\epsilon$ .

Using the exponential type calculus [21]

$E(\det adj\triangle(z))=E$ ( $(\det$ A $(z))^{n-1}$ )
(3.8)

$=(n-1)(nh-\epsilon)$ .

Hence
$(n-1)(nh-\epsilon)\leq(n-1)(nh-\epsilon)-\epsilon$ , (3.9)

which is a contradiction if $\epsilon>0$ . 1

We can now state and prove a sharp version of Henry’s theorem on small solutions
[20] for the RFDE (1.1). See also [21; 10.11].

THEOREM 3.3. The ascent $\alpha$ of the $C_{0}$ -semigroup $\{T(t)\}$ associated with the RFDE
(1.1) is finite an $d$ is given by

$\alpha=\epsilon-\sigma$ . (3.10)

Using Lemma 3.2 we have the following corollary.

COROLLARY 3.4. The $C_{0}$ -semigroup $\{T(t)\}$ associated with the RFDE (1.1) is injec-
tive if and only if $E(\det\triangle(z))=nh$ .

COROLLARY 3.5. The ascen$t\alpha$ of $T(t)$ and the ascent $\delta$ of $T^{*}(t)$ are $equal$.

12
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PROOF. Using the duality principle Theorem 2.4 the corollary is dear since

adj $\Delta(z;\zeta)=adj\triangle(z;\zeta^{T})$

and hence $\epsilon^{T}=\epsilon$ and $\sigma^{T}=\sigma$ . I

The following corollary answers a question of Delfour and Manitius and extends
a result of Bartosiewicz [2].

COROLLARY 3.6. $\mathcal{N}(F)=\{0\}$ if an $d$ on$ly$ if $\mathcal{N}(F^{*})=\{0\}$ .

The following corollary yields an easy to verify necessary and sufficient condition
for completeness. The proof is a combination of Henry’s result $\overline{\mathcal{M}_{C}}=\overline{\mathcal{R}(T(\delta))}$ and
the above corollaries.

COROLLARY 3.7. The following statemen $ts$ are equivalen $t$ :
(i) The generalized eigenspace $\mathcal{M}_{C}$ is complete;
(ii) The ascent $\alpha=0$ ;
(iii) $\mathcal{N}(F)=\{0\}$ ;
(iv) $\mathcal{N}(F^{*})=\{0\}$ ;
(iv) $E(\det\triangle(z))=nh$ .
REMARK 3.8. Note, that Theorem 3.3 proves the existence of a small solution if
$E(\det\triangle(z))<nh$ .

Delfour and Manitius also introduced the concept of F-completeness. The gener-
alized eigenspace $\mathcal{M}_{C}$ is called F-complete if

$\overline{F\mathcal{M}_{C}}=\overline{\mathcal{R}(F)}$. (3.11)

They proved that F-completeness holds if and only if $\mathcal{N}(T^{*}(\delta))=\mathcal{N}(F^{*})$ , that is,
if and only if $\delta\leq h$ . So, we have

COROLLARY 3.9. $\mathcal{M}_{C}$ is F-complete if an $d$ only if $\epsilon-\sigma\leq h$ .
EXAMPLE 3.10. Consider the following system of differential-difference equations

di 1 $(t)=-x_{2}(t)+x_{3}(t-1)$

$\dot{x}_{2}(t)=x_{1}(t-1)+x_{3}(t-\frac{1}{2})$ (3.12)

$\dot{x}_{3}(t)=x_{3}(t)$ .

Then the characteristic matrix becomes

$\Delta(z)=(\begin{array}{lll}z 1 -e^{-z}-e^{-z} z -e^{-\tau^{z}}10 0 +z1\end{array})$ (3.13)

with determinant
$\det\Delta(z)=(z+1)(z^{2}+e^{-}’)$ . (3.14)
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Therefore,
$\epsilon=2$ .

Since the cofactor
$C_{23}(z)=-|\begin{array}{ll}z -e^{-z}-e^{-z} -e^{-1}\tau^{z}\end{array}|$

(3.15)
$=ze^{-1}\tau^{z}+e^{-2z}$

has exponential type 2, we derive that $\sigma=0$ . Therefore, from Theorem 3.3, the
ascent of the system (3.12) equals two. Thus there exists a (non trivial) small solution
$x=x($ . ; $\varphi)$ such that

$supp(x)=[-1,1]$ .

EXAMPLE 3.11. Consider the following system of differential-difference equations

$\dot{x}_{1}(t)=-x_{2}(t)+x_{3}(t)$

$\dot{x}_{2}(t)=x_{1}(t-1)+x_{3}(t-\frac{1}{2})$ (3.16)

$\dot{x}_{3}(t)=x_{3}(t)$ .

Then the characteristic matrix becomes

$\triangle(z)=(\begin{array}{lll}z l l-e^{-z} z -e^{-\frac{1}{2}z}0 0 +z1\end{array})$ (3.17)

with determinant
$\det\triangle(z)=(z+1)(z^{2}+e^{-z})$ . (3.18)

Therefore,
$\epsilon=2$ .

Furthermore, in this case we derive $\sigma=1$ . Therefore, from Theorem 3.3, the ascent
of the system (3.16) equals one. Thus all small solutions are trivial, in the sense that
they are identical zero for $t\geq 0$ .

From Corollary 3.7 it follows that completeness of the generalized eigenfunctions
fails if and only if there are $c\in R^{n}$ and $q(z)= \int_{0}^{h}e^{-z\ell}\psi(t)dt$ with $\psi\in L^{2}[0, h]$ such
that

$\Delta^{-1}(z)[c+q(z)]=$ an entire function.

Hence, from the Paley-Wiener theorem

$\Delta^{-1}(z)[c+q(z)]=\int_{0}^{\tau}e^{-z\ell}x(t)dt$, (3.19)

where $x$ denotes the corresponding small soluti$cn$ with support $[0, \tau]$ and $\tau\leq\alpha$ . If
$E(\det\Delta(z))=nh$ , an exponential type consideration shows that both $c$ and $q$ must be
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zero. Theorem 3.3 now states that as soon as $E(\det\Delta(z))<nh$ we can find a couple
$c$ and $q$ . In the proof we did explicitly construct a pair.

Thus, the above results can be formulated as follows: If completeness of the
generalized eigenfunctions fails we can construct a pair $(c, q)$ so that (3.19) is satisfied.
We still have F-completeness as long as $\tau\leq h$ . If F-completeness fails too one night
check point-wise completeness, that is, the solution set at time $t$ : $\{x(t):x_{0}=\varphi\}$ fills
$R^{n}$ . Using the representation of the solution through the fundamental solution, that is
the matrix-valued solution $U$ with initial data $U(O)=I$ and $U(t)=0for-h\leq t<0$
one can prove Kappel [14] : Pointwise completeness holds if and only if there is a
$0\neq c\in R$“ such that

$\triangle^{-1}(z)c=$ an entire function. (3.20)

In some special cases (for example point delays), there are necessary and sufficient
conditions on the matrices defining the kernel $\zeta$ but these conditions are difficult to
verify. We shall discuss a tool useful to verify pointwise completeness. First of all
it is clear that $\alpha>h$ is needed in order to have an entire solution of (3.20). Given
$\alpha>h$ one can analyze the chain of roots of both the numerator and the denominator
by studying the Newton polygons. This may give chains of roots that can not be
eliminated and hence (3.20) can not be entire.

To show the procedure we define a Newton polygon, see [21] for more information.
Consider an exponential polynomial

$H(z, w)=z^{n}+e^{l_{1}z}z^{n-1}+\ldots+e^{l_{n}z}$ , (3.21)

where $I_{0}=0$ and for $j=1,$ $\ldots,$
$n$ the exponents $I_{j}$ are nonnegative real numbers.

Assign to every term of (3.21) a point $A_{j}$ with coordinates $(I_{j}, n-j)$ .
DEFINITION 3.12. The Newton polygon associated with $H$ and denoted by $N(H)$ , is
defined by the polygon determined by the upper convex envelope of the set of points
$\{A_{j} : j=0,1, \ldots, n\}$ . The upper convex property implies that the slopes of the line
segments of the Newton polygon are negative and decrease.

Consider for Example 3.10 the first row of (3.20) that means we have to find
$c\in R^{3}$ such that

$\frac{P(z)}{\det\Delta(z)}=$ an entire function,

where

$P(z)=c_{1}z^{2}+(c_{1}-c_{2}+c_{3}e^{-z})z-c_{3}e^{-z/2}$

and
$\det\Delta(z)=z^{3}+z^{2}+ze^{-z}+e^{-z}$ .

Therefore, the slope of the Newton polygon of $\det\Delta(z)$ equals $-1/2$ but the slope of
the Newton polygon of $P$ equals-l unless $c_{3}=0$ . If $c_{3}=0$ then $P$ is a polynomial and
cannot cancel the roots of $\det\Delta(z)$ , hence we can assume the slope Newton polygon of

15



83

$P$ to be-l, but if the polygons have different slopes then the characterization of the
chains of roots of exponential polynomials, Bellman and Cooke [3; 12.10] shows that $P$

cannot cancel the roots of $\det\Delta(z)$ . (The chains of roots of an exponential polynonial
are given by $|ze^{-\mu_{r}z}|=C$ , where $\mu_{f}$ runs over the slppes of the line segments of the
Newton polygon and $C$ is a positive constant).

Using this method it is easy to show that if $n=2$ and $E(\det\Delta(z))>0$ then
pointwise completeness always holds for any RFDE, see also Popov [17] for the case
of one point delay.

THEOREM 3.13. Given a linear autonomous RFDE. If $n=2$ an$dE(\det\Delta(z))>0$

then the system is poin $t$wise complete.

PROOF. In order to have

$\Delta^{-1}(z)c=$ an entire function

we clearly need $E(\det\Delta(z))<h$ (One can also use the fact that for $E(\det\triangle(z))\geq h$

completeness holds and hence pointwise conplete holds too). Since for $n=2$ the
cofactors are just the coefficients there has to be one cofactor with exponential type
$h$ . Therefore, the numerator has positive type greater than $E(\det\Delta(z))$ , but since
$E(\det\Delta(z))<h$ the slopes of the Newton polygons of $\det\Delta(z)$ and the numerator
cannot be the same for any choice of $c_{1}$ and $c_{2}$ . Thus pointwise completeness holds if
$E(\det\Delta(z))>0$ . I

The case $E(\det\Delta(z))=0$ is not completely clear, in the case of one point delay,
pointwise completenss still holds if $E(\det\triangle(z))=0$ . So far one has to check if a $c\neq 0$

exists, but since in this case $\det\triangle(z)$ reduces to a polynomial there are only a finite
number of possibilities to check. For higher dimensional systems the situation is even
less clear. For $n=3$ a careful analysis lead us to the conjecture that $E(\det\Delta(z))$

must be zero in order for pointwise completeness to fail (compare the counter example
by Popov), but this is by no means a general statement since one can make a 4-
dimensional system out of Popov’s example and a decoupled additional equation to
get $E(\det\Delta(z))=h$ and pointwise completenss still fails.

We conclude this section with a convergence result for the spectral projection
series [21]. Although there are convergence results for $t>0$ we present here only a
convergence result for $t>h$ . From the application point of view this is quite natural.
The initial condition $\varphi$ is given and hence, there is no need to expand $T(t)\varphi$ for $t\leq h$

in a spectral projection series. Of course, if one would like to study the $cl6sure$ of
the set of generalized eigenfuctions series expansions of $T(t)\varphi$ for $t>0$ are needed.
This is done in [21] where we proved a complete characterization of the closure of the
generalized eigenspace $\overline{\mathcal{M}_{C}}$ .
THEOREM3.14. If

$N(zadj\Delta(z))\leq N(\det\Delta(z))$ (3.22)

and if $\varphi\in C$ such that $\varphi$ is IocaIIy of bounded variation. Then for every $\epsilon>0$ the
state $T(h+\epsilon)\varphi$ can be represenfed by a convergent spectral projection series.

16



. 84

4 AN EXAMPLE: THE CASE $n=2$

As an illustration of the general theory we consider a two-dimensional system

$\dot{x}(t)=Ax(t)+Bx(t-1)$ . (4.1)

The characteristic matrix of (4.1) becomes

$\Delta(z)=(\begin{array}{ll}z-a_{11}-b_{11}e^{-z} -a_{12}-b_{12}e^{-z}-a_{21}-b_{21}e^{-z} z-a_{22}-b_{22}e^{-z}\end{array})$ (4.2)

and the determinant $\det\Delta(z)$ satisfies

$\det\Delta(z)=z^{2}-(a_{11}+a_{22}+(b_{11}+b_{22})e^{-z})z-q(z)$ , (4.3)

where

$q(z)=|\begin{array}{ll}a_{11} a_{12}a_{21} a_{22}\end{array}|+(|\begin{array}{ll}a_{11} b_{12}a_{21} b_{22}\end{array}|+|\begin{array}{ll}b_{11} a_{12}b_{21} a_{22}\end{array}|)e^{-z}+|\begin{array}{ll}b_{11} b_{12}b_{21} b_{22}\end{array}|e^{-2z}$ (4.4)

and $|\cdot|$ denotes the determinant of the matrix. Therefore $E(\det\Delta(z))=2$ if and only
if $\det(B)\neq 0$ and hence

THEOREM 4.1. The system of $gen$eraliz$ed$ eige$nfunc$tion$s$ is complete if and only if
$\det(B)\neq 0$

Note that $\sigma=0$ and so the ascent $\alpha=\epsilon=2-E(\det\Delta(z))$ . Furthermore, if
$\det(B)=0$ but $trace(B)=b_{11}+b_{22}\neq 0$ then we still have F-completeness. In fact,
for this special class of two dimensional systems with one point delay we conclude that
F-completenss holds if and only if the characteristic equation has an infinite number
of roots. This is special, it is easy to construct a two dimensional system with two
time delays so that the characteristic equation has an infinite number of roots but
F-completenss fails [21; 13.3].

To study the convergence of the spectral projection series we have to consider two
cases: If completeness holds or F-completeness with $trace(B)\neq 0$ then (3.22) holds
and for $\varphi$ locally of bounded variation $T(h+\epsilon)\varphi$ has a convergent spectral projection
series for every $\epsilon>0$ . If $trace(B)=0$ , then a more careful analysis is required which
results in either more smoothness requirements of $\varphi$ or replacing $h$ be alarger number.
The analysis uses the characterization of the closure of the generalized eigenspace [21].
In general, one can only say that for $\varphi$ locally of bounded variation $T(2h+\epsilon)\varphi$ has a
convergent spectral projection series for every $\epsilon>0$ .
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