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Abstruct. The semiclassical coherent state path integral developed by Klauder is evaluated numerically
for a chaotic system (the kicked rotator). This evaluation needs the complexfied classical dynamics of the
system and involves a proper treatment of the Stokes phenomenon caused by a new caustic, named \langle \langle Phase
Space Caustic (PSC) )\rangle . It is revealed that the chaotic natute of the dynamics produces PSC’s. This
investigation suggests that complex classical mechanics has a clear physical reality.

\S 1. INTRODUCTION

The investigation of classical chaos in Hamiltonian systems has been continued more than one centry
and we have already gotten a lot of butiful knowledge on it (see, for example, Poincare [1], Moser [2], Arnold
[3], Lichtenberg and Lieberman [4]). This investigation will surely be continued far into the future.

On the other hand, the investigation of quantum chaos in Hamiltonian systems is still in a yong stage
and is rapidly growing now. This is partially because quantum mechanics itself has a shorter history than
classical mechanics and is partially because huge numerical computations, which became possible in this ten
years according to the rapid development of computer technology, are indispensable to inspecting complicated
quantum systems.

At the present time, we have no mathematical definition of quantum chaos yet, in contrast with fairly
good mathematical definitions of classical chaos, which are due to the number of integrals, Lyapunov exponent
and so on. Without the defination of quantum chaos, how we can investigate the ability of quantum systems to
produce complexities ? By the usage of the corresponding principle, we can. Namely, if a classical hamiltonian
system is chaotic and exhibits complex behaviors, then it is expected that in the limit $\hslasharrow 0$ the corresponding
quantum Hamiltonian system also exhibits complex behaviors. The numerical computations performed in
the past ten years actually confirmed that when a classical system is chaotic, the corresponding quantum
system surely exibits complex behaviors shch as the random distributions of energy eigenvalues, the absence
of good quantum numbers except energy, the random phase profile of eigenfunctions, the entanglement of
time-evolved wave functions, and so on. Thus we can practically define “quantum chaos” as the behavior of
the quantum system, with small $\hslash$ , corresponding to a classical chaotic system. We have already excelent
reviews on quantum chaos (for example, Berry [5]).

In many cases, direct simulations are used to investigate quantum chaos; we execute two simulations of
a system in paralell, one is based on classical mechanics and the other is based on quantum mechanics. Then
we compare the resuls of the two simulations. This method of investigation is very powerful and enables us
to explore unvisted areas of quantum mechanics. However, it is difficult to understand the mechanism of
quantum chaotic behaviors through direct simulations alone, because the results of classical and quantum
dynamics are obtained directly and separately and there are no internal connections between the results.

We have another method to investigate quantum chaos, namely, the semiclassical evaluation of path
integrals. The present research belongs to this class of investivation. As is well known, the paths dominating a
path integral in the semiclassical limit are nothing but the classical orbits satisfting the boundary condition
of the path integral. Thus, through the semiclassical evaluation of a path integral, we can extract the
essential aspects of quantum phenomena from classical information alone; namely, we can build an internal
connection between the classical and the quantum chaotic behaviors of a system. On the other hand, this
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method has only weaker power of computation than direct simulations. So, we see that these two methods
have complement abilities.

This short paper reports the first numerical application of the semiclassical coherent state path integral
developed by Klauder [6] to a chaotic system (the kicked rotator). Namely, we aim to understand the quantum
dynamics of a chaotic system in terms of the corresponding classical dynamics through the semiclassical
method of Klauder. In \S 2, we explain the model system and its classical, quantum and especially semiclassical
dynamics. \S 3 is devoted to the report of a numerical computation; we $c6mpare$ the phase space distribution
functions which are time-evolved according to classical, quantum and semiclassical dynamics. In \S 4, we
summary the obtained results briefly. Details of this research are so complicated that we report them in a
separate paper (Adachi [7]).

\S 2. MODEL SYSTEM AND ITS CLASSICAL/QUANTUM/SEMICLASSICAL DYNAMICS

Model System.

Throughout this report, we use the kicked rotator as the model system. The kicked rotator is described
by the Hamiltonian:

$H(q,p, t)= \frac{1}{2}p^{2}+K\cos q\sum_{n=-\infty}^{+\infty}\delta(t-n)$ , (2.1)

where $q$ and $p$ are position and momentum conjugate to each other, respectively, and $t$ is time. $K$ is a fixed
real parameter.

In this report, we do not impose the usual periodic boundary condition on the position $q$ for the system,
since if this periodic boundary condition were imposed, then the interference of wave function according to
the boundary condition would prevent the ideal observation of the intrinsic interference due to the \langle \langle folding
$\rangle\rangle$ operation of the chaotic dynamics, as will be seen in \S 3. Hence, the phase space is $\{(q,p)\}=R^{2}$ .

Classical Dynamics.

Applying the Hamiltonian equation to (2.1), we get the Classical Standard Map:

$T$ : $\{\begin{array}{l}+q_{n+1}=q_{n}p_{n+1}sp_{n+1}=p_{n}+Kinq_{n}\end{array}\}$ , for $n\in Z$ , (2.2)

where $q_{n}$ and $p_{n}$ are respectively the coordinate and the momentum just before the kick at the time $n$ :

$q_{n}=q(t=n-0),$ $p_{n}=p(t=n-0)$ , for $n\in Z$ . (2.3)

When $K$ exceeds the threshold value $K_{c}(\approx 0.97)$ , this classical system shows a diffusion along the
momentum direction due to the occurence of global chaos.

The time-evolved classical distribution function in the phase space $\rho^{CL}$ at the time $n$ is defined by

$\rho_{n}^{CL}(q_{n},p_{n})=\int_{-}^{+_{\infty}\infty}dq_{0}\int_{-\infty}^{+\infty}dp_{0}\delta((\begin{array}{l}q_{n}p_{n}\end{array})-T^{n}(\begin{array}{l}q_{0}p_{0}\end{array}))\rho_{0}^{CL}(q_{0}, p_{0})$ , (2.4)

where $\rho_{0}^{CL}$ denotes the initial distribution function.

Quantum Dynamics.

Applying the Schrodinger equation to (2.1), we get the Quantum Standard Map:
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$|\psi_{n+I}\rangle=\hat{U}|\psi_{n}\rangle$ (2.5)

with the unitary operator

$\hat{U}=e^{-r^{j}*\hat{p}^{2}}e^{-\dot{\tau}^{Kc\infty}}$ a , (2. 6)

where $|\psi_{n}$ ) is the state vector just before the kick at the time $n$ :

$|\psi_{n}\rangle=|\psi(t=n-0))$ . (2.7)

It is well known that if we impose the usual periodic boundary condition on the position $q$ for this
system, then the diffusion along the momentum direction is limited within a finite time interval even when
$K$ exceeds $K_{c}$ (Casati et. al. [8]).

However, in this paper we do not impose the periodic boundary condition on the coordinate q) as
mentioned before; we hence expect that the diffusion is not limited because of the absence of the interference
due to the condition.

The coherent state representation of the state at the time $n$ is

$\psi_{n}^{QM}(q_{n},p_{n})=\langle q_{n},p_{n}|\psi_{n}$). (2.8)

Its time evolution is expressed as

$\psi_{n}^{QM}(q_{n}, p_{n})=\{q_{n},$ $p_{n}|\psi_{n}\rangle$ $=(q_{n},$ $p_{n}|\hat{U}^{n}|\psi_{0}\rangle$

$= \langle q_{n},p_{n}|\hat{U}^{n}\int_{-\infty}^{+\infty}\int_{-}^{+_{\infty}\infty}\frac{dq_{0}dp_{0}}{2\pi\hslash}|q_{0}, p_{0}\rangle(q_{0},p_{0}|\psi_{0})$

$= \int_{-\infty}^{+\infty}\int_{-}^{+_{\infty}\infty}\frac{dq_{0}dp_{0}}{2\pi\hslash}G_{n}^{QM}(q_{n},p_{n}; q_{0},p_{0})\psi_{0}^{QM}(q_{0},p_{0})$ (2.9)

where the quantum propagator is given by

$G_{n}^{QM}(q_{n},p_{n}; q_{0},p_{0})=\langle q_{n},p_{n}|\hat{U}^{n}|q_{0},p_{0}\rangle$ . (2.10)

Here, we define the quantum distribution function in the phase space $\rho^{QM}$ as the following:

$\rho_{n}^{QM}(q_{n)}p_{n})=|\psi_{n}^{QM}(q_{n},p_{n})|^{2}$ (2.11)

This is called the Hushimi representation (Husimi [9], Takahashi and Sait\^o [10], Takahashi [10]) or the
Q-representation [10] of the density operator $\hat{\rho}_{n}=$ I $\psi_{n}\rangle$ ( $\psi_{n}|$ , and is nothing but the probability that the
state $|\psi_{n}$ ) is observed with the minimum uncertainty wave packet $|q,p$).

Semiclassical Dynamics.

Corresponding to (2.9), the time evolution of the coherent state representation of state $\psi^{SC}$ according
to semiclassical dynamics is described by

$\psi_{n}^{SC}(q_{n}, p_{n})=\int_{-}^{+_{\infty}\infty}\int_{-}^{+_{\infty}\infty}\frac{dq_{0}dp_{0}}{2\pi h}G_{n}^{SC}(q_{n},p_{n} ; q_{0},p_{0})\psi_{0}^{SC}(q_{0},p_{0})$. (2.12)

According to the Klauder theory described in his paper [6], the semiclassical propagator in the above
expression is represented as the follwing:

$G_{n}^{SC}(q_{n},p_{n} ; q_{0},p_{0})= classica1orbit\sum_{comp1ex}Ee^{\frac{*}{h}F}$

(2.13)
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with the action

$F=- \frac{1}{2}(p_{n}\overline{q}_{n}-q_{n}\overline{p}_{n}+\overline{p}_{0}q_{0}-\overline{q}_{0}p_{0})$

$-K \sum_{j=0}^{n-1}(\frac{1}{2}\overline{\Phi}^{\sin\overline{q}_{j}}+\cos\overline{q}_{j})$ , (2.14)

where $(\overline{q}_{j},\overline{p}_{j})$ ($j=0,1,2,$ $\ldots$ , n) is the orbit of the Complex Classical Standard Map such that:

$(_{\overline{p}^{j}}\overline{q}_{j1};^{1})=T(\begin{array}{l}\overline{q}_{j}\overline{p}_{j}\end{array}),$ $(j=0,1,2, \ldots , n-1)$ . (2.15) $\rfloor$

The boundary condition for the complex classical orbit is $|$

$\overline{q}_{0}+i\overline{p}_{0}=q_{0}+ip_{0}$ ; $\overline{q}0,\overline{p}_{0}\in C,$ $q_{0},p_{0}\in R$ , (2.16) $|$

$\overline{q}_{n}-i\overline{p}_{n}=q_{n}-ip_{n}$ ; $\overline{q}_{n},\overline{p}_{n}\in C,$ $q_{n},p_{n}\in R$ . (2.17) $|$

If there is more than one orbit satisfying this condition, the summation over them is necessary as expressed
$i$

in (2.13). In this $c$ase, each of these orbit is labeled by a different value of the complex parameter $w$ which
$|$

represents the position on the initial complex Lagrangian manifold:

$\{\begin{array}{l}\overline{q}_{0}=q_{0}+w+\overline{p}_{0}=p_{0}iw\end{array}\}$ . (2.18) $!$

Next, the amplitude factor $E$ is

$E=\{[i1]M(\overline{q}_{n-1})M(\overline{q}_{n-2})\cdots M(\overline{q}_{0})\{\begin{array}{l}-i/2l/2\end{array}\}\}^{-1/2}$ (2.19) $|$

with $|$

$M(\overline{q}_{j})=\{\begin{array}{llll}1+ K cos\overline{q}_{j} 1K cos\overline{q}_{j} 1\end{array}\}$ . (2.20) $|$

Corresponding to (2.11), we define the semiclassical distnbution function in the phase space $\rho^{SC}$ as
$|$

the following :

$\rho_{n}^{SC}(q_{n},p_{n})=|\psi_{n}^{SC}(q_{n},p_{n})|^{2}$ (2.21) $|$

$1$

$i\xi$

$1$
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\S 3. NUMERICAL CALCULATION

The Setting of the Numerical Calculation.

First, we explain the initial condition for the time evolution process. In this report, we are interested
in the most fundamental situation for the theory of semiclassical coherent state path integral. Accordingly,
let us choose as the initial state for quantum and semiclassical dynamics one of those coherent states which
are in the basis used to represent the propagator. Let $|q_{init},p_{init}$ ) be the initial coherent state. Then

$\psi_{0}^{QM}(q_{0},p_{0})=\psi_{0}^{SC}(q_{0}, p_{0})=(q_{0},p_{0}|q_{init}$ . (3.1)

With this condition, the coherent state representation of the time-evolved state at the time $n$ becomes the
propagator itself according to (2.9) and (2.12):

$\psi_{n}^{QM}(q_{n},p_{n})=G_{n}^{QM}(q_{n},p_{n} ; q_{init},p_{init})$ , (3.2)
$\psi_{n}^{SC}(q_{n},p_{n})=G_{n}^{SC}(q_{n},p_{n} ; q_{init},p_{init})$ . (3.3)

For classical dynamics, we choose the initial distribution function to agree with that for quantum and
semiclassical dynamics:

$\rho_{0}^{CL}(q0, p_{0})=\rho_{0}^{QM}(q_{0}, p_{0})=\rho_{0}^{SC}(q_{0},p_{0})$

$=|\langle q_{0)}p_{0}|q_{init},p_{init})|^{2}$

$= \exp[-\frac{1}{2\hslash}\{(q_{0}-q_{init})^{2}+(p_{0}-p_{init})^{2}\}|.$ (3.4)

Secondly, we choose the values of the parameters as the following:

$K=2.0$ , (3.5)
$(q_{init}, p_{init})=(3.5,3.5)$ , (3.6)

$h=0.405$ . (3.7)

The Result of the Numerical Calculation.

In Fig.1, we show the contour plots of phase space distributions at time $n=0,1,2,3$ according to
classical, quantum and semiclassical dynamics. We will divide the report of the numerical calculation into
two parts according to the stage of time evolution. When the time $n$ is $0,1,2$ , the phase space distribution
functions are being only \langle ( stretched \rangle \rangle and have not yet \langle \langle folded \rangle ). From Fig.1, we observe that the
quantum and the semiclassical distributions agree with each other very much. Then semiclassical calculation
is easy and we have no problem. For each exit label $(q_{n},p_{n})$ of the semiclassical propagator, there is only
one complex classical orbit and the imaginary part of the action along the orbit $\Im F$ is equal to or greater
than $0$ . Moreover, the amplitude factore $E$ is never equal to $0$ .

On the other hand, when the time evolution enters the next stage $(n=3)$ , we have much difficulties
in the semiclassical calculation. Let us observe Fig.1. On this time stage, the distribution functions are not
only \langle \langle stretched }) but also \langle \langle folded \rangle \rangle . The branches of the \langle \langle folded \rangle \rangle wave functions interfere and
cause the beat pattern of the distribution functions. In order to express this interference in the semiclassical
description, the complex classical orbits contributing to a point in the concave side of the \langle \langle folded \rangle \rangle wave
function should be multiple. Moreover, there are several points on the phase space at which two of such
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multiple complex orbits degenerate and the corresponding amplitude factor $E$ diverges. Namely, these points
are nothing but caustics. We name this caustic \langle \langle Phase Space Caustic (PSC) \rangle }. As is well known in
asymptotic analysis, the appearence of a caustic causes that not all the saddle point solutions contribute
to the result. In our case, on the regions near PSCs, not all the complex classical orbits satisfying the
boundary condition (2.16) and (2.17) contribute to the semiclassical propagator (2.12). Asymptotic analysis

$-$

tells us that two curves called Stokes lines run from each PSC and that when we go across a Stokes line, the
number of “contributing“ complex clasical orbits changes by 1. Moreover, if we took “non-contributing“
complex classical orbits into account of the evaluation of the semiclassical propagator, then the propagator
would diverge unphysically. Thus we surely need the criterion to judge whether a complex clasical orbit is
(contributing’ or “non-contributing”. Namely, we need the precise location of Stokes lines. In Fig.2, we
show Stokes lines calculated by the so called “principle of exponential dominance“ [12]. After getting all the $|$

Stokes lines running from PSCs, we can calculate the semiclassical distribution functions as shown in Fig.1. $|$

$exceptontheneighborhoodsofPSCswheretheamplitudefactorEofthesemiclassicalpropagatordivergesFinally,wewillcomparethesemiclassicaldistributionswithquantumones.Theagreementisverygood$
. $|$

\S 4. SUMMARY $|$

!;

The \langle \langle folding $\rangle\rangle$ operation of a chaotic dynamics makes the semiclassical theory of the coherent state $|$

path integral be not free from the problem of caustic ((( Phase Space Caustic (PSC) $\rangle\rangle$ ). In order to $f$

overcome the difficulty induced by PSC, we need the precise location of Stokes lines running from PSCs. $\iota^{:}\{$

We propose to use the “principle of exponential dominance“ numerically to determine the location of Stokes

$evolutionofthecorrespondingcomplexclassicalsystem.Inthissense,complexclassicalmechanicshasalines.Bythisprescription,thetimeevolutionofaquantumchaoticsystemiscalculatablefromthetime!$

clear physical reality.
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Figure Captions

Fig.1 Time-evolved distribution functions in the phase space
due to classical/quantum/semiclassical dynamics
Contour lines are drawn so that the net probability inside each counter equals 0.1, 0.3, 0.5, 0.7 and 0.9,
respectively. In each figure, the horizontal axis and the vertical axis are the $q_{n}$ -axis and the $p_{n}$ -axis,
respectively. Each square bounded by dotted lines is an area of $2\pi\cross 2\pi$ .

Fig.2 Phase Space Caustics and Stokes Lines
The magnification of the figure $(c,n=3)$ of Fig.1. with zero points, PSC’s and Stokes lines.
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