Induced Traces on Coaction Crossed Product C*-algebras

TSUYOSHI KAJIWARA

Department of Mathematics, College of Liberal Arts and Sciences Okayama University

0. Introduction

Trace is one of the most fundamental objects in representation theory of C^{*}-algebra. In [3] we characterized induced traces on group extensions and C^{*}-crossed products by using dual of action. Because of noncommutativity of groups, we have used coaction in C^{*}-algebra sense. In this paper, contrary we consider traces on a C^{*}-coaction crossed product $A \times_{\delta} G$ induced from a trace on the basis C^{*}-algebra A in the sense of coaction.

The result is as follows. Lower semicontinuous semi-finite trace on C^{*}-cocrossed product $A \times_{\delta} G$ is induced from a trace on A if this trace is relatively invariant with respect to the modular function Δ_G of G under the canonical action $\hat{\delta}$ dual to the original coaction δ . In the case where G is abelian, this result is proved in [6].

1. Result

Let A be a separable C^* -algebra and G be a 2'nd countable amenable locally compact group. Coacion of G on a C*-algebra A means an injective *-homomorphism δ from A to the multiplier algebra $M(A \otimes C^*_r(G))$ of the spatial tensor product $A \otimes C^*_r(G)$ such that $(\delta \otimes i)\delta = (i \otimes \delta_G)\delta$ holds. The notation δ_G means the canonical comultiplication on $C^*_r(G)$.

Suppose that a coaction δ of G on A is given. Coaction C^{*}-crossed product (C^{*}-cocrossed product) $A \times_{\delta} G$ is the C^{*}-algebra generated by $\{\delta(A), C_0(G)\}$ on $\mathcal{H} \otimes L^2(G)$ where \mathcal{H} is the representation space of A. We put this C^{*}-algebra B. We refer basic properties of C^{*}-coaction and C^{*}-cocrossed products to [2]. Canonical dual action $\hat{\delta}$ of G on B is given by the adjoint of right regular representation of G on $\mathcal{H} \otimes L^2(G)$. By the definition, this action constitutes a system of imprimitivity with a copy of $C_0(G)$ in B.

Let ϕ be a lower semicontinuous semifinite (l.s.s.) trace on B. We consider a condition under which this trace ϕ is given by a trace ψ on A in a canonical way. We call ϕ is induced from (δ, j) -invariant trace ψ on A if δ can extend to a coaction $\tilde{\delta}$ on weak closure of $\pi_{\psi}(A)$, and $\pi_{\phi}(B)''$ is the W*-cocrossed product $(\pi_{\phi}(A))'' \times_{\tilde{\delta}} G$ and ϕ is the restriction of induced trace on $(\pi_{\phi}(A))'' \times_{\tilde{\delta}} G$ to A. We refer the induction of traces in the situation of group action and coaction to [3], and refer the definition of (δ, j) -invariance of traces to [7] and don't state the detail, because we don't use the detail of this definition.

We denote the modular function of G by Δ_G . Let ϕ be a l.s.s. trace on B satisfying the following property.

$$\phi(\hat{\delta}(g)(x)) = \Delta_G(g)^{-1}\phi(x) \qquad \forall x \in B^+, \ \forall g \in G$$

We call such a $\phi \Delta_G$ -relatively invariant under $\hat{\delta}$.

An ideal J in A is called δ -invariant if $\delta(J) \subset M(J \otimes C^*(G))$ [1], [4]. Since G is assumed to be amenable, there is no problem concerning the definition of invariance of ideals. If Jis δ invariant, we can consider coaction δ_J (restriction to J) and quotient coaction δ^J on A/J. Put π_{ϕ} be a GNS representation of B given by ϕ .

Typeset by $\mathcal{A}_{\mathcal{M}}S$ -T_EX

1

LEMMA 1. There exists a δ invariant ideal J in A and $\pi_{\phi}(B)$ is of the form $(A/J) \times_{\delta^J} G$.

Since traces on $A \times_{\delta} G/J \times_{\delta_J} G$ (resp. A/J) can be considered traces on $A \times_{\delta^J} G$ (resp. A), we can assume that ϕ is faithful. We identify A with $\pi_{\phi}(A)$. M be a W^* -closure of $\pi_{\phi}(B)$.

LEMMA 2.

There exist a von Neumann subalgebra N in M and coaction $\tilde{\delta}$ of G on N such that M is isomorphic to W^{*}-cocrossed coproduct $N \times_{\tilde{\delta}} G$. C^{*}-algebra A is contained in N and σ weakly dense in N. Moreover, $\tilde{\delta}$ is the dual action $\hat{\delta}$ of δ .

For $x \in M^+$, put $E^{\delta}(x) = \int_G \tilde{\delta}_g(x) dg$. Then E^{δ} is an operator valued weight from M to N.

LEMMA 3.

There exists a unique a $(\tilde{\delta}, j)$ -invariant n.s.f trace $\tilde{\psi}$ on N such that $\tilde{\phi}$ is of the form $\tilde{\psi} \circ E^{\tilde{\delta}}$.

LEMMA 4.

The restriction ψ of $\bar{\psi}$ to A is semifinite. If ϕ is moreover densely defined, ψ is also densely defined.

THEOREM.

Let ϕ be a lower semicontinuous semifinite trace on a B. If and only if ϕ is Δ_G -relatively invariant under the canonical dual action of G. Then ϕ is induced from a lower semi continuous semifinite trace ψ on A.

REMARK 1.

The representation π_{ϕ} is induced from π_{ψ} in the sense of C^{*}-coaction. We refer the definition of induced representation of coaction to [1], [6] and we don't state the detail.

REMARK 2.

In the situation of coaction, we don't have convenient Banach *- algebra, so the formulation of induction of traces in purely C*-algebraic sense is not clear to us.

REFERENCES

- 1. E.C.Gootman and A.J.Lazar, Applications of Non-Commutative Crossed Product C^{*} -Algebras Determined by an Action or Coaction, Proc.London Math.Soc. 59 (1989), 593-624.
- 2. Y.Katayama, Takesaki Duality for a Non-degenerate Co-action, Math. Scand. 55 (1985), 141-151.
- 3. T.Kajiwara, Traces on groups extensions and C*-crossed Products.
- 4. M.B.Landstad, Duality for Dual Covariance Algebras, Comm. Math. Phys. 52 (1977), 191-202.
- 5. M.B.Landstad, J.Phillips, I.Raeburn and C.E.Sutherland, Representations of Crossed Products by Coactions and Principal Bundles, Trans. A.M.S. 299 (1987), 747-784.
- 6. N.V.Pedersen, On Certain KMS weights on C*-crossed products, Proc. London Math. Soc. 44 (1982), 445-472.
- S.Stratira, D.Voiculescu and L.Zsido, On Crossed Products I, Rev. Roum. Math. Pures Appl. 21 (1976), 1411-1449.
- S.Stratira, D.Voiculescu and L.Zsido, On Crossed Products II, Rev. Roum. Math. Pures Appl. 22 (1977), 83-117.