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Abstract

A set $A$ is said to be invertibly paddable if there are two polyno-
mial time computable functions pad and decode such that (i) $x\in A$ if
and only if pad$(x, y)\in A$ and (ii) decode(pad(x, $y)$ ) $=y$. We consider
three number theoretical problems that are used in certain cryptosys-
tems (decision of quadratic residuosity, computation of discrete loga-
rithm and computation of Euler’s totient function), and show that the
sets that represent these problems are invertibly paddable. These re-
sults imply that, if these sets are not in $P$, then they have complexity
cores $C$ such that neither $C$ not the complement of $C$ are sparse.

1 In $troduct$ io $n$

There are several problems in number theory that seem to be very difficult to
solve. Such problems are used in some public-key cryptosystems, where the
security of the systeins are based on the intractability of such problems. For
example, Goldwasser and Micali’s cryptosystem is based on the difficulty of
solving “quadratic residuosity problem’) concerning large composite numbers
$([GM84])$ . Rivest, Shamir, and Adleman’s system is based on the difficulty
of computing the Euler’s totient function of composite numbers ([RSA 78]).
ElGamal’s system is based on the difficulty to compute (discrete logarithms”
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([E1G 85]). So, it is important to know $t1_{1}e$ complexity theoretical properties
of these sets.

In this paper, the problem we are interested in is how dense the hard
instances of these problems are distributed. Technically, this problem can
be formulated as whether these sets have polynomial complexity core or
not. We show that these sets have polynomial time computable invert-
ible padding functions. This result, together with results by Orponen and
Sch\"oning [OS 84], shows that these sets and their complements contain non-
sparse pro-per polynomial complexity cores under the assumption that these
sets are not in $P$ . Hence, these sets and their complements contains non-
sparse sets that consist of hard instances only under the same assumption.

2 $De$ fi $nit$ io $ns,$ $Not$ a $t$ io $ns$ , a $ndPr$ elim in a $r$ ie $s$

Througbout this paper, all strings will be over the finite alphabet $\Sigma=\{0,1\}$ .
$\lambda$ will denote the null string. For a string $s,$ $|s|$ will denote the length of $s$ .
All integers will be nonnegative. For an integer $a,$ $E(a)$ will denote its unique
binary representation and for a string $s$ beginning with 1 or $s=0,\tilde{s}$ will
denote the unique integer $x$ such that $E(x)=s$ . For an integer $a,$ $1en(a)$

will denote $|E(a)|$ . $\pi(\cdot, \cdot)$ will denote the standard integer pairing function
such that, for any nonnegative integers $a$ and $b,$ $\pi(a, b)=\frac{(a+b)(a+b+1)}{2}+a$ .
$\pi(x_{1}, x_{2}, \cdots , x_{n})$ will denote $\pi(\pi(\cdots\pi(\pi(x_{1}, x_{2}),$ $x_{3}$ )

$,$

$\cdots$ )
$,$

$x_{n}$ ).
Let $A$ be a set of strings. Then $A^{c}$ will denote $\Sigma^{*}-A$ , the complement of

A. $|A|$ will denote the cardinality of A. $A^{\leq n}$ will denote $\{x\in A:|x|\leq n\}$ .
A set $A$ is sparse if there exists a polynomial $p$ such that for all $n\geq 0,$ $|A^{\leq \mathfrak{n}}|$

$\leq p(n)$ . A set $A$ is co-sparse if $A^{c}$ is sparse.
Our concern is to study the paddability of the following number theoretic

problems:

1. $Quad-{\rm Res}(a,m)$ is a decision problem, where $a$ and $m$ are restricted so
that $0<a<m$ and $gcd(a, m)=1$ , and, the answer is (yes’ if $a$ is
quadratic residue modulo $m$ (quad. res. $mod$ . $m$ , for short) and the
answer is “no“, otherwise.

2. $Disc-{\rm Log}(a,r,m)$ is a computing problem, where $a,r$ , and $m$ are restricted
so that $0<a<m,$ $0<r<m$ , and $gcd(a, m)=gcd(r, m)=1$ , and, if
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there exists an integer $l>0$ such that $r^{l}\equiv a$ $(mod m)$ , the answer is
the smallest such I, and if such $l$ does not exist, the- answer is $0$ .

3. Euler $(m)$ is a computing problem, $w1_{1}erem$ is greater than 1, and the
answer is $\varphi(m)$ , where $\varphi(m)$ is the Euler)$s$ totient function.

Since the last two are not decision problems, we introduce corresponding
decision problems for them, to which these computing problems are poly-
nomial-time reducible.

$2’$ . $LB- Disc-{\rm Log}(a)r,m,k)$ : The answer is (yes’ if $Disc-{\rm Log}(a,r,m)\geq k$ and
the answer is (no’, otherwise.

$3’$ . $LB- Eder(m,k)$ : The answer is (yes’, if $\varphi(m)\geq k$ and the answer is
((

$no$“, otherwise.

Now we define the sets corresponding to these decision problems. They
are

QR $=$ $\{E(\pi(a, m)) : Quad-{\rm Res}(a, m)=(yes’\}$ ,
LB-DL $=$ { $E(\pi(a, r, m, k))$ : $LB- Disc-{\rm Log}(a, r, m, k)$

$=$ (yes’)}, and
LB-EU $=$ { $E(\pi(m,$ $k))$ : LB-Euler$(m,$ $k)=$ (yes’ }.

Next we define “paddable” sets. The following definition is due to [Sch 85].
We say that a set $A$ is (polynomially) paddable if there is a polynomial-time
computable function $pad;\Sigma^{*}\cross\Sigma^{*}arrow\Sigma^{*}$ , such that

(i) for all $x,y\in\Sigma^{*},$ $pad(x, y)\in A\Leftrightarrow x\in A$ , and

(ii) for all $x,y,andy’\in\Sigma^{*},$ $y=y’\Leftrightarrow pad(x, y)=pad(x, y’)$ .

We say that a set $A$ is invertibly paddable if $A$ is polynomially paddable and
if there is a poly-nomial-time computable function $decode;\Sigma^{*}arrow\Sigma^{*}$ such that

(iii) for all $x,y\in\Sigma^{*}$ , decode(pad(x, $y)$ ) $=y$ .
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Berman and Hartmanis have conjectured that all $\leq_{m}^{\mathcal{P}}$-complete sets in
$NP$ are invertibly padd-able[BH 77]. They also showed that this conjecture
is equivalent to all $\leq_{m}^{\mathcal{P}}$ -complete sets in $NP$ being polynomially isomorphic.
Later, Joseph and Young showed that the conjecture that all $\leq_{m}^{\mathcal{P}}$-complete
sets in $NP$ are polynomially paddable is equivaJent to all $\leq_{m}^{P}$-complete sets
in $NP$ being polynomailly one-one reducible to each other[JY 85].

Finally, we state some well-known results in number theory.

Fact 1 Let $m=m_{1}m_{2},$ $m_{1}>0_{f}m_{2}>0_{f}gcd(m_{1}, m_{2})=1$ , and let $a$ ,
$a_{1}$ , and $a_{2}$ be integers such that $a\equiv a$ ; $(mod m;)$ , for $i=1,2$ , Then, $a$ is
quadratic residue modulo $m$ if and only if $a$ ; is quadratic residue modulo $m$;

for $i=1,2$ .

Fact 2 Let $m=m_{1}m_{2},$ $m_{1}>0,$ $m_{2}>0,$ $gcd(m_{1}, m_{2})=1$ , and let $a_{j}a_{1},a_{2}$ ,
$r,r_{1}$ , and $r_{2}$ be integers such that $a\equiv a$; $(mod m:)$ for $i=1,2$ and $r\equiv r_{1\not\equiv}0$

$(mod m;)$ for $i=1,2$ . Furthermore, let $l$ be a nonnegative integer. Then,

$r^{l}\equiv a$ $(mod m)$ $\Leftrightarrow$ $r_{i}^{l}\equiv a$ ; $(mod m_{i})$

for $i=1,2$ .

3 $ThePo$ ly $nom$ ial $P$ a $dd$ a $b$ ilit $y$

In tltis section, we prove that each of three sets defined in the previous section
is polynomially paddable. We begin with QR.

Theorem 1 QR is polynomially paddable.

Proof Assume $x=E(\pi(a, m)),$ $0<a<m$ , and $gcd(a, m)=1$ . Let
$f:N\cross\Sigma^{*}arrow N$ be any function computable in polynomial-time satisfying

(i) for any $m>1$ and $y\in\Sigma^{*},$ $gcd(m,f(m, y))=1$ , and

(ii) for any $m>1$ and $y,$ $y’\in\Sigma^{*},$ $y=y’\Leftrightarrow f(m, y)=f(m, y’)$ .
(For example, $f(m,$ $y)=m\overline{1y}+1$ satisfies these requirements.)

Moreover, let $M=f(m, y)$ and let $\mu$ and $\nu$ be any integers such that
$\mu m\equiv 1$ $(mod M)$ and $\nu M\equiv 1$ $(mod m))$ and define

pad$(x, y)=E(\pi(a’, m’))$ ,
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where $m’=mM=mf(m, y)$ and $a’=(\mu m+a\nu M)mod m’$ .
Then this function satisfies the requirements for the polynomial paddabil-

ity. For a given $m$ and $M$ such that $gcd(m, M)=1$ , the inverse elements $\mu$

and $\nu$ are computed in polynomial-time using the Euclid’s g.c. $d$ . $al$gorithm.
Furthermore, $M=f(m, y)$ is computed in polynomial-time. Therefore, pad
is computed in polynomial-time.

On the other hand, since $f(m, y)$ is one-to-one on the second component,
pad$(x, y)$ is also one-to-one on the second component.

Finally, from the definition, we have $a’\equiv a$ $(mod m)$ and $a’\equiv 1$

$(mod M)$ . Then, from Fact 1, we have $a’$ is quad. res. $mod$ . $m$
‘

$\Leftrightarrow$

$a$ is quad. res. $mod$ . $m$ and 1 is quad. res. $mod$ . $M$ . Since $1\equiv 1^{2}$

$(mod M)$ , we have $a’$ is quad. res. $mod$ . $m’\Leftrightarrow$ $a$ is quad. res. $mod$ . $m$ ,
namely $x\in QR\Leftrightarrow pad(x, y)\in QR$ . This proves the theorem. Q.E.D.

Remark In the above proof, we did not explain how to define the
mapping pad$(x, y)$ for $x’ s$ that do not satisfy the restricting conditions. We
can easily complete the proof by defining pad $(x, y)=0^{|x|+1}1^{|y|+1}xy$ for such
$x’ s$ . In all tlte remaining proofs of paddability of functions, this mapping will
be applied for incorrect $x’ s$ .

Theorem 2 LB-DL is polynomial $ly$ paddable.

Proof Assume $x=E(\pi(a, r, m, k)))0<a<m,$ $0<r<m$ , and
$gcd(a, m)=gcd(r, m)=1$ . Let $f,$ $M,$ $\mu$ , and $\nu$ be as in the proof of Theorem
1, and define

pad$(x, y)=E(\pi(a’, r‘, m’, k))$ ,

where $m’=mM=mf(x, y),$ $a’=(\mu m+a\nu M)mod m’$ , and $r’=(\mu m+$

$r\nu M)mod m’$ .
Similar to the proof in Theorem 1, it is easily seen that pad is computable

in polynomial-time and, for any $x,$ $y$ )
$y’\in\Sigma^{*},$ $y=y’$ $\Leftrightarrow$ pad$(x, y)=$

$pad(x, y’)$ .
Moreover, we have $a’\equiv a$ $(mod m),$ $a’\equiv 1$ $(mod M),$ $r’\equiv r$ $(mod m)$ ,

and $r’\equiv 1$ $(mod M)$ by definition. Since $1i\equiv 1$ $(mod M)$ for all $l>0$ ,
applying Fact 2, we have $x\in LB- DL\Leftrightarrow pad(x, y)\in LB- DL$ .

This proves the theorem. Q.E.D.

Theorem 3 LB-EU is polynomially paddable.
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Proof Assume $x=E(\pi(m, k))$ and $m>1$ . Let $L=|y|$ and $y_{i}$ be
the i-th symbol in $y(1\leq y\leq L)$ . Furthermore, let $M=\Pi_{:}^{L_{=^{+}1}1}p^{\epsilon}:^{:}$

’ where
$p_{1},\cdots,p_{L+1}$ are the smallest $L+1$ primes not dividing $m$ in increasing order
and $e$ ; be integers $s$ atisfying, $e;=1$ if $y_{i}=1$ and $e;=0$ if $y;=0(1\leq i\leq L)$

and $e_{L+1}=1$ . Then define

pad$(x, y)=E(\pi(m’, k’))$ ,

where $m’=mM$ and $k’=k\varphi(M)$ .
This function $s$ atisfies the requirements for the polynomial paddability.

Since $1en(m)\geq\log_{2}m$ , there are only at most $1en(m)$ di$s$ tinct primes dividing
$m$ . So $p_{L+1}$ is not exceeding $[L+1+1en(m)]$-th prime number. Since it is
known that there exists some constant $c>0$ such that n-th prime number is
less than $cn^{2}$ (see [?]), $p_{L+1}$ is less than $c’(|x|+|y|)^{2}$ for some constant $c’>0$ .
Therefore, $p_{1},\ldots,p_{L+1}$ are computed in polynomial-time. Moreover, since the
prime factorization of $M$ is known, $\varphi(M)$ is computed in polynomial-time,
and hence pad is computed in polynomial-time.

Furthermore, it is well-known that if $m_{1}>1,$ $m_{2}>1$ , and $gcd(m_{1}, m_{2})$

$=1,$ $\varphi(m_{1}m_{2})=\varphi(m_{1})\varphi(m_{2})$ . Since $gcd(m, M)=1$ by definition, we have
$\varphi(m’)=\varphi(m)\varphi(M)$ . Therefore, $x\in LB- EU\Leftrightarrow pad(x, y)\in LB- EU$ .

Finally, it is easily seen that pad is one-to-one on the second component.
Therefore, LB-EU is polynomially paddable. Q.E.D.

4 $The$ In $vert$ ib le $P$ a $dd$ a $b$ ilit $y$

In this section, we show that all of three sets are invertibly paddable. The
invertible paddability is obtained by redefining $M$ in each of three padding
functions.

Redefinition of $M$ :
Let $p_{1},\ldots,p_{L+1}$ be the smallest $L+1$ primes not diving $m$ in increasing

order, where $L=|y|$ . Let $\alpha=1en(m)$ and define $e$ ; to be integers such
that, $e_{i}=\alpha+1$ if $y_{i}=1$ and $e_{i}=\alpha$ if $y;=0(1\leq i\leq L)$ and
$e_{L+1}=\alpha+2$ . Then define $M=\Pi_{i=1}^{L+1}p_{i}^{e;}$ .
It is easy to see that, for any of the three sets, the polynomial paddability

is preserved when $M$ is replaced by the above defined value.
On the other hand, decoding function for $t1_{1}is$ version is defined as follows.
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Decoding $y$ from the value $m$‘:
Let $q_{1},\ldots,q_{K}$ be the smallest $K$ primes in increasing order, where

$K=1en(m’)$ . Let $d_{1},\ldots,d_{K}$ be integers such that $q_{j}^{d_{j}}$ divides $m’$ and
$q_{j}^{d_{j}+1}$ does not divide $m’(1\leq j\leq K)$ and define $\beta=\max_{1\leq j\leq K}\{d_{j}\}-2$ .

Furthermore, Let $r_{1},\ldots,r_{K’}$ be the enumeration of all $q_{j}’ s$ such that
$d_{j}=\beta$ or $\beta+1$ in increasing order and define $c_{i}$ $(1 \leq i\leq K‘)$ to be
corresponding $d_{j}’ s$ for $r;$ .

Finally, define $y:(1\leq i\leq K’)$ to be symbols such that $y;=1$ if
$c;=\beta+1$ and $y_{i}=0$ if $c;=\beta$ , and $y=y_{1}\cdots y_{K’}$ .
This function satisfies the third requirement for the invertible paddability.

For, since $m’$ satisfies

$m’=mM \geq m\prod_{=:1}^{L+1}p^{e;}:\geq m\prod_{=:1}^{L+1}2^{e:}\geq m\prod_{:=1}^{L+1}2$,

we have $1en(m’)\geq L+1+1en(m)$ . Since $p_{L+1}$ does not exceed the $[L+1+$
$1en(m)]$-th prime number, $p_{1,}p_{L+1}$ are in $q_{1},\ldots,q_{K}$ . On the other hand,
since $\alpha=1en(m)>\log_{2}m$ , for each prime $p$ dividing $m,$ $p^{\alpha}$ does not divide $m$ .
So $\max d_{j}$ must be $\alpha+2$ . Hence we have $\beta=\alpha,$ $L=K’$ ) and, $p_{1},\ldots,p_{L}$ are
exactly $r_{1},\ldots,r_{K’}$ and $e_{1},\ldots,e_{L}$ are exactly $c_{1},\ldots,c_{K’}$ . Thus $y:s$ are correctly
computed and hence, $y$ is correctly decoded.

And furthermore, it is easily seen that $y$ is computed in polynomial-time
in $1en(m’)$ . Therefore, redefining $M$ gives the invertible paddability.

From the above considerations we have the following theorems.

Theorem 4 QR is invertibly paddable.

Theorem 5 LB-DL is invertibly paddable.

Theorem 6 LB-EU is invertibly paddable.

5 $TheP$ a $dd$ a $b$ ilit $y$ a $nd$ $Comp$ le $x$ ity $Cores$

In this section, we consider the intractablility of the problems.
For any deterministic Turing machine $M$ and any input $x$ to $M$ , let $t_{M}(x)$

denote the number of steps that $M$ takes on the input $x$ . If $M$ does not halt
on $x,$ $t_{M}(x)=\infty$ .
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Let $A$ be any set. We say that a set $C$ is a polynomial complexity core
for $A$ if for any deterministic Turing machine $M$ accepting $A$ , and for any
polynomial $p,$ $t_{M}(x)$ is greater than $p(|x|)$ , for all but finitely many $x\in C$ .
We say that a complexity core $C$ for $A$ is proper if $C\subset A$ .

The concept of core was introduced by Lynch [Lyn 75]. A set $C$ being
a proper polynomial complexity core implies that $C$ is the set of “hardset”
elements in $A$ . It is shown by Lynch that $A$ is not in $P$ if and only if $A$ has
an infinite polynomial complexity core.

The following propositions are by Orponen and Sch\"oning[OS 84].

Proposition 1 If a set $A$ is not in $P$ and polynomially paddable, $A$ has a
non-sparse proper polynomial complexity core.

Proposition 2 If a set $A$ is invertibly $paddable_{f}$ $A$ does not have a co-sparse
proper polynomial complexity core.

Combining these results and the theorems in the previous section, we
have the following corollaries.

Corollary 1 If $QR\not\in P_{j}$ then QR has a proper polynomial complexity core
$C$ such that both $C$ and $C^{c}$ are non-sparse.

Corollary 2 If $LB- DL\not\in P$ , then LB-DL has a proper polynomial complexity
core $C$ such that both $C$ and $C^{c}$ are non-sparse.

Corollary 3 If $LB- EU\not\in P$ , then LB-EU has a proper polynomial complex-
ity core $C$ such that both $C$ and $C^{c}$ are non-sparse.
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