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Lorentz structures and Killing vector fields on manifolds
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(10 February, 1990; For the conference at RIMS)

This is a brief sunmary on the structure of Lorentz manifolds of constant curvature.

Our results are stated in $Sectionsi-,$ $8$ and 9 without proof and the detail will be published

elsewhere.

We apologize not to have the space to state the results on CR-structures on manifolds.

We refer to [K-T] for the result. A Lorentz manifold $J,I$ of dimension $n(\geq 1)$ is a smooth

manifold together with a Lorentz metric $g$ . A Lorentz metric $g$ on $M$ is a smooth field

$\{g_{x}\}_{x\vdash_{-}^{-1i}}J$ of nondegenerate symmetric bilinear forms $9x$ of type $(1, n-1)$ on the tangent

space $T_{x}\lambda I$ . Nemely let $R^{1},"-1$ denote the real vector space of dimension $n$ equipped with

the bilinear form

$Q(x, y)=-x_{1}y_{1}+\lambda_{2y_{2}}+\cdots+x_{n}y_{n}$ .

A nondegenarate symmetric bilinear form $9x$ is of type $(1, n-1)$ if the pair $(T_{x^{1^{1}}}1/I, g_{x})$ is

isometric to $(R^{1,n-1}, Q)$ . (See [Wo],[O’Ne].)

In general a pseudo-Riemannian manifold is a smooth manifold together with a pseudo-

Riemannian netric( an indefinite metric). It is the fundamental result in Riemannian

Geometry that a pseudo-Riemannian manifold has a unique connection (Levi-Civit\‘a con-

nection) on its frame bundle. And thus geodesics, curvature, completenes etc. will refer to

the Levi-Civit\‘a connection). In paraticular the sectional curvature will be defined. Also a

pseudo-Riemannian manifold $M$ is complete if the Levi-Civit\‘a connection is complete, i.e.,

every geodesic segment $[0,1]arrow$ rvi can be extended to a full geodesic. In comparison to

Riemannian manifolds, not every smooth manifold admits a pseudo-Riemannian metric.
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It is notorious that compactness does not necessarily imply completeness. It is of interest

to examine this feature in Lorentz Geometry. In this paper we shall concern this problem

for Lorentz manifolds of constant curvature admitting Killing vector fields. As is $n_{\sim’}^{\backslash }ted$

above, the sectional curvature is defined on Lorentz manifolds. Then there is a class of

Lorentz manifolds of constant curvature among all Lorentz manifolds.

1. Lorentz Causal Character.

Let ltf be a Lorentz nanifold with metric $g$ . A tangent vector $v$ to $M$ falls into the

following type:

timelike $if$ $g(v, v)<0$ ,

lightlike if $g(v, v)=0$ , and

spacelike if $g(v, v)>0$ .

A curve $\gamma$ in $M$ is timelike if all of the velocity vectors $\gamma^{1}(t)$ are timelike; similarly

for lightlike and spacelike. We remark that an arbitrary curve need not have one of these

causal characters but a geodesic does, $i.e.,$ $g(\gamma l(t), \gamma l(t))$ is constant. This is because $\gamma$’ is

parallel and parallel translation preserves causality.

2. Exstence of Lorentz metric

As to the existence of Lorentz metrics on smooth manifolds, we notice that $M$ admi $ts$ a

Lorentz metric if and only if there $exsts$ a nonzero vector field on M. (See [O’Ne, p.149].)

And so if either $M$ is noncompact or $M$ is compact and has euler characteristic $\chi(M)=0$ ,

then $M$ admits a Lorentz metric. We have the following result.

LEMMA 1 $(CF.[O’ NE])$ . $IfM$ admits a nonzero vector $ReldV$ then $M$ admifs a Lorentz

$m$ etric such th at $V$ is timelike.

For this, let $g$ be a Riemannian metric on $M$ so that $V$ is a unit vector field. Define a new

metric by setting

$h(X, Y)=g(X, Y)-2g(V, X)\cdot g\{V,$ $Y$).
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Remark 1. A Lorentz manifold is called time-orientable if it admits a timelike vector

field.

3. Isomery of Lorentz Manifoids.
Let $Iso(-1/f)$ denote the group of all isometries of a Lorentz manifold $M$ ont$0$ itself. It is

known that $Iso(M)$ is a (finite) dimensional Lie group. Let $X$ be a complete vector field

on $M$ . Then $X$ generates a one parameter group $\{\phi_{t}\}$ of diffeomorphisms of $M$ . A vector

field $X$ is Killing if each $\phi_{t}$ is an isometry, i.e., $\{\phi_{i}\}\in Iso(M)$ . When $M$ is a complete

Lorentz manifold, it follows that the Lie algebra of $Iso(M)$ is isomorphic to the Lie algebra

$i(M)$ consisting of all Killing vector fields.

It is a famous result that if $1M$ is a $R\iota emanman$ manifold then $Iso(M)$ acts properly

on $M$ . In particular the stabilizer at any point of $i^{1}\nu’l$ is compact. In addition $Iso(M)$ is

compact if $M$ is compact. However, in Lorentz geometry it is noted that $Iso(M)$ of a

Lorentz manifold $M$ is not necessarily compact even if $M$ is compact. (See $[D\}Am]$ for

a related work.) Moreover $Iso(M)$ need not act properly and hence its stabilizer fails to

be compact. Therefore, the necessary condition that a group $\Gamma$ is discrete in $Iso(M)$ is

not a sufficient condition for $\Gamma$ to act properly discontinuously on a $Lo$ rentz manifold $M$ .

This fact makes difficult to understanding the topology of Lorentz manifolds (cf. $[Ku].[K-$

$R|,[Wo])$ .

4. Models for Complete Lorentz Manifold.
Consider the following quadrics;

$S^{1,n}$ $=\{p=(x_{1\prime}y_{1}, \cdots y_{n+1})\in R^{1,n+1}|-x_{1}^{2}+y_{1}^{2}+\cdots+y_{n+1}^{2}=1\}$,

$H^{1,n}=\{p=(x_{1}, x_{2}, y_{1}, \cdots y_{n})\in R^{2,n}|-x_{1}^{2}-x_{2}^{2}+y_{1}^{2}+\cdots+y_{n}^{2}=-1\}$

Note that $S^{1,n}\approx R^{1}xS^{n},$ $H^{1,n}\approx S^{1}xR^{n}$ . It follows that $S^{1}$,“ and $H^{1,n}$ are complete

Lorentz $n+1$ dimensional manifolds of constant curvature 1 and $-1$ respectively. The

groups $O(1, n+1)$ and $O(2, n)$ are the orthogonal subgroups of $GL(n+2, R)$ which preserve
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the quadratic forms

$Q^{+}(x_{1r}y_{1}, \cdots y_{n+1})=-x_{1}^{2}+y_{1}^{2}+\cdots+y_{n+1}^{2}$ ,

$Q^{-}(x_{1}, x_{2}, y_{1}\cdots y_{n})=-x_{1}^{2}-x_{2}^{2}+y_{1}^{2}+\cdots+y_{n}^{2}$ .

Then it follows that $O(1, n+1)=Iso(S^{1}$ , “
$)$ and $O(2, n)=Iso(H^{1}$ ,“ $)$ .

Let $\tilde{S}^{1}$ ,“ be the universal covering space of $S^{1}$ ,“. Denote by $O(1_{2}r\iota+1)^{\sim}$ the corre-

sponding group of $O(1_{\tau}n+1)$ to $\tilde{S}^{1}$ ,“. Simiarly let $O(2, n)^{\sim}$ be the corresponding group of

$O(2, n)$ to the universal covering space $\tilde{H}^{1,n}$ . It is obvious that they are the full groups of

isometries of $\tilde{S}^{1,n}$ and $\tilde{H}^{1,n}$ respectively. Note that the above vector space $R^{1,n}$ is a com-

plete connected simply connected Lorentz manifold of zero curvature. The Lorentz metric

is obtained by euclidean parallel translation of the above form $Q$ (cf. $[Wo],[O^{l}Ne]$), We

simply denote it by $R^{n+1}$ . The group of isometries of $R^{n+1}$ is isomorphic to the semidirect

product $R^{n+1}XO(1, n)$ .

We have $mo$ dels for complete connected simply connected Lorentz $n+1$ dimensional

manifolds of constant curvature $k$ and with groups of isometries;

$(O(1, n+1)^{\sim},\tilde{S}^{1,n})$ $ifk=1$ ,

$(R^{n+1}\cross O(1, n),$ $R^{n+1}$ ) $ifk=0$ , and

$(O(2, n)^{\sim},\tilde{H}^{1,n})$ $ifk=-1$ .

5. Lorentz Structure.

By $(G, X)$ we $shaU$ mean one of the above geometries. We denote that a Lorentz spherical

structure (resp. Lorentz flat structure, and Lorentz hyperbolic structure) on an $n+l$ di-

mensional manifold $M$ is a $geometr\iota c$ structure modelled on $X$ whose coordinate changes

lie in $G$ where $(G, X)$ represents one of the above for $k=1,0$ and-l respectively.

A Lorentz spherical (resp. flat and hyperbolic) manifold $M$ is a smooth manifold

equipped with a Lorentz spherical (resp. flat and hyperbolic) structure. By the usual

monodromy argument if we are given a Lorentz manifold $M$ there exist an immersion
dev : $\tilde{M}arrow X$ which preserves the Lorentz structure and a homomorphism $\rho$ : $\pi_{1}(M)arrow$
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$G$ where $\lrcorner\tilde{W}$ is the universal covering space. The developing pair $(p, dev)$ is uniquely

determined up to conj ugation. Moreover $p$ extends to a homomorphism of $Iso(1\tilde{W})$ into $G$ .
Therefore we have the developing pair

$(\rho,dev)$ (Iso $(\tilde{M}),\tilde{M}$ ) $arrow(G, X)$

such that $\pi_{1}(1\dagger f)\subset Iso(1t\tilde{/}f)$ .

By a Lorentz space form we shall mean a comple $teLo\tau entz$ mamfold of constant $cur-$

vature. It is noted that a Lorentz manifold is complete if the developing map is a covering

map. The following is the Lorentz space form problem :

THEOREM 1 (KILLING, HOPF). Let $M$ be a Lorentz space form $otdi$mension $n+l(n\geqq$

$1j$ . Th en $Mis$ isometric up to a scalar multiple to a quotient
$\tilde{S}^{1_{\tau}n}/\Gamma$ where $\Gamma\subset O(1, n+1)\Gamma\lrcorner$ if $k=1$ .
$R^{n_{\urcorner}- 1}/\Gamma$ $wl\iota e$re $\Gamma\subset R^{n+1}\aleph O(1_{1}n)$ if $k=0$ .
$\tilde{H}^{1,n}/\Gamma$ $wAere\Gamma\subset O(2, n)^{\sim}$ if $k=- 1$ .

He$re\Gamma$ acts $prope$rly $disco$ntinuously and freely.

6. Revtew of Lorentz Space Forms and Current Development.

We recall that (cf. [Wo])

THEOREM 2. If $JI$ is a Loren $tz$ space form $\tilde{S}^{1},"/\Gamma$ then $\Gamma$ is a finite $S\ddagger 1$ bgroup of $O(1)x$

$O(n+1)$ up to conjuga$Cj^{\gamma}$.

Hence the classification goes back to that of Riemannian spherical space forms. In partic-

ular there exist no compact Lorentz spherical space forms.

It has been proved in [G-K] that

THEOREM 3. If $M$ is a compact Lorentz flat space form $R^{n+1}/\Gamma$ th en $\Gamma$ is a virtually

pol$yc_{\nu}vd_{J’}c$ . Further $M$ is diffeomorphic to an infrasol$vm$ anifold.

5



99

See [ $To|$ for a generalizatio $n$ . The situation of the $nonc_{t_{-}^{\sim_{1}}}$ mpact case is quite different ftom

the compact case. .vlargulis ([M]) gave an interesting example;

THEOREM 4. There exists a noncompact Lore$ntz$ flat space form of dimension th$reewhose$

fundamental group is isomorphic to a free $gro\ddagger Jp$ of $rank$ two.

See [D-G] for a generalizatio $n$ . In particular this gives an example of noncompact Lorentz

iiat space form with nonzero euler characteristic. (Note that every conpact complete affine
$X$

flat manifold has vanishing euler characteristic.) To our later $use_{\}$ we quote the following

result ([Ca]) which is concerned with the Markus conjecture.

THEOREM 5. If $\phi I$ is a compact Lorentz Hat manifold then the developing $map$ is&covering

map, $1’.e.,$ $M$ is complete.

Kulkarni and Raymond ([K-R]) have made a $pro$ gress on compact Lorentz hyperbolic

space forms of dimension three.

THEOREM 6. Let $M$ be a compact Loren $tz$ hyperbolic space form of dimension three.

Then $M$ is finit$elyco$vered by a circle $b$ undle $w^{r}i$th nonzero euler class over a dosed surface

$ofgen|Jsg\geqq 2$

The first author gave an nontriviai example of compact Lorentz hyperbolic space forms.

They are called standard space forms (cf. [K-R],[Ku]) and are homeomorphic to Seifert

fiber spaces over hyperbolic orbifolds. More precisely, a three dimensional standard space

form is a compact Lorentz hyperbolic space form $\tilde{H}^{1,2}/\Gamma$ whose fundamental group $\Gamma$ sits in

the subgroup $Rx\overline{PSL}_{2}R$ of $o(2,2)^{\sim}$ . In other words, a standard space form is a compact
$z$

Lorentz hyperbolic space form which admits a timelike Killing vector field induced by a

circle action. We remark that a compact Lorentz hyperbolic space form is not always a

standard one. In fact there is a deformation of Lorentz hyperbolic structure starting at a

standard space form. This was obtained by Goldman ([G]).
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THEOREM 7. There $exl’sts$ a nonstandard Lorentz space form of $dim$ension three.

In summary we obtain the following.

COROLLARY 1. Let $M$ be a compact Loren$tz$ space form of dimension three.

None if $k=1$ .
an infras $ol$vmanifold $R^{3}/\Gamma$ if $k=0$.
a Seifert $R$ ber space $\tilde{H}^{1,2}/\Gamma$ $l’f$ $k=- 1$ .

Here $\Gamma$ acts properly discontin uously and freely.

We have examined connected subgroups of the isometry groups of connected simply

connected Lorentz space forms. i.e.,

(1) $C_{1_{\sim}^{-}1}nnected$ Subgroups of $O(1, n+1)$

(2) Connected Subgroups of $R^{n+1}XO(1, n)$

(3) Connected Subgroups of $O(2, n+1)^{\sim}$

7. Compact Lore $ntz$ Sphe $r\iota cal$ Structure.

THEOREM 8. Th $eree$xi$st$ no $t_{1’}m$elike or l\’ightlike Killing $ve$ctor fields on Lorentz $spI_{J}er1’cal$

$m$ anifolds of arbitrary dimensions.

THEOREM 9. There exist no compact $Lo$rentz spherical 3-manifold admitt$ing$ one $p$aram-

eter gro up of spacelike transformations.

$\delta^{\urcorner}$ . Compact Lorentz Flat Structure.

We notice that every infrasolvmanifold of dimension three supports a complete Lorentz

flat structure.

THEOREM 10. If a compact Lorentz Rat 3-manifold admi $ts$ a one parameter group of

spacelike transformations th en it is a $e$ uclidean space form.

7



101

THEOREM 11. If $a$ com$pact$ Lorentz flat $(n+l)$ -manifold admits a one $param$eter gro up of

$tim$elike parallel $trans\overline{fo}rm$ ations then it is a euclidean space form.

$C$ OROLLARY 2. $\sim 4$ compact $Lo$rentz $Raf3_{-man}j$fold $ad_{1I1}itt\iota’ng$ a one parameter $gro$ up of

timelike $tr$ansformations is $a$ euclidean spaceform.

THEOREM 12. If a compact Lorentz flat $3- m$ anifold admits $a$ one $par$ameter group of

lightlike transformations then it is an infranilmanifold.

9. Compact Lorentz Hyperbolic Structure.

We recall examples of compact Lorentz hyperbolic manifolds from [Ku]. They are called

standard space forms due to Kulkarni.

THEOREM 13. If a compact $Lorentzhyp$ erbolic manifold admits $a$ one parameter group

of timelike transformations then it is complete and some finite $co$vering is diffeomorphic

to a circle bundle over a negatively curved manifold.

THEOREM 14. Let $M$ be a compact Lorentz hyperbolic manifold which admits a one

paramet er gro up $H$ of Lorentz transforma$tions$ an $d$ ( $\rho$ , dev) : $(\pi,\tilde{H}, \tilde{M})arrow(\Gamma,\tilde{G},\tilde{H}^{1,n})be$

the developing pair. Let $1arrow \mathcal{Z}arrow O(2, n)^{\sim}\underline{P}O(2, n)arrow 1$ be the projection. Put
$P(\tilde{G})=G$ . If $G$ is compact then we have

(1) $H$ is $timelike$ .

(2) The $d_{l’}men\epsilon i$on $ofM$ is odd an $dM$ is a $st$ andard $spa$ce form. $i.e$. , $M^{2n+1}\approx$

$U(n)^{\sim}\backslash U(1, n)^{\sim}/\Gamma$

THEOREM 15. If a compact Lorentz Ayperbolic 3-manifold admits a timelike Killing vector

field th en it is a $st$ andard space form.
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