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ON THE STRUCTURE OF THE TORELLI GROUP AND
THE CASSON INVARIANT
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Dedicated to Professor A. Hattori on his siztieth birthday

1. Introduction

In our previous paper [14], we have investigated the relationship between the
Casson invariant of oriented homology 3-spheres and the algebraic structure of certain
subgroups of the mapping class group of orientable surfaces. More precisely let X,
be an oriented closed surface of genus g > 2 and let M, be its mapping class group.
We denote Z,; for the Torelli group of X4, which is the subgroup of M, consiéting of
all the elements which act on the homology of X, trivially. Also we denote K4 for the
subgroup of Z, generated by all the Dehn twists on separating simple closed curves
on £,. Now fix a Heegaard embedding f : &, — S3. Then for each element ¢ € X,
the manifold S which is obtained from S* by first cutting along f(X,) and then
reglueing the resulting two pieces by the map ¢, is an oriented homology 3-sphere.
Hence we can define a mapping A\* : K, — Z by setting \*(¢) = A(S}). On the
other hand, by making use of the theory of characteristic classes of surface bundles
developed in [11,12,13], we defined a homomorphism d : K4,; = Z where lCé,l is
the analogue of the group K, relative to an embedded disc D? C £, (see § 2 for the
precise definition). It is the secondary invariant associated with the fact that the first
characteristic class e; of surface bundles vanishes on Kg4,;. Now the main theorem
of [14] (see also [15]) can be summarized that the two integer valued invariants A*
and d are essentially equal each other. The precise formulation of this result, which
is rather complicated, as well as its proof was given in the framework of a certain
combination of Johnson’s theory on the structure of the Torelli group [7,8,9,10] with

“ours [op. cit.]. Now the purpose of the present paper is to continue these lines of
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investigations. As a result we find further close links between the Casson invariant

and the structure of (various subgroups of) the mapping class group.

Now we describe the contents of this paper briefly. In § 2 we generalize the main
theorem of [14] mentioned above as follows. Namely we consider the general situation
where there is given an embedding f : ¥, — M of ¥, into an oriented homology
3-sphere M which need not be Heegaard. We define a mapping Ay : 7, — Z by
Af(p) = M(My,) — M(M) (¢ € Z,) where M,, is the homology 3-sphere obtained by
cutting M along f(2,) and then reglueing the resulting two pieces by the map . We
reformulate the main result of [14] in this more general situation. In § 3 we consider a
certain quotient group of the Torelli group which exactly measures how the elements
of the Torelli group act on the fourth nilpotent quotient of the fundamental group
of 3. It turns out that this quotient group is a central extension of a certain free
abelian group by another one which arise naturally in the work of Johnson and its
extension [7,8,14]. We determine the Euler class of this central extension (Theorem
3.1). Using this result, in § 4 we describe how the mapping A : 7, — Z differs from
a homomorphism. We will give a complete answer in the case where f is a Heegaard
embedding (Theorem 4.3). As a byproduct of this description, we show that the mod
2 reduction of Ay is always a homomorphism, thus generalizing an earlier work by
Birman-Craggs [2] (see Corollary 4.4 and Remark 4.7). In the final section (§ 5), we
determine the set of all homomorphisms Kg4,; — Z which are invariant under taking
conjugates in the whole mapping class group. It turns out that there are essentially
two such homomorphisms (one of which is the homomorphism d mentioned above,
see Theorem 5.4). We also settle the same problem for the group Ky (Theorem
5.7). These results will play an important role in our future paper [16] Wheré we will
interpret the invariant d : Xg,; — Z, which is the core of the Casson invariant in the
context of our approach, as Hirzebruch’s signature defect (see [4]) of certain framed

3-manifolds.
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2. Reformulation of the previous results

In this section we recall our formula proved in [14] which expresses the Casson
invariant of oriented homology 3-spheres in terms of the pasting maps of their Hee-
gaard splittings. In doing so, instead of just summarizing the results of [14] we prefer

to exhibit the formula somewhat differently in a more general setting.

Suppose then that we are given an embedding f : ¥; — M where £, is an
oriented closed surface of genus ¢ > 2 and M is an oriented homology 3-sphere
(although the most important example is the case where M is the 3-sphere S® and f
is a Heegaard embedding, we do not assume these conditions). Since M is a homology
sphere, the embedded surface f(X,) splits M into two parts V} and V_, where Vj
is the one such that the induced orientation on the boundary 8V, = f(2,) coincides
with the given one on L, via f. We may call V; (resp. V_) the positive (resp.
negative) piece of M with respect to the embedding f. We can write M =V, U, V_
where ¢ : 9V — OV_ is the “identity”. Now let Z; be the Torelli group of 3,.
Namely it is the subgroup of the mapping class group M, of &, consisting of all the
elements which act on the homology of L, trivially. Also let K, be the subgroup of

A

s generated by all the Dehn twists on separating simple closed curves on X,. For

each element ¢ € T, we consider the manifold M, = V, U,, V_ which is the one
obtained by first cutting M along the embedded surface f(¥,) and then reglueing
the two pieces V; and V_. along their boundaries by the map wp. It is easy to see that

M, is an oriented homology 3-sphere so that we have the Casson invariant A(M,,).

Now define a mapping
Af:Zy, =7

by Af(p) = M(M,) — A(M) (¢ € T,). We also consider the restricted map s : Ky —
Z. (Recall here that any homology 3-sphere can be expressed as Sg for some ¢ € Ky
with f : B, — S% a Heegaard embedding, see [14]). For each sépa.rating simple
closed curve w on ¥,, we denote D,, € K, for the right handed Dehn twist on w. By
definition the group X, is generated by such elements. Now almost the same proof

as that of Proposition 3.5 of [14] yields
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Proposition 2.1. The mapping Ay : K, — Z is a homomorphism. Moreover for
each generator D, € K, we have A¢(D,,) = —X(f(w)), where N'(f(w)) is the Casson
invariant of the knot f(w) in M.

Motivated by the fact that Casson’s invariant of a knot in an oriented homology
3-sphere can be expressed as a polynomial of degree two on the linking numbers
among various homology classes of its Seifert surface (see Proposition 3.2 of [14]), we
define a commutative algebra A over Z as follows. Let H = H;(X,;Z) be the first
integral homology group of ¥,. Then A is defined to be the one generated by the

symbol £(u,v) for any two elements u,v € H with the relations

(@) l(v,u) = L(u,v) +u-v

(72) £(n1uy + nauz,v) = n1f(u1,v) + nal(uz,v) (n1,ng € Z)

where u - v is the inersection number of u and v. In some sense A is the universal
model for the linking pairing on H. More precisely, given an embedding f : 3, — M

as before, we have the “evaluation map”
egr A— 17

defined by ef(f(u,v)) = Lk(f«(u), fu(v)t) where fi(v)* is the homology class in
M\ f(%,) obtained by pushing the homology class f.(v) to the positive direction
(so that f.(v)* is supported in V_). Now for a technical reason we choose an em-
bedded disc D?* C ¥, and let Mg,1 be the mapping class group of X, relative to
D?. We have a natural surjective homomorphism M,,; — M, and its kernel can be
canonically identified with 71(T1Z,) where T1 %, is the unit tangent bundle of 3.
We consider the Torelli group Z,,; which is the subgroup of M,,; consisting of all
the elements which act on H trivially and also let Kg4,; be rthe subgroup of My,;
generated by all the Dehn twists on bounding simple closed curves on £, \ D?. For

each bounding simple closed curve w on ¥, \ D?, let D,, denote the Dehn twist on w

4
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and let uy,--- ,up,v1,- -+, v, be a symplectic basis of the homology of the subsurface
of £, \ D? which w bounds (hereafter, following Johnson, we call such element a

BSCC map of genus h). Then we can reformulate one of the main results of [14] as

Theorem 2.2. The assignment

h
K:g:l 3D, +— — Z{f(ui, u,-)ﬂ(v,-,v;) — E(u,', v;)E(v,-, u,)}

i=1
=2 ) {0y u)(vi, v5) — Lui, v5)€(uj, i)}
i<j<h
for each generator D, € Kq,1 extends to a well defined homomorphism p : Kg,3 — A

and the following diagram is commutative

K:g,l ——P-") A

1 la

As
Ky — Z

where K 4,1 — K4 is the natural surjection.

Roughly speaking, for each generator D, € Kg,; the element p(D,,) € A can be
considered as the “universal model” for the Casson invariant of the bounding simple
closed curve w on I, \ D? (up to signs). Namely if there is given an embedding
f : 2, — M, then we can consider f(w) as a knot in M and we have X' (f(w)) =
—e#(p(D.,)). The following is an immediate corollary to the above theorem which

we present here for later use.

Corollary 2.3. (i) Af(ee™) = As(¥) for any ¢ € I, and ¢ € K,.
(32) A¢([e,9]) = 0 for any ¢ € T; and ¢ € K,.

Now if there were an algorithm to express any given element ¢ € X, as a product

of Dehn twists on separating simple closed curves on X,, then we can explicitly

5
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calculate the element p(p) € A and hence the desired value Af(¢) by using Theorem
2.2. However unfortunately there is no such one and our next main result of [14]
is that the homomorphism p : K4,1 = A can be decomposed as a sum of two more
computable ones: p = '212‘1 + P, where d : K4,1 — Z is a certain homomorphism and
p:K;1— AQ®Q is a modification of p. The point here is that the homomorphism 7
can be read off from Johnson’s homomorphism 73 : Kg,1 — T (which will be recalled
below) and the homomorphism d is the secondary invariant associated with the first
characteristic class e; € H?(My,1;Z) of surface bundles introduced in [14]. This
homomorphism d should be considered as the core of the Casson invariant from our

point of view.

Now, in order to define the homomorphim 7 : Ky, — A® Q , we briefly recall
the definition of Johnson’s homomorpisms 74, which will be also needed in later

sections (see [7,8,14] for details).

We denote Iy for 71(Z, \ Int D?) and let {I%}x>1 be the lower central series of
IN; It = [I[k-1,11] (k£ > 2). The mapping class group M,,; acts on the nilpotent
quotient group N = I/I} naturally and we define M(k) = {¢p € My, ;¢ acts
on Ny trivially }. Let £ = @i>1L: be the free graded Lie algebra on H (over Z).
Then as is well known there is a natural isomorphism I'y /I'k41 & L. Now Johnson’s

homomorphism

Tk : Mg,y — Hom(H, Ly)

is defined as 7x(¢)([7]) = lex(M77'] (¢ € M(k),y € I1) , where [y] € H is the
homology class of v and [¢.(7)7y~?] denotes the image in £} of the element ¢, (v)y™*
which is contained in Iy by the assumption ¢ € M(k). The intersection pairing on
H defines a natural isomorphism H & H* so that we can write 7, : M(k) — L @ H.

If we choose a symplectic basis z1,--+ ,24,¥1,**+ ,yg of H, then explicitly we have

Tr(p) = Z{Tk(?’)(wi) Qui—Te(p)(¥i) @z} ELLQH

where 7;’s in the right hand side are the old ones. Now for k¥ = 2, M(2) is nothing

6
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but the Torelli group Z,,; and L, is naturally isomorphic to A2H so that we can write
79 : Iy,1 — A°H @ H. Johnson proved that Im 7, is équa.l to A3 H C A’H® H, where
aAbAc € A*H (a,b,c € H) is identified with (aAbd)®c+(bAc)Qa+(cAa)®b € A2HQH.

For k = 3, according to Johnson [9], M(3) is equal to K,; and in [14] we have
determined the image of the homomorphism 73 : K4,; = L3Q@H as follows. There is a
natural isomorphism £3 & A2HQH/A3H sothat L3 H X A’ HQH?/A3HQH. We
define a module T to be the submodule of A2H @ A2H C A?H ® H? generated by all
the elements of the forms (aAb)®(aAb) and (aAd)®(cAd)+(cAd)@(aAb) (a,b,c,d €
H) (henceforth these elements will be denoted by (a A 5)®% and a Ab < cAd
respectively). By the definition of T', we have a natural homomorphism T' — L3 Q H
and it can be shown that the kernel Ty of this homomorphism is the submodule of T
‘generated by all the elements of the form a Ab & cAd—aAc e bAd+and < bAc.
Hence if we write T for T'/Tp, then T can be considered as a submodule of £3 ® H.
" In these terminologies we have proved in [14] that. Im 73 is a subgroup of T of index

a power of two.

Now there is a uniquely defined homomorphism 6 : T' — A such that for any

symplectic subbasis uy, -+ ,up,v1, -+ ,vp of H, the equality

h
0((ugs Aoy +---up A vh)®2) = Z{Z(u,', ui)l(vi, vi) — L(ui,vi)l(vi, ui)}

+2 ) {8, u)(vi, v5) — Lui, 05)8(uj, vi)}

i<j<h

holds. Let D, € K;,; be a BSCC map of genus h where w is a bounding simple
closed curve on X, \ D%. Choose a symplectic basis uy,--- ,up,v1,+-- ,vp of the
homology of the subsurface which w bounds. If we define an element ¢t € T by ¢ =
—(uy Avy+-- - +up Avy)®?) then we have p(D,,) = 6(t). Hence the element ¢ contains
all the information of the “universal Casson invariant” p(D,). However Johnson’s

homomorphism 73 : Kg,1 — T computes only the image of t in T: m5(D,) =1 € T.
Now the definition of the homomorphism 7 : Ky,; = A ® Q is defined as follows.
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There exists a certain homomorphism d : T — Z, which is a formal counterpart
of the homomorphism d, and for each generator D, € K,,; as above, choose any
element #' € T ® Q such that the image of ¢ in T is equal to 73(D,). Now set
p(D.) = 6(t') + 3d(t') € A® Q, which turns out to be independent of the choice of
t’. This is the definition of the homomorphism 7 : K4,; = A®Q. Now we summarize

the above as

Theorem 2.4. We have the equality

plp) = %d(tp) +7()

for any ¢ € Kgy,1.

3. A quotient group of the Torelli group

In this section we determine the structure of a certain quotient group of the
Torelli group Z,,1. Roughly speaking it is the group which contains exactly the
informations carried by the homomorphisms 72 and 73. More precisely recall that we
have a short exact sequence

,
1 —— Kgn — Ty L L AH — 1

and the homomorphism 73 : Kg,1 — T. Hence if we define fg,l to be the quotient

group Z,,; / Ker 73, then we have an extension 1 — Im 73 —>'fg,1 — A*H - 1.
Theorem 3.1. The extension

| 1—-Imms —+Tg’1 —A*H > 1

8



137

is a central extension and its Euler class x € H2(A3H;ImT3) is given by

x(§,m) =
—(a-dbAcoenf—(a-e)bAce fAd—(a-fbAcedAe
—(b-d)chaeANf—(b-e)chae fAd—(b-flceAae—dAe €ImT cT.

~(c-d)aNbeoeANf—(c-e)aNbe fAd—(c-flanbedAe

where ¢ = aAbAc,n=dAeAf € AH (a,b,c,d,e,f € H) and { An € Hy(A*H; Z).

Before proving the above theorem, we prepare several technical results. Recall
that we write Iy for m1(Z,\Int D?), {I%}x>1 for its lower central series and M(k) for
the subgroup of the mapping class group M,,; consisting of all the elements which
act on the nilpotent quotient Ny = I'y /I trivially.

Lemma 3.2. (i) For any element ¢ € M(k) and v € Iy, we have p(v)y™! € Ikyq_s.
(ii) For any elements ¢ € I,,1 ,% € M(k) and v € Iy, we have the equality

[ovo ™ ()71 = [Y(v)r ]

in ;Ck.}.[_] .

Proof. To prove (i), we use the induction on £. If £ = 1, then the claim follows
immediately from the definition of the group M(k). Now we assume that the claim
holds up to £ — 1 and prove it for £. Suppose that an element v € I} is expressed as
¥ =[v1,72] with#; € I';_; and v, € I'y. Then by the induction assumption, we have
©(71) = 1 and ¢(72) = 728 for some & € I'tye—2 and B € I'x. Then we compute

o(v)y? - [e(m), e(v2)]lr2, 1]
= moav oty B vy T
= 7lo, v2B872 08,77 1vs M

9
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Now both of the elements [a,728] and [8,~] "] are contained in Ik4s—;. Hence
o(7)y™! € I'k4s—1 as required. In general any element v € I, can be expressed as a
product of elements of the form [y1,72] given above and an easy inductive argument
shows that the claim also holds for 4. Next we prove (ii). If we apply (i) to the
elements ¢ € T,,1,% € M(k) and v € I, we can write p(y) = 117,%(7) = 7127
for some v; € I'pt1,72 € Ikte—1- It follows that ¢ ~1(v) = ¢~ (77')y. Then we

compute

Yo (V)7 = (e A D)y
= (o (17 ey

= oo™ (77 De(r2)m.

Now again by (i), we can conclude that i~ (7;") = 77 * (mod Ikte) and ¢(72) =

v, (mod I'tye). Hence oy~ (v)y™ = v{ 7211 = 72 (mod Ikye). Since v =

¥(7)y~?, This finishes the proof.

As a corollary to Lemma 3.2,(i), we have

Corollary 3.3. For any two elements ¢ € M(k) and ¢ € M(£), the commutator
l¢, %] is contained in M(k + £ —1).

Proof. Clearly it is enough to prove the assertion for the case k > ¢. Henceforth we
assume this condition. Now let 4 € I} be any element.Then by the assumption we

can write () = 717 and ¢(y) = 27 for some v, € Iy and 7, € I't. Then we have

$71(7) = v (17)y and =2(7) = ¢~2(13})7. Now we compute

[o,%](7) = e (¥ (71 )
= oo e () Y)
= [, ¥)(vi e (3 e ()12

10
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Hence

[, W1 = o, ¥)(vr Dt (s Dven - s e trema - e -

Now by Lemma 3.2,(i), we have [¢,¥](77 )11 € I'kte—1 because certainly we have
[o,%] € M(E). Similarly we have oo™ (v )12 € Tkte—1, (M) € Trte—
and of course [y;!,7;'] € I'kys. Hence [p,9](7)y™* € Ikys—1 as required. This

completes the proof.

Recall that for any element ¢ € M(k) we have a homomorphism 7(¢) : H —
L. Now by virtue of Lemma 3.2,(i), for each element ¢ € M(k) and a positive
integer £ we can define a similar homomorphism ¢{ } : £ — Liye—1 by setting
o{[7]} = [e(¥)¥7] € Lryr—1, where [y] € L is the image in £y of any element
~ € I'x. It is easy to check that this correspondence in fact defines a well defined

homomorphism.

Proposition 3.4. Let ¢ € M(k) andy € M(£) so that we have [p, )] € M(k+£—1)

(see Corollary 33) If k and £ are greater than one, then we have
rirea(fp, WD) = o{red$)(w)} — #{r(e)w)} (u € H).

Proof. Let v € I} be any element. Then we can write ¥(y) = 717, ¢(v) = 727y for

-1

some v; € Iy and v € I't. Now in the computation of [p,%](v)y~! in the proof of

Corollary 3.3, the term [0, %](77 )71 is contained in I'yip0—3 C I'kge (by Corollary

3.3 and the assumption £ > 2). Hence we have

[, )7 = v (75 )2 - (M (mod Tits).

11
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On the other hand by Lemma 3.2,(ii), we have

lpbe™ (15 2] = [(75 el

= — ¥{m ()N}

as elements of Lxi¢—1. Also we have [p(71)71 "] = ¢{me(¥)[V]} € Li+e—1. Hence we

can conclude that Txse ([0, BN = {re(@)(BD)} — {ma(e) (¥} as required
This completes the proof.

Proposition 3.5. For each element ¢ € M(k), the homomorphism ¢{ } : Lo —

Ly+e—1 is given explicitly as

V4
99{6} = Z[ e [u17 u2]7 B ']’ Tk(@)(ui)]’ o ']’uf]

=1

where £ = [- - [uy,u2], - -],ue] € L¢ (u; € H).

Proof. We assume that k > 2 because for k¥ = 1 the assertion is empty. By the

definition of the homomorphism ¢{ }, it suffices to prove the following statement
(*) For any element v = [--- [y1,72],- - - ],ve] € It (vi € I1), we have

eyt = Hf=1[~--[71,72],---],w(vi)vfl],~--],fyg] (mod Iyys).

We prove the above assertion by the induction on £. If £ = 1, then the assertion is
clear. We assume that (*) holds up to £ — 1 and prove it for £. Write v = [a, ]

where @ = [+ [y1,72), - -], 7£-1] € I'e—1. By the induction assumption we can write

ola) = aa

= aa (mod Ik4e-1)

where & = [Ti21 (- v v2)y -+ 1 (i) s -+ -1, Ye—1] € Thge—a. Also we can write

12
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@(~e) = ¢ for some B € I't. Then we compute

1

eV = (), p(ve)llve, o]

= a&wﬂ&"la—lﬁ'laﬁ'la‘l

= afd@,ve)a™t - aw[&ﬁ]’)’[lﬂf”l . q’yga—l[a, ﬁ]a’)’e—la*l

= [&,7][a, B] (mod I'k+e)

because [&, 8] € k4. Now using the fact that 8 = ¢(72)y; " (mod I't41) it is easy to
see that [o, 8] = [, p(72)7; '] (mod I'kye). Also it can be easily shown by induction

that [a7 'Yf] = Hf;; [ . [71772]7 e ]7 50(71)7;—1]7 e ]171—1]77(] (mOd Fk—l—l)- Hence

£
o)y =[]0 bl Le(r)r - -1, 7e] (mod Teve)

i=1

as required. This completes the proof.
Now we are ready to prove the main result of this section.

Proof of Theorem 3.1. In general we have 13(09 ™) = put3(¥) (p € My,1,9 €
Kgs1 ). Hence if ¢ is contained in Z,1, then m3(ppo~1) = 73(3). It follows immedi-
ately that the extension 1 — Im73 — Z,; — A®*H — 1 is a central extension. Next
we determine the Euler class x € H?(A®H;Im3) of this central extension. To do
this we briefly recall the definition of the “Euler class” of a general central extension
0> A— G— Q — 1 (see [3] for details). Choose a set map s : @ — G such that
s(1) =1 and set ¢(f,9) = s(f)s(g)s(fg)~! € A. It is easy to see that c is a 2-cocycle
of the group @ with values in A. If we change.the,,map s, then the cocycle ¢ changes
only by a coboundary so that the cohomology class [c] € H?(Q; A) is well defined.
This is the definition of the Euler class of central extensions. Now assurne thé,t Q is

a free abelian group (as in our case). Then we have H%(Q; A) & Hom(H,(Q;Z), A)

13
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and H2(Q;Z) = A’Q. For any element f A g € A2Q (f,g € Q), we have

X(f/\g) = C(f7g) —C(g,f)
= [s(f),s(9)] € A

because s(fg) = s(gf). With these preparations we compute the Euler class x €
H?(A3H;Im73). Let £ = aAbAcandn = dAeA f be any two elements of
AH (a,b,c,d,e, f € H). To evaluate the value of x on the cycle é An € A2(A3H) =
H,(A3H;Z) we choose elements ¢,9 € I,,; such that 7(¢) = £ and m(¢) = n.
It is easy to deduce from our identification of A3H as a submodule of A’2H @ H =
Hom(H, A?H) (see §2) that the homomorphism 72(p) : H — L3 = A2H is given by

T2(p)(uw) =(u-a)bAc+(u-b)cAa+(u-c)anb (ue H).
Similarly we have

() (w) = (u-d)e A f+(u-e)f Ad+(u- f)dAe.

Hence if we apply Proposition 3.4 and Proposition 3.5 to ¢,% € I,,; = M(2), we

14



obtain

73([0, ¥]) = p{ra(¥)(w)} — P {72(p)(u)}
= (u- {(f - 9)le; [b,c]] + (f - b)le, [c, all + (£ - O)le, [a, B]]

+(u -

+(u -

+(e- a)llbc, f1+ (e b)llc, a], f] + (e - €)l[a, 8], £1}
e){(d- a){f, (b, cl] + (d- B[S, [e, al] + (d- ), [a, B]]

+(f - a)llb,c],dl + (f - bl[e, al, d] + (f - €){[a, 8], d]}
(e a)ld, [b,c]] + (e - B)[d, [c,a]] + (e - c)[d, [a, B]]

+(d- a)[[b, ¢, e] + (d- b)[[c, al, e] + (d - ¢)[[a, b], €] }

) a’){(c : d)[b, [6, f]] + (c ‘ 6)[1), [f) d]] + (C : f)[b) [da 6]]

+(b- d)le, fl,e] + (b e){[f,d], c] + (b- f)l[d, €], c]}

: b){(a : d)[c7 [6, f]] + (a’ ) e)[c) [f7 d” + (a v' f){(:’ [d1 e]]

+(c- d)le, fl, o] + (c- e)l[f, d}, a] + (c- f)[ld, €], al}

-o){(b- d)a, [e, f] + (5 €)[a, [£, d]] + (b - f)la, [d, €]
+(a-d)lle, f1,8] + (a- e)[[f, d], o] + (a- £)l[d, ], 8]}

143

Now by the identification of T as a submodule of Hom(H, £3) (see §2 ), the element

t=bAce eA f €T can be written as

t(u) =(u - b)[c, [e, fI] = (u - )b, e, £]]

—(u-e)l[b, c], f] 4 (u - f)[[bs ] e].

It is now a routine matter to check that the formula given in the theorem is the

correct one. This completes the proof.

Here is an example which will clarify the effectiveness of Theorem 3.1.

Example 3.6. We consider a compact surface of genus two with one boundary

component as illustrated in Figure 1, where we fix a symplectic basis z1, z2, y1,y2 of

15



144

the homology group. Also let ¢,1 € I, ; and ¢ € K21 be the elements defined there,
where the + (resp. —) sign means that we take the right handed (resp. left handed)

Dehn twist on the corresponding simple closed curve.

&5
o©) (o0& [

Figure 1
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We can show by a direct computation that [p,9] = (. Now we compute (cf.
[7,14])

T2(p) =21 Ay1 Az
72(¥) =21 Ay1 A Y2
7)== (21 A1) + (22 A y2)®? — (21 Ays + 22 A y2)®?

=—2Z1AY1 S T1AY1 —T1 Ay < T3 AYa.
On the other hand, by Theorem 3.1 we have

x(@1 Ayr Aza, 21 Ayr Ays)
==Y AT Y2 ANT1 + T2 A2 S Y1 AYy2 —T1 ANY1 S T3 Ay

E-T1NANY1 O TIAY1 —T1AYy1 o T2 A Y2

as elements ofT, because 1 Ay; &« T2 AYy2 —Y1 AT2 o Y AT1+ T2 ATy & Y1 Ay is
contained in Ty. This checks Theorem 3.1 in this case. Observe here that although
the Euler class x has a meaning with values in T' (not just in T), it does not give the
correct answer. For the genus two case we can modify x to obtain the correct one

with values in T' by adding a constant term, but here we omit it.

4. The mapping \f:Z; —» Z

Recall that in § 2 we have defined a mapping As : Z, — Z by As(¢) = A(M,,) —
AMM) (¢ € I,) where M, is the homology 3-sphere obtained by cutting a given
oriented homology 3-sphere M along an embedded oriented surface f(¥X,) C M
and then reglueing the resulting two pieces V; and V_ by the map ¢. Although

the restriction of Ay to the subgroup X, is a homomorphism, Ay itself is not a

17
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homomorphism (except the case ¢ = 2). The purpose of this section is to determine
completely the deviation of the mapping A¢ from the additivity in the case where f
is a Heegaard embedding (see Remark 4.7 for the general case). In order to formulate
the result, we define a mapping 65 : Z, x I, — Z as follows. First as in §2 we fix
an embedded disc D? C X, and consider the Torelli group Z,,; of &, relative to
D?. Then we have the homomorphism 7 : Z,;,1 — A3H. Next we denote H ¢ for the
kernel of the homomorphism H = H(X,;Z) — Hy(V_;Z) which is induced from
the mapping £, — f(2,) C V- and similarly we denote Hy for the kernel of the
homomorphism H — H1(Vy;Z). Then since M is assumed to be a homology si)here,
it is easy to see that H is decomposed as a direct sum H, @ H, of isotropic subspaces
H, and Hy each of which has maximal rank g. It follows that we can choose a
symplectic basis z1,--- , 24,71, ,yy of H such that z; € H, and y; € H, for all

1=1,---,g9. With these preparations, we have

Definition 4.1. We define a mapping
bp: T, xTy —>2Z

as follows. For any two elements ¢,% € I,, choose any of their lifts g'ov,z?; € I4,1 with

respect to the natural surjection 14, — Z,. Write

T2(p) = Z aijk Yi Nyj N yx + other terms
i<j<k

TZ(IZ) = Z bijr T; ANz; Az + other terms
i<j<k
in terms of the basis of A’H : z;AzjAzr (1 < j < k), zi Azj Ay (i < j),
i Ay Ayr (§ < k), and y; Ayj Ayr (8 < j < k) which is induced from the symplectic

basis €1, ,Tg4,Y1, " ,Yg of H chosen above. Then we set

§¢(0,) = Y aijibije-

i<j<k
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Lemma 4.2. The above definition is well defined. Namely the value 67(p,) does

not depend on the various choices made.

Proof. We have to prove that the value i1s independent of the
(i) choices of the lifts 3, e Z,,1 and

(ii) choice of the symplectic basis z1,--+ ,Zg,y1,** ,Yg-

First we consider (i). Recall that Ker(Z,,; — Z,) is naturally isomorphic to
71(T1%2,) where T2, is the unit tangent bundle of ;. Also according to Johnson
[7], m2(Ker(Z,,1 — Z,)) C A3H can be identified as {wg A u;u € H} where wy =
T1 Ay +-- -+ x4 Ay, is the “symplectic class” of H. It follows immediately that the
value 6¢(¢,%) is independent of the choices of @ and 12;

Next we consider (ii). Since we are only considering those symplectic basis
Ti, - ,Zg, Y1, ,Yg such that z; € H; and y; € H, for all ¢, any two such bases are

related by a matrix of the form

A O
(0 tA—-l) € Sp(2¢;Z)

for some A € GL(g;Z). As is well known GL(g;Z) is generated by the following

matrices

R = ,Tem= . (f#m)

Now it is easy to check the relevant invariance under the basis change correspond-
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ing to the matrix R. We check it for the matrix Ty,,. The new symplectic basis

!

Ty, , Ty, Y1, " » Y, Which is obtained from the old one by applying the matrix Ty,

is expressed as

zy =zx (k#m), zi, = z¢+ 2, and

Y =yr (k#2), yp =Yt — Ym:

Hence if we represent the given two elements m5(3) and 73(¢) with respect to the
new basis as 72(3) = > ai; ¥ Ay Ay + other terms and @) =3 bipzi AT A
z} + other terms, then aj;; = a;jr unless one of the indices 7, j, k is equal to m and
the other two are different from £. Similarly bgjk = b;jr unless one of ¢, 7,k is equal

to £ and the other two are different from m. Moreover we have

alejk =ayjk + Amjk (],k 7é e) m)

bmjx =bmjk — bejx (4,5 # £,m).

It follows that aijblejk —i—a;m-kb'mj,C = agjkbejk + Amjkbmjk- Hence the sum ) aijrbijx
is invariant under (ii). This completes the proof.

Now we are ready to state the main theorem of this section.

Theorem 4.3. Let M be an oriented homology 3-sphere and let f : £, — M be

a Heegaard embedding. Also let Ay : Ty — Z be the mapping defined as A¢(yp) =
- AM,) — MM) (p € I,) where M, is the homology sphere obtained from M by

cutting along f(¥,) and then pasting back by the map ¢ € I;. Then we have

Af(p¥) = Ap() + Af(¥) + 265 (, %)
for all ¢,y € 1.

Corollary 4.4. (i) The mapping Ay : Ty — 7 is a homomorphism for g = 2.
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(i) If we define As : I, — Z/2 to be the mod 2 reduction of As, then \; is a
homomorphism for all g.

Remark 4.5. As is well known the mod 2 reduction of the Casson invariant is equal
to the Rohlin invariant. Hence statement (ii) in the above corollary is due to Birman-

Craggs [2] (see also Remark 4.7).

Before proving Theorem 4.3, we prepare a few preliminary results.

Proposition 4.5. Let M be an oriented homology 3-sphere and let f : £, — M be

an embedding. Then for any two elements p,% € I,, we have

Af([goa ¢]) = 26)‘(30) "1[)) - 25f(¢'1 90)

Proof. Fix an embedded disc D? C &, and we consider everything at the level of the
group Z,,; rather than Z,. Now first of all we claim that the following two assertions

hold:

(i) the value A ;([¢,]) depends only on 72(¢) and 15(¢) € A’ H for any ¢, € I,,;.

(1) As(lpr - 0o, %1+ tha]) = Tiny 2oy Ar(lepi, %5]) for any 1,95 € Ty

In view of the existence of the exact sequence 1 — K, — Zy;1 — AH — 1,
we have only to prove that Af([p,¥]) = A¢([pe1,¥¥1]) for any 1,91 € Ky,1. But
we have [pp1, 9] = @lp1,$le ™ @, ¥]. Hence we obtain A¢([pp1,%]) = As([p, ¥]) by
Proposition 2.1 and Corollary 2.3. Similarly we have A ¢([pe1, ¥1]) = Af([ew1,¥])
proving (i). To prove (ii), we first assume that s = 2 and ¢t = 1. Then we have
[p102,%] = @1lp2, ¥lpi 91, 9] and hence A¢([p12,9]) = As([p1,9]) + A (2, %))
by Proposition 2.1 and Corollai‘y 2.3 again. The general case follows from this by an

easy inductive argument.

In view of the above two assertions (i) and (ii), for any two elements¢,n € A3H
we may write Az([¢,n]) instead of Af([p,®]) where ¢, € Z,,; are any elements such
that m(¢) = £ and 72(%) = . Also the value A¢([¢,n]) is “bilinear” with respect to
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¢ and 1. Now we choose a symplectic basis 31, ,Zg,91,--- ,y, of H such that z;
is homologous to 0 in V_ and y; is homologous to 0 in V. for all ¢. For any element
u € H, let ut be the cycle in V_ which is obtained by pushing u to the positivé

direction. Then by a standard argument we have

Ek(xi,y}") = —6;; and

Ek(wi,mf) =Ek(yi,y;’) = 0.

Now we compute A¢([€,7n]) where £ and n run through any member of the basis of
NH :z;hzjAzp 0 < j<k),ziNzjAye (0 < J), zi ANy; Ayx (j < k) and
vi Ay Ayr (2 < j < k) which is associated to the symplectic basis of H chosen above.
To determine the value Af([¢,n]) we first use Theorem 3.1 to compute 73([€,7]) and
then apply Theorem 2.2 and Theorem 2.4. We give the results in the following list
(we refer to [14] for the explicit evaluations of the invariants 6y = € 0 8,d and d).
In the list we denote r = r(&,n) for X(f A1) € T which is a lift of the element
73([£,m]) € T to T (recall that x has a me,aning with values in T') and also recall that
Af = sbd+ 0+ 3d (see § 2).
(I) The case where é = 2; ATj ATk, ) =Tg AT A Tp.

In this case r = r(£,1) = 0 and hence 6;(r) = d(r) = 0. Also we have d([£,7]) =
0. Therefore we can conclude that A¢([¢,n]) = 0.

(II) The case where { = 2, AZ; ATk, N = T4 ATy A Yn.

In this case we have
r(€,n) = —6inTi ATk S T AT —6jnZE AT; S TYN T —SknTi AT & Zg ATy

and hence 8(r) = d(r) = 0. Also we have d([¢,n]) = 0. Therefore As([¢,7]) = 0.

(III) The case where £ = z; AzZ; Az, N = Te A Ym A Yn.
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In this case we have

r(ﬁ,n):—&-mxj/\xk Hyn/\$3~—(5,’n.’l,'j/\$k > Te ANYnm
—6imTEk AT S Yn ANTp— 85Tk ANTi & Tp AYm

—5km:l?,‘/\.’12jHynAZe—5knwiA$j(—>$gAym

and hence 6y(r) = d(r) = 0. Also we have d([¢, n]) = 0 and we conclude A¢([¢,7]) = 0.
(IV) The case where { = 2; AZ; ATk, 1 = Yo A Ym A Yn-

In this case we have

r(€,m) = = 8iT; ATk © Ym AYn — 6imTj; ATk < Yn AYe — 0inT; ATk © Yo A Ym
— Tk AT S Ym AYn —8imTE ANTi S Yn AYe — 6inTh AT & Yo Aym

—5kga:,-/\:cjHym/\yn——ékmwi/\xjHynAye—éknxiAa:ijeAym.

Hence we have 8y(r) = —d(r) = —36:46;mbkn (here we have used the assumptions

that 7 < j < k and £ < m < n). Also we have d([¢,n]) = 0. Therefore we obtain
Af([§m]) = —26i065m bkn.
(V) The case where { = z; AZj Ayg, 1 = T4 ATy A Yp.

In this case we have.

T(€,n) = —6inCj AYk © T AT — GinYk ANTi & Tp A Tpy

+6keti NZj & T AYn + 0kmTi ATj & yn A2y

and hence we obtain y(r) = d(r) = 0. Also we have d(r) = 0 and therefore
As([€,m]) = 0.

(VI) The case where £ = 2; AZ; Ayk, 1 = Z¢ A Ym A Yn.
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In this case we have

r(€,n) = —6imZTj Ayk O Yn ATy — 8inZj AYk © To AYnm
—OimYk AT G Yn ATp —OjrYr ATi & Tg A Ym

F 0T NTj & Y AYn
and hence 8y(r) = 6k¢6imd;n. Recalling the conditions 1 < j and m < n, we compute

d(r) = 8imb;k6nt — 6in;16em — 6;mbikben
+ 6nbikbem — 36im0jnbrs

d(r) =8(8;x6embin — 6k6nebim — 0ik6embjin + 6:ik6nebim)-

Hence we can conclude that A¢([¢,n]) = 0.

In the above list we omit four other cases like £ = y; Ay;Ayr and n = YeAym Ayn
because of a symmetry in the above computations with respect to z and y. Now we
can easily read off from the above list that the only possible pairs of (¢,7) with non-
zero Af is (zi Az Azk,yi Ay; Ayr) and (¥i Ayj Ayr,zi Az Azg) and in these cases

the values are —2 and 2 respectively. Therefore we can conclude that

Ai([p, b)) = 265(p, ) — 285(, ).

This completes the proof of Proposition 4.5.

Lemma 4.6. Let V be a handlebody of genus g and fix any diffeomorphism 0V &
¥,. Let M,,1 be the mapping class group of &, relative to an embedded disc D* C
Y, and let Ny be the subgroup of My,, consisting of all the elements which can
be extended to diffeomorphisms of V (under the above identification 0V = ).
Let H, be the kernel of the homomorphism H = H,(X4;Z) — H,(V;Z), which

is induced from the inclusion ¥, = 0V — V, and choose any symplectic basis
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T, ,Tg,Y1, -+ ,Yg of H such thaty; € Hy foralli =1,--- ,g. Define the subgroup
W, of A*H to be the one generated by the elements of the forms TiANT;AYk, TiANY; AYk
and y; Ay; A yr. Then we have

Tg(Ig,]_ ﬂ/\/’g,l) = Wy.

We omit the proof of the above lemma because it follows from Lemma 2.5 of

[14] by an easy argument.

Proof of Theorem 4.3. By the assumption that f : ¥, — M is a Heegaard em-
bedding, both of the pieces Vi and V_ are handlebodies of genus g. Now as before
choose a symplectic basis 21, ,Zg,¥y1,--+ , Yy of H such that z; is homologous to 0
in V_ and y; is homologous to 0 in V; for all 7. Also fix an embedded disc D? C &,
and choose any lifts (ﬁ,'{/)v € I,4,1 of the given elements ¢, € T,. Now write

(@)= @ik viAyj Ayk+ &
i<j<k

7'2('(;/\;) = Z b,’jk AN AN
i<j<.k

with respect to the basis of A® H which is associated to the symplectic basis of H cho-
sen above. If we apply Lemma 4.6 to the pair (V4, f(X,)), then we can conclude that
there exists two elements ¢4 ,9¥4 € T,,1 such that (i) ¢4 extends to a diﬁ'eomorphism
of V; (here we identify f(X,) with OV, ) and m(p4) = — 3 aijry: Ayj Aye (i1) ¥y
extends to a diffeomorphism of V. and 7(%4) = —n,. The same argument applied to
the pair (V_, f(¥,)) implies the existence of elements ¢_,1_ € Z,,1 such that (iii) ¢
extends to a diffeomorphism of V_ and m2(¢-) = —&; (iv) ¥_ extends to a diffeo-
morphism of V_ and ro(p-) = — > bijkzi Azj Azk. Now set o1 = 3,91 = Dy,
Y2 = @_pp4 and Py = ¥_1py. Then since ¢4 and 4 (resp. ¢_ and 9¥_) ex-
tends to diffeomorphisms of V. (resp. V_), we have My, 4, = My, M,, = M, and
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My, = My. Hence

As(p11) =Ap(w9)
Af(p2) =Ar(e)
Af(2) =A5(2).

Also observe that both of the elements ¢, and 1, belong to X4,; because m(ps2) =
T2(%2) = 0. Similarly we have My, y, = My_,, 4,4, and hence

As(prthr) = Ap(d—prvrp4).
On the other hand we have
1104 = o2 o, 0T e oo
and therefore
Af(—prirpy) = Af(%-@%tﬁf) + A ([, 03] + Af(aol%¢zso+)

by Proposition 2.1. But we have Ap(p_p29"") = Af(p2) and Ao aps) =
Af(¥2) by Corollary 2.3,(i). If we combine the above equations, we see that

M) = Ap(e) + Ap(9) + A ([, 037D
Here recall that m2(¢¥-) = — > bijkzi Azj A zi and To(p4) = — D aijkyi A Yj A k.

Hence A¢([v—, go_“;l) = Ap([o+,¥-]) = > asjibijr = 265(p, %) by Proposition 4.5 and
the definition of é;. Therefore

Ap(e) = Xs(0) + Ap () + 287 (0, 9)
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as required. This completes the proof.

Remark 4.7. In the general case where the embedding f : £, — M is not Heegaard,
the formula of Theorem 4.3 seems to be not true in general anymore. However we
can still conclude that the mapping A 5T, — 7/2, which is the mod 2 reduction of
Af,is a homomorphism. This follows from the fact that we can modify the embedded
surface f(X,) to a Heegaard one by adding 1-handles from both sides.

5. Determination of HY(K,; Z)Ms

Recall that we denote K, for the subgroup of the mapping class group M,
generated by all the Dehn twists on separating simple closed curves on ¥,. The
purpose of this section is to determine H(K,;Z)*s which is the group consisting
of all homomorphisms r : K, — Z such that r(y)) = r(eye~?) for all ¥ € K,
and ¢ € M,. Namely we will determine all the integer valued additive invariants
for elements of K, which are invariant under the natural action of M, We also
determine uhe related group H(K,,;; Z)M#t which is the set of all M,,;-invariant
homomorphisms Kg4,; — Z. We first consider the group K,,;. Recall that we have
a homomorphism d : Ky,1 — Z which is the “core” of the Casson invariant from the
point of view of our approach (see § 2 and [14] for details). It has the property that for
any BSCC map ¢ of genus k, we have d(¢) = 4h(h—1). It follows that d is an element
of HY(Ky,1 ;Z)Mst. Next we construct another element d' € H*(K,,1;Z)Mst by

making use of Johnson’s homomorphism 73 : Kg,; — T (see § 2 and [14]).

Proposition 5.1. The following two types of correspondences
(i) d'((a Ab)®?) = —3(a - b)?
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(ii) d'(anbeo cAd)=—4(a-b)(c-d)—2(a-c)(b-d)+2(a-d)b-c)

define a well-defined Sp(2g; Z)-invariant homomorphism d' : T — Z. Moreover it is
trivial on Ker(T — T) so that it defines a homomorphism d' : T — Z (we use the

same letter).

Definition 5.2. We define a homomorphism d' : Ky4,1 — Z to be the composition

T3 p— JI
Kgyp ——s T —— 7.

It is easy to see that d' is M y,;-invariant so that it is contained in H}(K,,1 ; Z)Meo1.

Proof of Proposition 5.1. First of all it is easy to check that the two formulae (i)
and (ii) are consistent with the relation a Ab < a Ab = 2(a A b)®?. Next observe that
type (ii) correspondence is linear with respect to any variables and also it is skew
symmetric with respect to a,b and ¢, d respectively. Moreover the value remains to
be unchanged if we interchange the two pairs (a,b) and (c,d). It follows that the
correspondence is well-defined. That the resulting homomorphism d' is Sp(2g; Z)-
invariant follows directly from the definition. Finally we check that d' is trivial on

Ker(T — T). Recall that Ker(T — T) is generated by the elements of the form
aANbeo cAd—aNhceo bAd+and e bAc.

But a direct computation shows that the value of the homomorphism d' on this

element is 0. This completes the proof.

Proposition 5.3. Let ¢ € K,,1 be a BSCC map of genus h. Then we have d'(¢) =
h(2h + 1).

Proof. Let w be the bounding simple closed curve on &, \ D? correspondint to the

element ¢. Choose a symplectic basis uy,--- ,up, vy, ,vp of the homology of the
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subsurface which w bounds. Then by Proposition 1.1 of [14], we have
73(p) = —(u1 Avs +--- + up Awvp)®2
On the other hand, a direct computation shows that
d((ug Avy +--- +up Avg)®?) = —h(2h + 1).

Hence d'(¢) = h(2h + 1), completing the proof.

Theorem 5.4. The group H}(K,,1;Z)Ms1 is a free abelian group of rank two and

over the rationals it is generated by d and d'.

Proof. It is easy to see that two BSCC maps of the same genus are conjugate each
other in Mg,;. On the other hand, according to Johnson [5], Ky,; is generated by
all BSCC maps of genus one and two. Hence the rank of H(K,,1 ; Z)Ms is at most
two. Since we have already constructed two elements d,d’ of this group which are

clearly linearly independent, we are done.

Remark 5.5. We can restate the above theorem as follows. Namely a function f(h) of
h, where h stands for the genera of BSCC maps in Kg,;, extends to an M,;-invariant

homomorphism K,,1 — Z if and only if f(h) = ph + ¢h? for some p,q € Z.

Remark 5.6. Although the two homomorphisms d,d’" : Ky,; — Z are seemingly
similar each other, the essential meaning of them are completely different. More
precisely, for each element ¢ € K,,; let us consider the manifold W, which is a
Y g-bundle over the circle with its monodromy diffeomorphism equal to ¢. By the
assumption that ¢ € Kgy,1, the homology group of Wy, is the same as that of ST x &,.
But higher order intersectional properties may be different. In fact as is explained
in Johnson [8], his homomorphisms 73 can be interpreted as the invariants which
~ measure higher order Massey products of the manifolds like W,. Since our invariant

d' is a quotient of 73, we can conclude that d’' can be read off from a certain higher
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order Massey product of W,,. In particular it is a local invariant in the sense that it
is computable by means of integrations of forms. On the contrary we have recently
found that the invariant d can be interpreted as the Hirzebruch’s signature defect (see
[4]) of the 3-manifold W, with respect to a certain canonical framing of its tangent
bundle (see [16] for details). If we recall here that the s‘;ignature defect is closely
related with the n-invariant of Atiyah-Patodi-Singer [1] which is by no means a local
invariant, we may say that the invariant d should be an essentially global invariant.

At least we can say that d is a much more deep invariant than d'.

Now we consider the case of closed surfaces.

Theorem 5.7. The group H}(K,; Z)Ms is isomorphic to Z whose rational generator
do can be defined as follows. Let w be a separating simple closed curve on ¥, such
that the genera of the two compact surfaces which are obtained by cutting ¥, along

w are h and (g — k). Then we have do(D.,) = h(g — h) where D,, is the Dehn twist

on w.

Proof. Since the natural homomorphism H(K,; Z)Ms — HY(Ky,1 ; Z)Mo is cearly
injective, in view of Theorem 5.4 it is enough to prove that there is one and only
one relation between the two elements d,d’ € H? (Kgn ;Z)Mst on Ker(Ky,1 — Ky).

More precisely, since we have
12h(g — k) = 4(g — 1) - h(2h + 1) — (29 + 1) - 4h(h — 1)

and since d(p) = 4h(h — 1) and d'(¢) = h(2h + 1) for any BSCC map ¢ € K,,1 of
genus h, we have only to prove that the equality

(29 + 1)d() = 4(g — 1)d'(¢)

holds for any ¢ € Ker(K,,; — K,) and that d is non trivial on Ker(Ky,; — K;). Now
as was recalled in § 4, Ker(Z,,; — T,) is naturally isomorphic to 7;(71%,) and also
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we have an exact sequence 1 — Ky,1 — Zy,1 — A*H — 1. Hence Ker(K,,1 — Ky) is
naturally isomorphic to Ker(r, : m;(T12,) — A*H). On the other hand we have a

central extension

0—2 — Wl(TlEg) — 7r1(29> —1

where the center Z is generated by the element { € Ky,;, which is the Dehn twist on
a simple closed curve on %, \Int D? which is parallel to the boundary (see [14]). Since
72(¢) = 0, the homomorphism 7, restricted to 71(7}13,) is essentially equivalent to
a homomorphism 73 : 7 (5,) — A*H (we use the same letter) and 72(7) = [v] Awp
for any v € m(Z), where [y] € H is the homology class of ¥ and wg € A%H is the
symplectic class (see [7]). We can now conclude that Ker(K,,; — K,) is generated
by ¢ and the elements of the form [a, 8] € K4,1 with a,8 € m1(T1X,) C Z4,1. Now

we check that the required relation on these generators.

Since d({) = 4g(g — 1) and d'({) = ¢g(2g + 1) (see Proposition 5.3), the reuired
relation (29 + 1)d = 4(g — 1)d’ certainly holds on (. Next we consider the element of
the form ¢ = [a, 8] € K4,1 with a, 8 € m1(T1X,). Write the corresponding homology
classes [a], [[] E H as

[o] = Z(aiwi + biy:)

Bl = Z(Cixi + diyi)

where z1,--- ,Z4,¥1, "+ ,Y, is a symplectic basis of H. If we apply Proposition

5.1,(iv) to the element ¢ = [a, f] We obtain

d(p) = 8(g — 1)*[a] - [6]
=8(9 —1)* ) (aid; — bicy).

Next we compute d'(p). We have 73(a) = >, (aizi +b;yi) Awg and 72(8) = 3, (cizi+
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d;y;) ANwo where wg =23 Ays + -+ + x4 Ayy. Therefore

73(9) = x(ra(a) A 12(B))
= Y {aicex(&ij A éke) + aidix(&ij Anie)

1,7,k €
+ bickx (i A Eke) + bidex(nij Amke)}

where {;; =T AT; ANy, Ere = TR ATy AN Ye, M5 = Yi AT Ayj and mre = yr A To A ye.
By Theorem 3.1 we have

X(gij A fkg) = — 5,'[5!1:,‘ ANYy; o T Nxg— 5jgyj NZ; oz ANzy

+0jzTi AT S Ty Ay,
and hence d'(x(&ij A €ke)) = 0. Similarly we have

x(&ij Anre) = — 6irzj ANyj o To Ays — bieTi Nyj & Yr Ay
— 6y NTi > Te ANYe — 6505 NTi > Yp N T

+ 60T Axj & Yo AN Yk

and therefore

d'(k(fij Anre)) = — bir(—4 — 2650) — 6:0(46ke + 2651650)
— 8k (46i5 +28506i0) — 6j0(—465i6ke — 26506:k)
+ 650(—28:¢655 + 26i165¢)-

A direct computation shows that

> d (x(&ij Anke)) = 6:ix2(g — 1)(29 + 1)
ke
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By an obvious anti-symmetry of the above computations with respect to z and y, we

obtain

> d(x(mij A €re)) = — 8ix2(g — 1)(2g + 1) and
W)

d'(x(ni; A mke)) =0.

We can now conclude that

d'((p) = 2(g —’1)(29 + 1) Z(aidi - b,'ci).

Hence (2g + 1)d(¢) = 4(g — 1)d'(¢) as required. This completes the proof. -
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