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ON THE STRUCTURE OF THE TORELLI GROUP AND

THE CASSON INVARIANT

SHIGEYUKI MORITA 東工大 森田　茂之
Dedicated to Professor A. Hattori on his sixtieth birthday

1. Introduction

In our previous paper [14], we have investigated the relationship between the

Casson invariant of oriented homology 3-spheres and the algebraic structure of certain

subgroups of the mapping class group of orientable surfaces. More precisely let $\Sigma_{g}$

be an oriented closed surface of genus $g\geq 2$ and let $\mathcal{M}_{g}$ be its mapping class group.

We denote $\mathcal{I}_{g}$ for the Torelli group of $\Sigma_{g}$ , which is the subgroup of $\mathcal{M}_{g}$ consisting of

all the elements which act on the homology of $\Sigma_{g}$ trivially. Also we denote $\mathcal{K}_{g}$ for the

subgroup of $\mathcal{I}_{g}$ generated by all the Dehn twists on separating simple closed curves

on $\Sigma_{g}$ . Now fix a Heegaard embedding $f$ : $\Sigma_{g}arrow S^{3}$ . Then for each element $\varphi\in \mathcal{K}_{g}$ ,

the manifold $S_{\varphi}^{3}$ which is obtained from $S^{3}$ by first cutting along $f(\Sigma_{g})$ and then

reglueing the resulting two pieces by the map $\varphi$ , is an oriented homology 3-sphere.

Hence we can define a mapping $\lambda^{*}$ : $\mathcal{K}_{g}arrow Z$ by setting $\lambda^{*}(\varphi)=\lambda(S_{\varphi}^{3})$ . On the

other hand, by making use of the theory of characteristic classes of surface bundles

developed in [11,12,13], we defined a homomorphism $d$ : $\mathcal{K}_{g’ 1}arrow Z$ where $\mathcal{K}_{g1}$ is

the analogue of the group $\mathcal{K}_{g}$ relative to an embedded disc $D^{2}\subset\Sigma_{g}$ (see \S 2 for the

precise definition). It is the secondary invariant associated with the fact that the first

characteristic class $e_{1}$ of surface bundles vanishes on $\mathcal{K}_{g’ 1}$ . Now the main theorem

of [14] (see also [15]) can be summarized that the two integer valued invariants $\lambda^{*}$

and $d$ are essentially equal each other. The precise formulation of this result, which

is rather complicated, as well as its proof was given in the framework of a certain

combination of Johnson’s theory on the structure of the Torelli group [7,8,9,10] with

ours [op. cit.]. Now the purpose of the present paper is to continue these lines of
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investigations. As a result we find further close links between the Casson invariant

and the structure of (various subgroups of) the mapping class group.

Now we describe the contents of this paper briefly. In \S 2 we generalize the main

theorem of [14] mentioned above as follows. Namely we consider the general situation

where there is given an embedding $f$ : $\Sigma_{g}arrow M$ of $\Sigma_{g}$ into an oriented homology

3-sphere $M$ which need not be Heegaard. We define a mapping $\lambda_{f}$ : $\mathcal{I}_{g}arrow Z$ by

$\lambda_{f}(\varphi)=\lambda(M_{\varphi})-\lambda(M)(\varphi\in \mathcal{I}_{g})$ where $M_{\varphi}$ is the homology 3-sphere obtained by

cutting $M$ along $f(\Sigma_{9})$ and then reglueing the resulting two pieces by the map $\varphi$ . We

reformulate the main result of [14] in this more general situation. In \S 3 we consider a

certain quotient group of the Torelli group which exactly measures how the elements

of the Torelli group act on the fourth nilpotent quotient of the fundamental group

of $\Sigma_{g}$ . It turns out that this quotient group is a central extension of a certain free

abelian group by another one which arise naturally in the work of Johnson and its

extension [7,8,14]. We determne the Euler class of this central extension (Theorem

3.1). Using this result, in \S 4 we describe how the mapping $\lambda_{f}$ : $\mathcal{I}_{g}arrow Z$ differs from

a homomorphism. We will give a complete answer in the case where $f$ is a Heegaard

embedding (Theorem 4.3). As a byproduct of this description, we show that the mod

2 reduction of $\lambda_{f}$ is always a homomorphism, thus generalizing an earlier work by

Birman-Craggs [2] (see Corollary 4.4 and Remark 4.7). In the final section (\S 5), we

determine the set of all homomorphisms $\mathcal{K}_{g’ 1}arrow Z$ which are invariant under taking

conjugates in the whole mapping class group. It turns out that there are essentially

two such homomorphisms (one of which is the homomorphism $d$ mentioned above,

see Theorem 5.4). We also settle the same problem for the group $\mathcal{K}_{g}$ (Theorem

5.7). These results will play an important role in our future paper [16] where we will

interpret the invariant $d:\mathcal{K}_{g’ 1}arrow Z$ , which is the core of the Casson invariant in the

context of our approach, as Hirzebruch’s signature defect (see [4]) of certain framed

3-manifolds.
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2. Reformulation of the previous results

In this section we recall our formula proved in [14] which expresses the Casson

invariant of oriented homology 3-spheres in terms of the pasting maps of their Hee-

gaard splittings. In doing so, instead of just summarizing the results of [14] we prefer

to exhibit the formula somewhat differently in a more general setting.

Suppose then that we are given an embedding $f$ : $\Sigma_{g}arrow M$ where $\Sigma_{g}$ is an

oriented closed surface of genus $g\geq 2$ and $M$ is an oriented homology 3-sphere

(although the most important example is the case where $M$ is the 3-sphere $S^{3}$ and $f$

is a Heegaard embedding, we do not assume these conditions). Since $M$ is a homology

sphere, the embedded surface $f(\Sigma_{g})$ splits $M$ into two parts $V+andV_{-}$ , where $V+$

is the one such that the induced orientation on the boundary $\partial V+=f(\Sigma_{g})$ coincides

with the given one on $\Sigma_{g}$ via $f$ . We may call $V+$ (resp. $V_{-}$ ) the positive (resp.

negative) piece of $M$ with respect to the embedding $f$ . We can write $M=V+ \bigcup_{\iota}V_{-}$

where $\iota$ : $\partial V_{+}arrow\partial V_{-}$ is the “identity”. Now let $\mathcal{I}_{g}$ be the Torelli group of $\Sigma_{g}$ .
Namely it is the subgroup of the mapping class group $\mathcal{M}_{g}$ of $\Sigma_{g}$ consisting of all the

elements which act on the homology of $\Sigma_{g}$ trivially. Also let $\mathcal{K}_{g}$ be the subgroup of

$\mathcal{I}_{g}$ generated by all the Dehn twists on separating simple closed curves on $\Sigma_{g}$ . For

each element $\varphi\in \mathcal{I}_{9}$ , we consider the manifold $M_{\varphi}=V+ \bigcup_{\iota\varphi}V_{-}$ which is the one

obtained by first cutting $M$ along the embedded surface $f(\Sigma_{g})$ and then reglueing

the two pieces $V+andV_{-}$ along their boundaries by the map $\iota\varphi$ . It is easy to see that

$M_{\varphi}$ is an oriented homology 3-sphere so that we have the Casson invariant $\lambda(M_{\varphi})$ .

Now define a mapping
$\lambda_{f}$ : $\mathcal{I}_{g}arrow Z$

by $\lambda_{f}(\varphi)=\lambda(M_{\varphi})-\lambda(M)(\varphi\in \mathcal{I}_{g})$ . We also consider the restricted map $\lambda_{f}$ : $\mathcal{K}_{g}arrow$

Z. (Recall here that any homology 3-sphere can be expressed as $S_{\varphi}^{3}$ for some $\varphi\in \mathcal{K}_{g}$

with $f$ : $\Sigma_{9}arrow S^{3}$ a Heegaard embedding, see [14]). For each separating simple

closed curve $\omega$ on $\Sigma_{g}$ , we denote $D_{tt}\in \mathcal{K}_{g}$ for the right handed Dehn twist on $\omega$ . By

definition the group $\mathcal{K}_{g}$ is generated by such elements. Now almost the same proof

as that of Proposition 3.5 of [14] yields
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Proposition 2.1. The mapping $\lambda_{f}$ : $\mathcal{K}_{g}arrow Z$ is a homomorphism. Moreover for

each generator $D_{\omega}\in \mathcal{K}_{g}$ we have $\lambda_{f}(D_{\omega})=-\lambda’(f(\omega))$ , where $\lambda’(f(\omega))$ is the Casson

invarian$t$ of the knot $f(\omega)$ in $M$ .

Motivated by the fact that Casson’s invariant of a knot in an oriented homology

3-sphere can be expressed as a polynomial of degree two on the linking numbers

among various homology classes of its Seifert surface (see Proposition 3.2 of [14]), we

define a commutative algebra $A$ over $Z$ as follows. Let $H=H_{1}$ ( $\Sigma_{g}$ ; Z) be the first

integral homology group of $\Sigma_{g}$ . Then $A$ is defined to be the one generated by the

symbol $l(u, v)$ for any two elements $u,v\in H$ with the relations

(i) $\ell(v, u)=P(u, v)+u\cdot v$

(ii) $l(n_{1}u_{1}+n_{2}u_{2}, v)=n_{1}l(u_{1},v)+n_{2}l(u_{2}, v)(n_{1}, n_{2}\in Z)$

where $u\cdot v$ is the inersection number of $u$ and $v$ . In some sense $A$ is the universal

model for the linking pairing on $H$ . More precisely, given an embedding $f$ : $\Sigma_{g}arrow M$

as before, we have the “evaluation map”

$\epsilon_{f}$ : $\mathcal{A}arrow Z$

defined by $\epsilon_{f}(\ell(u, v))=\ell k(f_{*}(u),f_{*}(v)^{+})$ where $f_{*}(v)^{+}$ is the homology class in

$M\backslash f(\Sigma_{g})$ obtained by pushing the homology class $f_{*}(v)$ to the positive direction

(so that $f_{*}(v)^{+}$ is supported in $V_{-}$ ). Now for a technical reason we choose an em-

bedded disc $D^{2}\subset\Sigma_{g}$ and let $\mathcal{M}_{g’ 1}$ be the mapping class group of $\Sigma_{g}$ relative to
$D^{2}$ . We have a natural surjective homomorphism $\mathcal{M}_{g’ 1}arrow \mathcal{M}_{g}$ and its kernel can be

canonically identified with $\pi_{1}(T_{1}\Sigma_{g})$ where $T_{1}\Sigma_{g}$ is the unit tangent bundle of $\Sigma_{g}$ .

We consider the Torelli group $\mathcal{I}_{g’ 1}$ which is the subgroup of $\mathcal{M}_{g’ 1}$ consisting of all

the elements which act on $H$ trivially and also let $\mathcal{K}_{g1}$ be the subgroup of $\mathcal{M}_{g’ 1}$

generated by all the Dehn twists on bounding simple closed curves on $\Sigma_{g}\backslash D^{2}$ . For

each bounding simple closed curve $\omega$ on $\Sigma_{g}\backslash D^{2}$ , let $D_{\omega}$ denote the Dehn twist on $\omega$
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and let $u_{1},$ $\cdots$ $u_{h},$ $v_{1},$ $\cdots$ , $v_{h}$ be a symplectic basis of the homology of the subsurface

of $\Sigma_{g}\backslash D^{2}$ which $\omega$ bounds (hereafter, following Johnson, we call such element a

BSCC map of genus $h$). Then we can reformulate one of the main results of [14] as

Theorem 2.2. The assignment

$\mathcal{K}_{g1}\ni D_{\omega}-\sum^{h}\{l(u_{i}, u_{i})l(v_{i},v;)-p(u_{i}, v_{i})\ell(v_{i}, u;)\}$

$i=1$

$-2 \sum_{i<j\leq h}\{l(u_{i}, u_{j})l(v_{i},v_{j})-f(u_{i}, v_{j})l(u_{j}, v_{i})\}$

for each generator $D_{\omega}\in \mathcal{K}_{g1}$ extends to a well deffied homomorphism $p:\mathcal{K}_{g1}arrow \mathcal{A}$

and the following diagram is commutative

$\mathcal{K}_{g’ 1}arrow^{\rho}\mathcal{A}$

$\downarrow$ $\downarrow\epsilon_{f}$

$\mathcal{K}_{g}$

$arrow^{\lambda_{f}}Z$

where $\mathcal{K}_{g’ 1}arrow \mathcal{K}_{g}$ is th$enat$ural $s$urjection.

Roughly speaking, for each generator $D_{\omega}\in \mathcal{K}_{g’ 1}$ the element $\rho(D_{\omega})\in A$ can be

considered as the “universal model” for the Casson invariant of the bounding simple

closed curve $\omega$ on $\Sigma_{g}\backslash D^{2}$ (up to signs). Namely if there is given an embedding

$f$ : $\Sigma_{g}arrow M$ , then we can consider $f(\omega)$ as a knot in $M$ and we have $\lambda’(f(\omega))=$

$-\epsilon_{f}(\rho(D_{\omega}))$ . The following is an immediate corollary to the above theorem which

we present here for later use.

Corollary 2.3. (i) $\lambda_{f}(\varphi\psi\varphi^{-1})=\lambda_{f}(\psi)$ for any $\varphi\in \mathcal{I}_{g}$ and $\psi\in \mathcal{K}_{9}$ .

(ii) $\lambda_{f}([\varphi, \psi])=0$ for any $\varphi\in \mathcal{I}_{g}$ and $\psi\in \mathcal{K}_{g}$ .

Now if there were an algorithm to express any given element $\varphi\in \mathcal{K}_{g}$ as a product

of Dehn twists on separating simple closed curves on $\Sigma_{g}$ , then we can explicitly
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calculate the element $\rho(\varphi)\in \mathcal{A}$ and hence the desired value $\lambda_{f}(\varphi)$ by using Theorem

2.2. However unfortunately there is no such one and our next main result of [14]

is that the homomorphism $\rho$ : $\mathcal{K}_{g’ 1}arrow \mathcal{A}$ can be decomposed as a sum of two more

computable ones: $\rho=\frac{1}{24}d+\overline{\rho}$ , where $d:\mathcal{K}_{g’ 1}arrow Z$ is a certain homomorphism and

$\overline{\rho}$ : $\mathcal{K}_{g’ 1}arrow A\otimes Q$ is a modification of $\rho$ . The point here is that the homomorphism $\overline{\rho}$

can be read off from Johmson’s homomorphism $\tau_{3}$ : $\mathcal{K}_{g’ 1}arrow\overline{T}$ (which will be recalled

below) and the homomorphism $d$ is the secondary invariant associated with the first

characteristic class $e_{1}\in H^{2}$ ( $\mathcal{M}_{g’ 1}$ ; Z) of surface bundles introduced in [14]. This

homomorphism $d$ should be considered as the core of the Casson invariant from our

point of view.

Now, in order to define the homomorphim $\overline{\rho}$ : $\mathcal{K}_{g’ 1}arrow \mathcal{A}\otimes Q$ , we briefly recall

the definition of Johnson’s homomorpisms $\tau_{k}$ , which will be also needed in later

sections (see [7,8,14] for details).

We denote $\Gamma_{1}$ for $\pi_{1}(\Sigma_{g}\backslash IntD^{2})$ and let $\{\Gamma_{k}\}_{k\geq 1}$ be the lower central series of

$\Gamma_{1}$ ; $\Gamma_{k}=[\Gamma_{k-1}, \Gamma_{1}](k\geq 2)$ . The mapping class group $\mathcal{M}_{g’ 1}$ acts on the nilpotent

quotient group $N_{k}=\Gamma_{1}/\Gamma_{k}$ naturally and we define $\mathcal{M}(k)=\{\varphi\in \mathcal{M}_{g’ 1}$ ; $\varphi$ acts

on $N_{k}$ trivially}. Let $\mathcal{L}=\oplus_{k\geq 1}\mathcal{L}_{k}$ be the free graded Lie algebra on $H$ (over Z).

Then as is well known there is a natural isomorphism $\Gamma_{k}/\Gamma_{k+1}\cong \mathcal{L}_{k}$ . Now Johnson’s

homomorphism

$\tau_{k}$ : $\mathcal{M}_{g’ 1}arrow Hom(H, \mathcal{L}_{k})$

is defined as $\tau_{k}(\varphi)([\gamma])=[\varphi_{*}(\gamma)\gamma^{-1}](\varphi\in \mathcal{M}(k),\gamma\in\Gamma_{1})$ , where $[\gamma]\in H$ is the

homology class of $\gamma$ and $[\varphi_{*}(\gamma)\gamma^{-1}]$ denotes the image in $\mathcal{L}_{k}$ of the element $\varphi_{*}(\gamma)\gamma^{-1}$

which is contained in $\Gamma_{k}$ by the assumption $\varphi\in \mathcal{M}(k)$ . The intersection pairing on

$H$ defines a natural isomorphism $H\cong H^{*}$ so that we can write $\tau_{k}$ : $\mathcal{M}(k)arrow \mathcal{L}_{k}\otimes H$ .

If we choose a symplectic basis $x_{1},$ $\cdots$ , $x_{g},$ $y_{1},$ $\cdots y_{g}$ of $H$ , then explicitly we have

$\tau_{k}(\varphi)=\sum^{g}\{\tau_{k}(\varphi)(x_{i})\otimes y_{i}-\tau_{k}(\varphi)(y;)\otimes x_{i}\}\in \mathcal{L}_{k}\otimes H$

$i=1$

where $\tau_{k}’ s$ in the right hand side are the old ones. Now for $k=2,$ $\mathcal{M}(2)$ is nothing
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but the Torelli group $\mathcal{I}_{g1}$ and $\mathcal{L}_{2}$ is naturally isomorphic to $\Lambda^{2}H$ so that we can write

$\tau_{2}$ : $\mathcal{I}_{g’ 1}arrow\Lambda^{2}H\otimes H$ . Johnson proved that ${\rm Im}\tau_{2}$ is equal to $\Lambda^{3}H\subset\Lambda^{2}H\otimes H$ , where
$a\wedge b\wedge c\in\Lambda^{3}H(a, b, c\in H)$ is identified with $(a\wedge b)\otimes c+(b\wedge c)\otimes a+(c\wedge a)\otimes b\in\Lambda^{2}H\otimes H$ .

For $k=3$ , according to Johnson [9], $\mathcal{M}(3)$ is equal to $\mathcal{K}_{g’ 1}$ and in [14] we have

determined the image of the homomorphism $\tau_{3}$ : $\mathcal{K}_{g’ 1}arrow \mathcal{L}_{3}\otimes H$ as follows. There is a

natural isomorphism $\mathcal{L}_{3}\cong\Lambda^{2}H\otimes H/\Lambda^{3}H$ so that $\mathcal{L}_{3}\otimes H\cong\Lambda^{2}H\otimes H^{2}/\Lambda^{3}H\otimes H$ . We

define a module $T$ to be the submodule of $\Lambda^{2}H\otimes\Lambda^{2}H\subset\Lambda^{2}H\otimes H^{2}$ generated by all

the elements of the forms $(a\wedge b)\otimes(a\wedge b)$ and $(a\wedge b)\otimes(c\wedge d)+(c\wedge d)\otimes(a\wedge b)(a,$ $b,$ $c,$ $d\in$

$H)$ (henceforth these elements will be denoted by $(a\wedge b)^{\otimes 2}$ and $a\wedge brightarrow c\wedge d$

respectively). By the definition of $T$ , we have a natural homomorphism $Tarrow \mathcal{L}_{3}\otimes H$

and it can be shown that the kernel $T_{0}$ of this homomorphism is the submodule of $T$

generated by all the elements of the form $a\wedge brightarrow c\wedge d-a\wedge crightarrow b\wedge d+a\wedge drightarrow b\wedge c$.

Hence if we write $\overline{T}$ for $T/T_{0}$ , then $\overline{T}$ can be considered as a submodule of $\mathcal{L}_{3}\otimes H$ .

In these terminologies we have proved in [14] that ${\rm Im}\tau_{3}$ is a subgroup of $\overline{T}$ of index

a power of two.

Now there is a uniquely defined homomorphism $\theta$ : $Tarrow A$ such that for any

symplectic subbasis $u_{1},$ $\cdots u_{h},$ $v_{1},$ $\cdots v_{h}$ of $H$ , the equality

$\theta((u_{1}\wedge v_{1}+\cdots u_{h}\wedge v_{h})^{\otimes 2})=\sum^{h}\{p(u_{i}, u_{i})p(v_{i}, v_{i})-p(u_{i}, v_{i})p(v;, u_{i})\}$

$i=1$

$+2 \sum_{i<j\leq h}\{l(u_{i}, u_{j})p(v_{i}, v_{j})-\ell(u_{i}, v_{j})P(u_{j}, v_{i})\}$

holds. Let $D_{\omega}\in \mathcal{K}_{g’ 1}$ be a BSCC map of genus $h$ where $\omega$ is a bounding simple

closed curve on $\Sigma_{g}\backslash D^{2}$ . Choose a symplectic basis $u_{1},$ $\cdots$ $u_{h},$ $v_{1},$ $\cdots$ , $v_{h}$ of the

homology of the subsurface which $\omega$ bounds. If we define an element $t\in T$ by $t=$

$-(u_{1} Av_{1}+\cdots+u_{h}\wedge v_{h})^{\otimes 2}$ , then we have $\rho(D_{\omega})=\theta(t)$ . Hence the element $t$ contains

all the information of the “universal Casson invariant” $\rho(D_{\omega})$ . However Johnson’s

homomorphism $\tau_{3}$ : $\mathcal{K}_{g’ 1}arrow\overline{T}$ computes only the image of $t$ in $\overline{T}:\tau_{3}(D_{\omega})=\overline{t}\in\overline{T}$.
Now the definition of the homomorphism $\overline{\rho}$ : $\mathcal{K}_{g1}arrow \mathcal{A}\otimes Q$ is defined as follows.
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There exists a certain homomorphism $\overline{d}$ : $Tarrow Z$ , which is a formal counterpart

of the homomorphism $d$ , and for each generator $D_{\omega}\in \mathcal{K}_{g’ 1}$ as above, choose any

element $t’\in T\otimes Q$ such that the image of $t’$ in Z7 is equal to $\tau_{3}(D_{\omega})$ . Now set
$\overline{\rho}(D_{\omega})=\theta(t’)+\frac{1}{3}\overline{d}(t’)\in \mathcal{A}\otimes Q$ , which turns out to be independent of the choice of
$t’$ . This is the definition of the homomorphism $\overline{\rho}$ : $\mathcal{K}_{g’ 1}arrow \mathcal{A}\otimes Q$ . Now we summarize

the above as

Theorem 2.4. We have the equality

$\rho(\varphi)=\frac{1}{24}d(\varphi)+\overline{\rho}(\varphi)$

for any $\varphi\in \mathcal{K}_{g’ 1}$ .

3. A quotient group of the Torelli group

$|In$ this section we determine the structure of a certain quotient group of the

Torelli group $\mathcal{I}_{g1}$ . Roughly speaking it is the group which contains exactly the

informations carried by the homomorphisms $\tau_{2}$ and $\tau_{3}$ . More precisely recall that we

have a short exact sequence

1 $arrow \mathcal{K}_{g’ 1}arrow \mathcal{I}_{g’ 1}arrow^{\tau_{2}}\Lambda^{3}Harrow 1$

and the homomorphism $\tau_{3}$ : $\mathcal{K}_{g’ 1}arrow\overline{T}$. Hence if we define $\overline{\mathcal{I}}_{g,1}$ to be the quotient

group $\mathcal{I}_{g’ 1}/Ker\tau_{3}$ , then we have an extension $1arrow{\rm Im}\tau_{3}arrow\overline{\mathcal{I}}_{g,1}arrow\Lambda^{3}Harrow 1$ .

Theorem 3.1. The extension

$1arrow{\rm Im}\tau_{3}arrow\overline{\mathcal{I}}_{g,1}arrow\Lambda^{3}Harrow 1$
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is a central extension and its Euler class $\chi\in H^{2}(\Lambda^{3}H;{\rm Im}\tau_{3})$ is given by

$\chi(\xi, \eta)=$

$-(a\cdot d)b\wedge crightarrow e\wedge f-(a\cdot e)b\wedge crightarrow f\wedge d-(a\cdot f)b\wedge crightarrow d\wedge e$

$-(b\cdot d)c\wedge arightarrow e\wedge f-(b\cdot e)c\wedge arightarrow f\wedge d-(b\cdot f)c\wedge arightarrow d\wedge e\in{\rm Im}\tau_{3}\subset\overline{T}$ .

$-(c\cdot d)a\wedge brightarrow e\wedge f-(c\cdot e)a\wedge brightarrow f\wedge d-(c\cdot f)a\wedge brightarrow d\wedge e$

where $\xi=a\wedge b\wedge c,$ $\eta=d\wedge e\wedge f\in\Lambda^{3}H(a, b, c, d, e,f\in H)$ and $\xi\wedge\eta\in H_{2}(\Lambda^{3}H;Z)$ .

Before proving the above theorem, we prepare several technical results. Recall

that we write $\Gamma_{1}$ for $\pi_{1}(\Sigma_{g}\backslash IntD^{2}),$ $\{\Gamma_{k}\}_{k\geq 1}$ for its lower central series and $\mathcal{M}(k)$ for

the subgroup of the mapping class group $\mathcal{M}_{g1}$ consisting of all the elements which

act on the nilpotent quotient $N_{k}=\Gamma_{1}/\Gamma_{k}$ trivially.

Lemma 3.2. (i) For any element $\varphi\in \mathcal{M}(k)$ and $\gamma\in\Gamma_{f}$ , we have $\varphi(\gamma)\gamma^{-1}\in\Gamma_{k+\ell-1}$ .

(ii) For any elements $\varphi\in \mathcal{I}_{g’ 1},$ $\psi\in \mathcal{M}(k)$ and $\gamma\in\Gamma_{f}$ , we have the $equ$ali $ty$

$[\varphi\psi\varphi^{-1}(\gamma)\gamma^{-1}]=[\psi(\gamma)\gamma^{-1}]$

in $\mathcal{L}_{k+t-1}$ .

Proof. To prove (i), we use the induction on $p$ . If $p=1$ , then the claim follows

immediately from the definition of the group $M(k)$ . Now we assume that the claim

holds up to e-l and prove it for $p$ . Suppose that an element $\gamma\in\Gamma_{f}$ is expressed as
$\gamma=[\gamma_{1},\gamma_{2}]$ with $\gamma_{1}\in\Gamma_{l-1}$ and $\gamma_{2}\in\Gamma_{1}$ . Then by the induction assumption, we have
$\varphi(\gamma_{1})=\gamma_{1}\alpha$ and $\varphi(\gamma_{2})=\gamma_{2}\beta$ for some $\alpha\in\Gamma_{k+\ell-2}$ and $\beta\in\Gamma_{k}$ . Then we compute

$\varphi(\gamma)\gamma^{-1}=[\varphi(\gamma_{1}), \varphi(\gamma_{2})][\gamma_{2}, \gamma_{1}]$

$=\gamma_{1}\alpha\gamma_{2}\beta\alpha^{-1}\gamma_{1}^{-1}\beta^{-1}\gamma_{1}\gamma_{2}^{-1}\gamma_{1}^{-1}$

$=\gamma_{1}[\alpha, \gamma_{2}\beta]\gamma_{2}[\beta, \gamma_{1}^{-1}]\gamma_{2}^{-1}\gamma_{1}^{-1}$ .

9



138

Now both of the elements $[\alpha,\gamma_{2}\beta]$ and $[\beta)\gamma_{1}^{-1}]$ are contained in $\Gamma_{k+1-1}$ . Hence
$\varphi(\gamma)\gamma^{-1}\in\Gamma_{k+l-1}$ as required. In general any element $\gamma\in\Gamma_{f}$ can be expressed as a

product of elements of the form $[\gamma_{1},\gamma_{2}]$ given above and an easy inductive argument

shows that the claim also holds for $\gamma$ . Next we prove (ii). If we apply (i) to the

elements $\varphi\in \mathcal{I}_{g’ 1},$ $\psi\in \mathcal{M}(k)$ and $\gamma\in\Gamma_{\ell}$ , we can write $\varphi(\gamma)=\gamma_{1}\gamma,$ $\psi(\gamma)=\gamma_{2}\gamma$

for some $\gamma_{1}\in\Gamma_{t+1},\gamma_{2}\in\Gamma_{k+t-1}$ . It follows that $\varphi^{-1}(\gamma)=\varphi^{-1}(\gamma_{1}^{-1})\gamma$ . Then we

compute

$\varphi\psi\varphi^{-1}(\gamma)\gamma^{-1}=\varphi\psi(\varphi^{-1}(\gamma_{1}^{-1})\gamma)\gamma^{-1}$

$=\varphi(\psi\varphi^{-1}(\gamma_{1}^{-1})\gamma_{2}\gamma)\gamma^{-1}$

$=\varphi\psi\varphi^{-1}(\gamma_{1^{-1}})\varphi(\gamma_{2})\gamma_{1}$ .

Now again by $(!)$ , we can conclude that $\varphi\psi\varphi^{-1}(\gamma_{1}^{-1})\equiv\gamma_{1}^{-1}(mod \Gamma_{k+l})$ and $\varphi(\gamma_{2})\equiv$

$\gamma_{2}(mod \Gamma_{k+t})$ . Hence $\varphi\psi\varphi^{-1}(\gamma)\gamma^{-1}\equiv\gamma_{1}^{-1}\gamma_{2}\gamma_{1}\equiv\gamma_{2}(mod \Gamma_{k+\ell})$. Since $\gamma_{2}=$

$\psi(\gamma)\gamma^{-1}$ , This finishes the proof.

As a corollary to Lemma 3.2,(i), we have

Corollary 3.3. For any two elements $\varphi\in \mathcal{M}(k)$ and $\psi\in \mathcal{M}(\ell)$ , the commutator
$[\varphi, \psi]$ is contained in $\mathcal{M}(k+P-1)$ .

Proof. Clearly it is enough to prove the assertion for the case $k\geq P$ . Henceforth we

assume this condition. Now let $\gamma\in\Gamma_{1}$ be any element.Then by the assumption we

can write $\psi(\gamma)=\gamma_{1}\gamma$ and $\varphi(\gamma)=\gamma_{2}\gamma$ for some $\gamma_{1}\in\Gamma_{f}$ and $\gamma_{2}\in\Gamma_{k}$ . Then we have

$\psi^{-1}(\gamma)=\psi^{-1}(\gamma_{1^{-1}})\gamma$ and $\varphi^{-1}(\gamma)=\varphi^{-1}(\gamma_{2}^{-1})\gamma$ . Now we compute

$[\varphi, \psi](\gamma)=\varphi\psi\varphi^{-1}(\psi^{-1}(\gamma_{1}^{-1})\gamma)$

$=\varphi\psi(\varphi^{-1}\psi^{-1}(\gamma_{1}^{-1})\varphi^{-1}(\gamma_{2}^{-1})\gamma)$

$=[\varphi, \psi](\gamma_{1}^{-1})\varphi\psi\varphi^{-1}(\gamma_{2}^{-1})\varphi(\gamma_{1})\gamma_{2}\gamma$ .
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Hence

$[\varphi, \psi](\gamma)\gamma^{-1}=[\varphi,\psi](\gamma_{1}^{-1})\gamma_{1}\cdot\gamma_{1}^{-1}\varphi\psi\varphi^{-1}(\gamma_{2}^{-1})\gamma_{2}\gamma_{1}\cdot\gamma_{1}^{-1}\gamma_{2}^{-1}\varphi(\gamma_{1})\gamma_{1}^{-1}\gamma_{2}\gamma_{1}\cdot[\gamma_{1}^{-1}, \gamma_{2}^{-1}]$.

Now by Lemma 3.2,(i), we have $[\varphi, \psi](\gamma_{1}^{-1})\gamma_{1}\in\Gamma_{k+l-1}$ because certainly we have

$[\varphi, \psi]\in \mathcal{M}(k)$ . Similarly we have $\varphi\psi\varphi^{-1}(\gamma_{2}^{-1})\gamma_{2}\in\Gamma_{k+\ell-1},$ $\varphi(\gamma_{1})\gamma_{1}^{-1}\in\Gamma_{k+1-1}$

and of course $[\gamma_{1}^{-1}, \gamma_{2}^{-1}]\in\Gamma_{k+\ell}$ . Hence $[\varphi, \psi](\gamma)\gamma^{-1}\in\Gamma_{k+\ell-1}$ as required. This

completes the proof.

Recall that for any element $\varphi\in \mathcal{M}(k)$ we have a homomorphism $\tau_{k}(\varphi)$ : $Harrow$

$\mathcal{L}_{k}$ . Now by virtue of Lemma 3.2,(i), for each element $\varphi\in \mathcal{M}(k)$ and a positive

integer $p$ we can define a similar homomorphism $\varphi\{\}$ : $\mathcal{L}_{f}arrow \mathcal{L}_{k+l-1}$ by setting
$\varphi\{[\gamma]\}=[\varphi(\gamma)\gamma^{-1}]\in \mathcal{L}_{k+t-1}$ , where $[\gamma]\in \mathcal{L}_{k}$ is the image in $\mathcal{L}_{k}$ of any element

$\gamma\in\Gamma_{k}$ . It is easy to check that this correspondence in fact defines a well defined

homomorphism.

Proposition 3.4. Let $\varphi\in \mathcal{M}(k)$ and $\psi\in \mathcal{M}(l)$ so that we have $[\varphi, \psi]\in \mathcal{M}(k+P-1)$

(see Corollary 3.3). If $k$ and $p$ are greater than one, then we have

$\tau_{k+t-1}([\varphi)\psi])(u)=\varphi\{\tau_{\ell}(\psi)(u)\}-\psi\{\tau_{k}(\varphi)(u)\}(u\in H)$ .

Proof. Let $\gamma\in\Gamma_{1}$ be any element. Then we can write $\psi(\gamma)=\gamma_{1}\gamma,\varphi(\gamma)=\gamma_{2}\gamma$ for

some $\gamma_{1}\in\Gamma_{f}$ and $\gamma_{2}\in\Gamma_{k}$ . Now in the computation of $[\varphi, \psi](\gamma)\gamma^{-1}$ in the proof of

Corollary 3.3, the term $[\varphi, \psi](\gamma_{1}^{-1})\gamma_{1}$ is contained in $\Gamma_{k+2l-2}\subset\Gamma_{k+t}$ (by Corollary

3.3 and the assumption $P\geq 2$ ). Hence we have

$[\varphi, \psi](\gamma)\gamma^{-1}\equiv\varphi\psi\varphi^{-1}(\gamma_{2}^{-1})\gamma_{2}\cdot\varphi(\gamma_{1})\gamma_{1}^{-1}(mod \Gamma_{k+\ell})$ .
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On the other hand by Lemma 3.2,(ii), we have

$[\varphi\psi\varphi^{-1}(\gamma_{2^{-1}})\gamma_{2}]=[\psi(\gamma_{2}^{-1})\gamma_{2}]$

$=-\psi\{\tau_{k}(\varphi)([\gamma])\}$

as elements of $\mathcal{L}_{k+l-1}$ . Also we have $[\varphi(\gamma_{1})\gamma_{1}^{-1}]=\varphi\{\tau_{\ell}(\psi)[\gamma]\}\in \mathcal{L}_{k+t-1}$ . Hence we

can conclude that $\tau_{k+t-1}([\varphi, \psi])([\gamma)])=\varphi\{\tau_{f}(\psi)([\gamma])\}-\psi\{\tau_{k}(\varphi)([\gamma])\}$ as required.

This completes the proof.

Proposition 3.5. For each element $\varphi\in \mathcal{M}(k),$ the homomorphism $\varphi\{\}$ : $\mathcal{L}_{1}arrow$

$\mathcal{L}_{k+\ell-1}$ is given explicitly as

$\varphi\{\xi\}=\sum_{i=1}^{f}[\cdots[u_{1}, u_{2}],$ $\cdots$ ]
$,$

$\tau_{k}(\varphi)(u_{i})$]
$,$

$\cdots$ ]
$,$

$u_{f}$ ]

where $\xi=[\cdots[u_{1}, u_{2}],$ $\cdots$ ]
$,$

$u_{f}$ ] $\in \mathcal{L}_{f}(u;\in H)$ .

Proof. We assume that $k\geq 2$ because for $k=1$ the assertion is empty. By the

definition of the homomorphism $\varphi\{\}$ , it suffices to prove the following statement

$(^{*})$ For any element $\gamma=[\cdots[\gamma_{1}, \gamma_{2}],$ $\cdots$ ]
$,$

$\gamma_{l}$ ] $\in\Gamma_{f}(\gamma_{i}\in\Gamma_{1})$ , we have

$\varphi(\gamma)\gamma^{-1}\equiv\prod_{i1}^{\ell_{=}}[\cdots[\gamma_{1},\gamma_{2}],$ $\cdots$ ]
$,$

$\varphi(\gamma_{i})\gamma_{i}^{-1}$ ]
$,$

$\cdots$ ] $,\gamma_{\ell}$ ] $(mod \Gamma_{k+l})$ .

We prove the above assertion by the induction on $p$ . If $p=1$ , then the assertion is

clear. We assume that $(^{*})$ holds up to $P-1$ and prove it for $\ell$ . Write $\gamma=[\alpha, \gamma_{f}]$

where $\alpha=[\cdots[\gamma_{1}, \gamma_{2}],$ $\cdots$ ]
$,$

$\gamma_{\ell-1}$ ] $\in\Gamma_{l-1}$ . By the induction assumption we can write

$\varphi(\alpha)\equiv\overline{\alpha}\alpha$

$\equiv\alpha\overline{\alpha}(mod \Gamma_{k+l-1})$

where $\overline{\alpha}=\prod_{i=1}^{f-1}[\cdot\cdot , [\gamma_{1},\gamma_{2}], \cdots],$ $\varphi(\gamma_{i})\gamma_{i^{-}}$ ]
$,$

$\cdot$ . .], $\gamma_{1-1}$ ] $\in\Gamma_{k+1-2}$ . Also we can write
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$\varphi(\gamma\ell)=\gamma_{f}\beta$ for some $\beta\in\Gamma_{k}$ . Then we compute

$\varphi(\gamma)\gamma^{-1}=[\varphi(\alpha), \varphi(\gamma\ell)][\gamma_{l}, \alpha]$

$=\alpha\overline{\alpha}\gamma_{f}\beta\overline{\alpha}^{-1}\alpha^{-1}\beta^{-1}\alpha\gamma_{f}^{-1}\alpha^{-1}$

$=\alpha[\alpha\sim,\gamma_{f}]\alpha^{-1}\cdot\alpha\gamma_{f}[\overline{\alpha},\beta]\gamma_{l^{-1}}\alpha^{-1}\cdot\alpha\gamma_{f}\alpha^{-1}[\alpha, \beta]\alpha\gamma_{1^{-1}}\alpha^{-1}$

$\equiv[\tilde{\alpha},\gamma_{f}][\alpha,\beta](mod \Gamma_{k+1})$

because $[\overline{\alpha},\beta]\in\Gamma_{k+t}$ . Now using the fact that $\beta\equiv\varphi(\gamma_{f})\gamma_{\ell^{-1}}(mod \Gamma_{k+1})$ it is easy to

see that $[\alpha, \beta]\equiv[\alpha, \varphi(\gamma_{f})\gamma_{1^{-1}}](mod \Gamma_{k+1})$ . Also it can be easily shown by induction

that $[ \overline{\alpha},\gamma_{f}]\equiv\prod_{i=1}^{t-1}[\cdots[\gamma_{1},\gamma_{2}],$ $\cdots$ ]
$,$

$\varphi(\gamma_{i})\gamma_{i^{-1}}$ ]
$,$

$\cdots$ ] $,\gamma_{1-1}$ ] $,\gamma_{f}$ ] $(mod \Gamma_{k+f})$ . Hence

$\varphi(\gamma)\gamma^{-1}\equiv\prod^{f}[\cdots[\gamma_{1},\gamma_{2}],$
$\cdots$ ]

$,$

$\varphi(\gamma_{i})\gamma_{i^{-1}}$ ]
$,$

$\cdots$ ]
$,$

$\gamma_{f}$ ] $(mod \Gamma_{k+l})$

$i=1$

as required. This completes the proof.

Now we are ready to prove the main result of this section.

Proof of Theorem 3.1. In general we have $\tau_{3}(\varphi\psi\varphi^{-1})=\varphi_{*}\tau_{3}(\psi)(\varphi\in \mathcal{M}_{g’ 1},$ $\psi\in$

$\mathcal{K}_{g’ 1}$ ). Hence if $\varphi$ is contained in $\mathcal{I}_{g’ 1}$ , then $\tau_{3}(\varphi\psi\varphi^{-1})=\tau_{3}(\psi)$ . It follows immedi-

ately that the extension $1arrow{\rm Im}\tau_{3}arrow\overline{\mathcal{I}}_{g,1}arrow\Lambda^{3}Harrow 1$ is a central extension. Next

we determine the Euler class $\chi\in H^{2}(\Lambda^{3}H;{\rm Im}\tau_{3})$ of this central extension. To do

this we briefly recall the definition of the “Euler class” of a general central extension

$0arrow Aarrow Garrow Qarrow 1$ (see [3] for details). Choose a set map $s$ : $Qarrow G$ such that

$s(1)=1$ and set $c(f, g)=s(f)s(g)s(fg)^{-1}\in A$ . It is easy to see that $c$ is a 2-cocycle

of the group $Q$ with values in $A$ . If we change the map $s$ , then the cocycle $c$ changes

only by a coboundary so that the cohomology class $[c]\in H^{2}(Q;A)$ is well defined.

This is the definition of the Euler class of central extensions. Now $assun_{1}e$ that $Q$ is

a free abelian group (as in our case). Then we have $H^{2}(Q;A)\cong Hom(H_{2}(Q;Z), A)$
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and $H_{2}(Q;Z)\cong\Lambda^{2}Q$ . For any element $f\wedge g\in\Lambda^{2}Q(f, g\in Q)$ , we have

$\chi(f\wedge g)=c(f, g)-c(g, f)$

$=[s(f), s(g)]\in A$

because $s(fg)=s(gf)$ . With these preparations we compute the Euler class $\chi\in$

$H^{2}(\Lambda^{3}H;{\rm Im}\tau_{3})$ . Let $\xi=a\wedge b\wedge c$ and $\eta=d\wedge e\wedge f$ be any two elements of

$\Lambda^{3}H(a, b, c, d, e, f\in H)$ . To evaluate the value of $\chi$ on the cycle $\xi\wedge\eta\in\Lambda^{2}(\Lambda^{3}H)\cong$

$H_{2}(\Lambda^{3}H;Z)$ we choose elements $\varphi,\psi\in \mathcal{I}_{g’ 1}$ such that $\tau_{2}(\varphi)=\xi$ and $\tau_{2}(\psi)=\eta$ .

It is easy to deduce from our identification of $\Lambda^{3}H$ as a submodule of $\Lambda^{2}H\otimes H\cong$

$Hom(H, \Lambda^{2}H)$ (see \S 2) that the homomorphism $\tau_{2}(\varphi):Harrow \mathcal{L}_{2}=\Lambda^{2}H$ is given by

$\tau_{2}(\varphi)(u)=(u\cdot a)b\wedge c+(u\cdot b)c\wedge a+(u\cdot c)a\wedge b(u\in H)$.

Similarly we have

$\tau_{2}(\psi)(u)=(u\cdot d)e\wedge f+(u\cdot e)f\wedge d+(u\cdot f)d\wedge e$ .

Hence if we apply Proposition 3.4 and Proposition 3.5 to $\varphi,$ $\psi\in \mathcal{I}_{g’ 1}=\mathcal{M}(2)$ , we
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obtain

$\tau_{3}([\varphi, \psi])=\varphi\{\tau_{2}(\psi)(u)\}-\psi\{\tau_{2}(\varphi)(u)\}$

$=(u\cdot d)\{(f\cdot a)[e, [b, c]]+(f\cdot b)[e, [c, a]]+(f\cdot c)[e, [a, b]]$

$+(e\cdot a)[[b, c],$ $f$] $+(e\cdot b)[[c, a],$ $f$] $+(e\cdot c)[[a, b],$ $f$]}

$+(u\cdot e)\{(d\cdot a)[f, [b, c]]+(d\cdot b)[f, [c, a]]+(d\cdot c)[f, [a, b]]$

$+(f\cdot a)[[b, c],$ $d$] $+(f\cdot b)[[c, a],d]+(f\cdot c)[[a, b],$ $d$]}

$+(u\cdot f)\{(e\cdot a)[d, [b, c]]+(e\cdot b)[d, [c, a]]+(e\cdot c)[d, [a, b]]$

$+(d\cdot a)[[b, c],$ $e$] $+(d\cdot b)[[c, a],$ $e$] $+(d\cdot c)[[a, b],$ $e$]}

$-(u\cdot a)\{(c\cdot d)[b, [e, f]]+(c\cdot e)[b, [f, d]]+(c\cdot f)[b, [d, e]]$

$+(b\cdot d)[[e, f],$ $c$] $+(b\cdot e)[[f, d],$ $c$] $+(b\cdot f)[[d, e],$ $c$]}

$-(u\cdot b)\{(a\cdot d)[c, [e, f]]+(a\cdot e)[c, [f, d]]+(a\cdot f)[c, [d, e]]$

$+(c\cdot d)[[e, f],$ $a$ ] $+(c\cdot e)[[f, d],$ $a$] $+(c\cdot f)[[d, e],$ $a$]}

$-(u\cdot c)\{(b\cdot d)[a, [e, f]]+(b\cdot e)[a, [f, d]]+(b\cdot f)[a, [d, e]]$

$+(a\cdot d)[[e, f],$ $b$] $+(a\cdot e)[[f, d],$ $b$] $+(a\cdot f)[[d, e],$ $b$]}.

Now by the identification of $\overline{T}$ as a submodule of $Hom(H, \mathcal{L}_{3})$ (see \S 2), the element
$t=b\wedge crightarrow e\wedge f\in\overline{T}$ can be written as

$t(u)=(u\cdot b)[c, [e, f]]-(u\cdot c)[b, [e, f]]$

$-(u\cdot e)[[b, c],$ $f$] $+(u\cdot f)[[b, c],$ $e$].

It is now a routine matter to check that the formula given in the theorem is the

$co$rrect one. This completes the proof.

Here is an example which will clarify the effectiveness of Theorem 3.1.

Example 3.6. We consider a compact surface of genus two with one boundary

component as illustrated in Figure 1, where we fix a symplectic basis $x_{1},$ $x_{2},$ $y_{1},$ $y_{2}$ of
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the homology group. Also let $\varphi,$ $\psi\in \mathcal{I}_{2,1}$ and $\zeta\in \mathcal{K}_{2,1}$ be the elements defined there,
where $the+(resp. -)$ sign means that we take the right handed (resp. left handed)
Dehn twist on the corresponding simple closed curve.

$($

$\varphi$
$\psi$

Figure 1
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We can show by a direct computation that $[\varphi, \psi]=\zeta$ . Now we compute (cf.

$[7,14])$

$\tau_{2}(\varphi)=x_{1}$ A $y_{1}\wedge x_{2}$

$\tau_{2}(\psi)=x_{1}\wedge y_{1}\wedge y_{2}$

$\tau_{3}(\zeta)=-(x_{1}\wedge y_{1})^{\otimes 2}+(x_{2}\wedge y_{2})^{\otimes 2}-(x_{1}\wedge y_{1}+x_{2}\wedge y_{2})^{\otimes 2}$

$=-x_{1}\wedge y_{1}rightarrow x_{1}\wedge y_{1}-x_{1}\wedge y_{1}rightarrow x_{2}\wedge y_{2}$ .

On the other hand, by Theorem 3.1 we have

$\chi(x_{1}\wedge y_{1}\wedge x_{2}, x_{1}\wedge y_{1}\wedge y_{2})$

$=-y_{1}\wedge x_{2}rightarrow y_{2}\wedge x_{1}+x_{2}\wedge x_{1}rightarrow y_{1}\wedge y_{2}-x_{1}\wedge y_{1}rightarrow x_{1}\wedge y_{1}$

$\equiv-x_{1}\Lambda y_{1}rightarrow x_{1}\wedge y_{1}-x_{1}\wedge y_{1}rightarrow x_{2}\wedge y_{2}$

as elements of $\overline{T}$, because $x_{1}\wedge y_{1}rightarrow x_{2}$ A $y_{2}-y_{1}$ A $x_{2}rightarrow y_{2}\wedge x_{1}+x_{2}\wedge x_{1}rightarrow y_{1}\wedge y_{2}$ is

contained in $T_{0}$ . This checks Theorem 3.1 in this case. Observe here that although

the Euler class $\chi$ has a meaning with values in $T$ (not just in $\overline{T}$), it does not give the

correct answer. For the genus two case we can modify $\chi$ to obtain the correct one

with values in $T$ by adding a constant term, but here we omit it.

4. The mapping $\lambda_{f}$ : $\mathcal{I}_{g}arrow Z$

Recall that in \S 2 we have defined a mapping $\lambda_{f}$ : $\mathcal{I}_{g}arrow Z$ by $\lambda_{f}(\varphi)=\lambda(M_{\varphi})-$

$\lambda(M)(\varphi\in \mathcal{I}_{g})$ where $M_{\varphi}$ is the homology 3-sphere obtained by cutting a given

oriented homology 3-sphere $M$ along an embedded oriented surface $f(\Sigma_{g})\subset M$

and then reglueing the resulting two pieces $V_{+}$ and $V_{-}$ by the map $\varphi$ . Although

the restriction of $\lambda_{f}$ to the subgroup $\mathcal{K}_{g}$ is a homomorphism, $\lambda_{f}$ itself is not a
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homomorphism (except the case $g=2$). The purpose of this section is to determine

completely the deviation of the mapping $\lambda_{f}$ from the additivity in the case where $f$

is a Heegaard embedding (see Remark 4.7 for the general case). In order to formulate

the result, we define a mapping $\delta_{f}$ : $\mathcal{I}_{g}\cross \mathcal{I}_{g}arrow Z$ as f\‘ollows. First as in \S 2 we fix

an embedded disc $D^{2}\subset\Sigma_{g}$ and consider the Torelli group $\mathcal{I}_{g’ 1}$ of $\Sigma_{g}$ relative to
$D^{2}$ . Then we have the homomorphism $\tau_{2}$ : $\mathcal{I}_{g’ 1}arrow\Lambda^{3}H$ . Next we denote $H_{x}$ for the

kernel of the homomorphism $H=H_{1}(\Sigma_{g}; Z)arrow H_{1}$ ( $V_{-};$ Z) which is induced from

the mapping $\Sigma_{g}arrow f(\Sigma_{g})\subset V$-and similarly we denote $H_{y}$ for the kernel pf the

homomorphism $Harrow H_{1}$ ( $V_{+};$ Z). Then since $M$ is assumed to be a homology sphere,

it is easy to see that $H$ is decomposed as a direct sum $H_{x}\oplus H_{y}$ of isotropic subspaces

$H_{x}$ and $H_{y}$ each of which has maximal rank $g$ . It follows that we can choose a

symplectic basis $x_{1},$ $\cdots$ , $x_{g},$ $y_{1},$ $\cdot’$ . , $y_{g}$ of $H$ such that $x_{i}\in H_{x}$ and $y_{i}\in H_{y}$ for all

$i=1,$ $\cdots$ , $g$ . With these preparations, we have

Definition 4.1. We deffie a mapping

$\delta_{f}$ : $\mathcal{I}_{g}\cross \mathcal{I}_{g}arrow Z$

as follows. For any two elements $\varphi,$ $\psi\in \mathcal{I}_{g}$ , choose any of their lifts $\overline{\varphi},\overline{\psi}\in \mathcal{I}_{g’ 1}$ with

$re$spect to the natural $s$urjection $\mathcal{I}_{g’ 1}arrow \mathcal{I}_{g}$ . Write

$\tau_{2}(\overline{\varphi})=\sum_{i<j<k}a_{ijk}y_{i}\wedge y_{j}\wedge y_{k}+other$
terms

$\tau_{2}(\tilde{\psi})=\sum_{i<j<k}b_{ijk}x_{i}\wedge x_{j}\wedge x_{k}+other$
terms

in terms of the basis of $\Lambda^{3}H$ : $x_{i}\wedge x_{j}\wedge x_{k}(i<j<k),$ $x;\wedge x_{j}\wedge y_{k}(i<j)$ ,

$x_{i}\wedge y_{j}\wedge y_{k}(j<k)$ , and $y_{i}\wedge y_{j}\wedge y_{k}(i<j<k)$ which is indu$ced$ from the symplectic

basis $x_{1},$ $\cdots$ $x_{g},$ $y_{1},$ $\cdots y_{g}$ of $H$ chosen above. Then we set

$\delta_{f}(\varphi,\psi)=\sum_{i<j<k}a_{ijk}b_{ijk}$
.
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Lemma 4.2. The a\’oove defnition is well defined. Namely the $value\delta_{f}(\varphi, \psi)$ does

not depend on th $e$ various choices made.

Proof. We have to prove that the value is independent of the

(i) choices of the lifts $\overline{\varphi},\overline{\psi}\in \mathcal{I}_{g1}$ and

(ii) choice of the symplectic basis $x_{1}$ , –, $x_{g},$ $y_{1},$ $\cdots$ $y_{g}$ .

First we consider (i). Recall that $Ker(\mathcal{I}_{g’ 1}arrow \mathcal{I}_{g})$ is naturally isomorphic to

$\pi_{1}(T_{1}\Sigma_{g})$ where $T_{1}\Sigma_{g}$ is the unit tangent bundle of $\Sigma_{g}$ . Also according to Johnson

[7], $\tau_{2}(Ker(\mathcal{I}_{g’ 1}arrow \mathcal{I}_{g}))\subset\Lambda^{3}H$ can be identified as $\{\omega_{0}\wedge u;u\in H\}$ where $\omega_{0}=$

$x_{1}\wedge y_{1}+\cdots+x_{g}\wedge y_{g}$ is the “symplectic class” of $H$ . It follows immediately that the

value $\delta_{f}(\varphi, \psi)$ is independent of the choices of $\tilde{\varphi}$ and $\overline{\psi}$.

Next we consider (ii). Since we are only considering those symplectic basis

$x_{1},$ $\cdots$ $x_{g},$ $y_{1},$ $\cdots$ , $y_{g}$ such that $x_{i}\in H_{x}$ and $y_{i}\in H_{y}$ for all $i$ , any two such bases are

related by a matrix of the form

$(\begin{array}{ll}A OO {}^{t}A^{-1}\end{array})\in Sp(2g;Z)$

for some $A\in GL(g;Z)$ . As is well known $GL(g;Z)$ is generated by the following

matrices

$m$

$R=(\begin{array}{llll}-1 1 \ddots 1\end{array})$ , $T_{\ell m}=\ell$ ( $\cdot$ .
.

$1$

.
$1$

) $(p\neq m)$ .

Now it is easy to check the relevant invariance under the basis change correspond-
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ing to the matrix $R$. We check it for the matrix $\tau_{tm}$ . The new symplectic basis
$x_{1}’,$ $\cdots$ , $x_{g}’,$ $y_{1}’,$ $\cdots$ $y_{g}’$ which is obtained from the old one by applying the matrix $T_{fm}$

is expressed as

$x_{k}’=x_{k}(k\neq m),$ $x_{m}’=x_{f}+x_{m}$ and

$y_{k}’=y_{k}(k\neq P),$ $y_{f}’=y_{f}-y_{m}$ .

Hence if we represent the given two elements $\tau_{2}(\overline{\varphi})$ and $\tau_{2}(\overline{\psi})$ with respect to the

new basis as $\tau_{2}(\overline{\varphi})=\sum a_{ijk}’y_{i}’$ A $y_{j}’$ A $y_{k}’+other$ terms and $\tau_{2}(\overline{\psi})=\sum b_{ijk}’x_{i}’\wedge x_{j}’\wedge$

$x_{k}’+$ other terms, then $a_{ijk}’=a_{ijk}$ unless one of the indices $i,j,$ $k$ is equal to $m$ and

the other two are different from $\ell$ . Similarly $b_{ijk}’=b_{ijk}$ unless one of $i,j,$ $k$ is equal

to $p$ and the other two are different from $m$ . Moreover we have

$a_{tjk}’=a_{fjk}+a_{mjk}(j, k\neq P, m)$

$b_{mjk}’=b_{mjk}-b_{\ell jk}(j, k\neq P, m)$ .

It follows that $a_{1jk}’b_{fjk}’+a_{mjk}’b_{mjk}’=a_{tjk}b_{ljk}+a_{mjk}b_{mjk}$ . Hence the sum $\sum a_{ijk}b_{ijk}$

is invariant under (ii). This completes the proof.

Now we are ready to state the main theorem of this section.

Theorem 4.3. Let $M$ be an oriented homology 3-sphere and let $f$ : $\Sigma_{g}arrow M$ be

a Heegaar$d$ embedding. Also let $\lambda_{f}$ : $\mathcal{I}_{g}arrow Z$ be the mapp$ing$ defi$ned$ as $\lambda_{f}(\varphi)=$

$\lambda(M_{\varphi})-\lambda(M)(\varphi\in \mathcal{I}_{g})$ where $M_{\varphi}$ is the Aomology sphere obtained from $M$ by

cutting along $f(\Sigma_{g})$ . and then $p$asting back by the map $\varphi\in \mathcal{I}_{g}$ . Then we have

$\lambda_{f}(\varphi\psi)=\lambda_{f}(\varphi)+\lambda_{f}(\psi)+2\delta_{f}(\varphi, \psi)$

for all $\varphi,$ $\psi\in \mathcal{I}_{g}$ .

Corollary 4.4. (i) The mapping $\lambda_{f}$ : $\mathcal{I}_{g}arrow Z$ is a Aomomorphism for $g=2$ .
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(ii) If we deffie $\overline{\lambda}_{f}$ : $\mathcal{I}_{g}arrow Z/2$ to be the $mod 2$ reduction of $\lambda_{f}$ , then $\overline{\lambda}_{f}$ is a
$h$omomorphism for all $g$ .

Remark 4.5. As is well known the $mod 2$ reduction of the Casson invariant is equal

to the Rohlin invariant. Hence statement (ii) in the above corollary is due to Birman-

Craggs [2] (see also Remark 4.7).

Before proving Theorem 4.3, we prepare a few preliminary results.

Proposition 4.5. Let $M$ be an oriented homology 3-sphere and let $f$ : $\Sigma_{g}arrow M$ be

an embedding. Then for any two elements $\varphi,\psi\in \mathcal{I}_{g}$ , we bave

$\lambda_{f}([\varphi, \psi])=2\delta_{f}(\varphi, \psi)-2\delta_{f}(\psi, \varphi)$

Proof. Fix an embedded disc $D^{2}\subset\Sigma_{g}$ and we consider everything at the level of the

group $\mathcal{I}_{g’ 1}$ rather than $\mathcal{I}_{g}$ . Now first of all we claim that the following two assertions

hold:

(i) the value $\lambda_{f}([\varphi, \psi])$ depends only on $\tau_{2}(\varphi)$ and $\tau_{2}(\psi)\in\Lambda^{3}H$ for any $\varphi,\psi\in \mathcal{I}_{g’ 1}$ .

(ii) $\lambda_{f}([\varphi_{1}\cdots\varphi_{s}, \psi_{1}\cdots\psi_{t}])=\sum_{i=1}^{s}\sum_{j=1}^{t}\lambda_{f}([\varphi_{i}, \psi_{j}])$ for any $\varphi_{i},$ $\psi_{j}\in \mathcal{I}_{g’ 1}$ .

In view of the existence of the exact sequence $1arrow \mathcal{K}_{g’ 1}arrow \mathcal{I}_{g’ 1}arrow\Lambda^{3}Harrow 1$ ,

we have only to prove that $\lambda_{f}([\varphi, \psi])=\lambda_{f}([\varphi\varphi_{1}, \psi\psi_{1}])$ for any $\varphi_{1},$ $\psi_{1}\in \mathcal{K}_{g1}$ . But

we have $[\varphi\varphi_{1}, \psi]=\varphi[\varphi_{1}, \psi]\varphi^{-1}[\varphi, \psi]$. Hence we obtain $\lambda_{f}([\varphi\varphi_{1}, \psi])=\lambda_{f}([\varphi, \psi])$ by

Proposition 2.1 and Corollary 2.3. Similarly we have $\lambda_{f}([\varphi\varphi_{1}, \psi\psi_{1}])=\lambda_{f}([\varphi\varphi_{1}, \psi])$

proving (i). To prove (ii), we first assume that $s=2$ and $t=1$ . Then we have
$[\varphi_{1}\varphi_{2}, \psi]=\varphi_{1}[\varphi_{2}, \psi]\varphi_{1}^{-1}[\varphi_{1}, \psi]$ and hence $\lambda_{f}([\varphi_{1}\varphi_{2}, \psi])=\lambda_{f}([\varphi_{1}, \psi])+\lambda_{f}([\varphi_{2}, \psi])$

by Proposition 2.1 and Corollary 2.3 again. The general case follows from this by an

easy inductive argument.

In view of the above two assertions (i) and (ii), for any two elements $\xi,$ $\eta\in\Lambda^{3}H$

we may write $\lambda_{f}([\xi,\eta])$ instead of $\lambda_{f}([\varphi, \psi])$ where $\varphi,$ $\psi\in \mathcal{I}_{g’ 1}$ are any elements such

that $\tau_{2}(\varphi)=\xi$ and $\tau_{2}(\psi)=\eta$ . Also the value $\lambda_{f}([\xi, \eta])$ is “bilinear” with respect to
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$\xi$ and $\eta$ . Now we choose a symplectic basis $x_{1},$ $\cdots$ $x_{g},$ $y_{1},$ $\cdots$
$y_{g}$ of $H$ such that $x_{i}$

is homologous to $0$ in $V$-and $y_{i}$ is homologous to $0$ in $V_{+}$ for all $i$ . For any element

$u\in H$ , let $u^{+}$ be the cycle in $V$-which is obtained by pushing $u$ to the positive

direction. Then by a standard argument we have

$lk(x_{i}, y_{j}^{+})=-\delta_{ij}$ and

$\ell k(x_{i}, x_{j}^{+})=\ell k(y_{i}, y_{j}^{+})=0$ .

Now we compute $\lambda_{f}([\xi, \eta])$ where $\xi$ and $\eta$ run through any member of the basis of
$\Lambda^{3}H$ : $x_{i}\wedge x_{j}\wedge x_{k}(i<j<k),$ $x_{i}\wedge x_{j}\wedge y_{k}(i<j),$ $x_{i}\wedge y_{j}\wedge y_{k}(j<k)$ and

$y_{i}\wedge y_{j}\wedge y_{k}(i<j<k)$ which is associated to the symplectic basis of $H$ chosen above.

To determine the value $\lambda_{f}([\xi, \eta])$ we first use Theorem 3.1 to compute $\tau_{3}([\xi, \eta])$ and

then apply Theorem 2.2 and Theorem 2.4. We give the results in the following list

(we refer to [14] for the explicit evaluations of the invariants $\theta_{0}=\epsilon_{f}0\theta,\overline{d}$ and $d$).

In the list we denote $r=r(\xi, \eta)$ for $\chi(.\xi\wedge\eta)\in T$ which is a lift of the element

$\tau_{3}([\xi, \eta])\in\overline{T}$ to $T$ (recall that $\chi$ has a meaning with values in $T$ ) and also recall that

$\lambda_{f}=\frac{1}{24}d+\theta_{0}+\frac{1}{3}\overline{d}$ (see \S 2).

(I) The case where $\xi=x;\wedge x_{j}\wedge x_{k},$ $\eta=Xf\wedge x_{m}$ A $x_{n}$ .

In this case $r=r(\xi, \eta)=0$ and hence $\theta_{0}(r)=\overline{d}(r)=0$ . Also we have $d([\xi, \eta])=$

$0$ . Therefore we can conclude that $\lambda_{f}([\xi, \eta])=0$ .

(II) The case where $\xi=x_{i}\wedge x_{j}\wedge x_{k},$ $\eta=x_{f}$ A $x_{m}\wedge y_{n}$ .

In this case we have

$r(\xi, \eta)=-\delta_{in}x_{j}\wedge x_{k}rightarrow x_{\ell}\wedge x_{m}-\delta_{jn}x_{k}\wedge x_{i}rightarrow x_{f}\wedge x_{m}-\delta_{kn}x_{i}\wedge x_{j}rightarrow x_{f}\wedge x_{m}$

and hence $\theta_{0}(r)=\overline{d}(r)=0$ . Also we have $d([\xi, \eta])=0$ . Therefore $\lambda_{f}([\xi, \eta])=0$ .

(III) The case where $\xi=x_{i}\wedge x_{j}\wedge x_{k},$ $\eta=x_{1}\wedge y_{m}\wedge y_{n}$ .
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In this case we have

$r(\xi, \eta)=-\delta_{im}x_{j}$ A $x_{k}rightarrow y_{n}\wedge x\ell-\delta_{in}x_{j}\wedge x_{k}rightarrow x_{f}\wedge y_{m}$

$-\delta_{jm}x_{k}\wedge x_{i}rightarrow y_{n}$ A $x_{f}-\delta_{jn}x_{k}\wedge x_{i}rightarrow x_{f}\wedge y_{m}$

$-\delta_{km}x_{i}\wedge x_{j}rightarrow y_{n}\wedge x_{f}-\delta_{kn}x_{i}\wedge x_{j}rightarrow x_{f}\wedge y_{m}$

and hence $\theta_{0}(r)=\overline{d}(r)=0$ . Also we have $d([\xi, \eta])=0$ and we conclude $\lambda_{f}([\xi, \eta])=0$ .

(IV) The case where $\xi=x_{i}\wedge x_{j}\wedge x_{k},$ $\eta=y\ell$ A $y_{m}\wedge y_{n}$ .

In this case we have

$r(\xi, \eta)=-\delta_{i\ell}x_{j}\wedge x_{k}rightarrow y_{m}\wedge y_{n}-\delta_{im}x_{j}\wedge x_{k}rightarrow y_{n}$ A $y_{\ell}-\delta_{in^{X}j}\wedge x_{k}rightarrow y_{f}\wedge y_{m}$

$-\delta_{jl}x_{k}\wedge x_{i}rightarrow y_{m}\wedge y_{n}-\delta_{jm}x_{k}\wedge x_{i}rightarrow y_{n}$ A $y\ell-\delta_{jn}x_{k}\wedge x;rightarrow y\ell$ A $y_{m}$

$-\delta_{kt}x_{i}\wedge x_{j}rightarrow y_{m}\wedge y_{n}-\delta_{km}x_{i}\wedge x_{j}rightarrow y_{n}$ A $y_{f}-\delta_{kn}x_{i}\wedge x_{j}rightarrow y\ell$ A $y_{m}$ .

Hence we have $\theta_{0}(r)=-\overline{d}(r)=-3\delta_{if}\delta_{jm}\delta_{kn}$ (here we have used the assumptions

that $i<j<k$ and $p<m<n$). Also we have $d([\xi, \eta])=0$ . Therefore we obtain

$\lambda_{f}([\xi, \eta])=-2\delta_{il}\delta_{jm}\delta_{kn}$ .

(V) The case where $\xi=x;\wedge x_{j}\wedge y_{k},$ $\eta=x_{f}$ A $x_{m}\wedge y_{n}$ .

In this case we have

$r(\xi, \eta)=-\delta_{in}x_{j}\wedge y_{k}rightarrow x_{f}$ A $x_{m}-\delta_{jn}y_{k}\wedge x_{i}rightarrow x_{f}\wedge x_{m}$

$+\delta_{kl}x_{i}\wedge x_{j}rightarrow x_{m}\wedge y_{n}+\delta_{km}x_{i}\wedge x_{j}rightarrow y_{n}\wedge x_{l}$

and hence we obtain $\theta_{0}(r)=\overline{d}(r)=0$ . Also we have $d(r)=0$ and therefore

$\lambda_{f}([\xi, \eta])=0$ .

(VI) The case where $\xi=x_{i}\wedge x_{j}\wedge y_{k},$ $\eta=x_{f}$ A $y_{m}$ A $y_{n}$ .
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In this case we have

$r(\xi, \eta)=-\delta_{im}x_{j}\wedge y_{k}rightarrow y_{n}\wedge x_{f}-\delta_{in}x_{j}\wedge y_{k}rightarrow x_{f}\wedge y_{m}$

$-\delta_{jm}y_{k}\wedge x_{i}rightarrow y_{n}\wedge x_{f}-\delta_{jn}y_{k}\wedge x_{i}rightarrow x_{f}\wedge y_{m}$

$+\delta_{k\ell}x_{i}\wedge x_{j}rightarrow y_{m}\wedge y_{n}$

and hence $\theta_{0}(r)=\delta_{kf}\delta_{im}\delta_{jn}$ . Recalling the conditions $i<j$ and $m<n$ , we compute

$\overline{d}(r)=\delta_{im}\delta_{jk}\delta_{nt}-\delta_{in}\delta_{jk}\delta_{1m}-\delta_{jm}\delta_{ik}\delta_{tn}$

$+\delta_{jn}\delta_{ik}\delta_{tm}-3\delta_{im}\delta_{jn}\delta_{k\ell}$

$d(r)=8(\delta\delta\delta-\delta\delta_{n}\delta_{im}-\delta_{ik}\delta_{lm}\delta_{jn}+\delta_{ik}\delta_{nf}\delta_{jm})$ .

Hence we can conclude that $\lambda_{f}([\xi, \eta])=0$ .

In the above list we omit four other cases like $\xi=y_{i}\wedge y_{j}\wedge y_{k}$ and $\eta=y\ell\wedge y_{m}\wedge y_{n}$

because of a symmetry in the above computations with respect to $x$ and $y$ . Now we

can easily read off from the above list that the only possible pairs of $(\xi, \eta)$ with non-

zero $\lambda_{f}$ is $(x_{i}\wedge x_{j}\wedge x_{k}, y_{i}\wedge y_{j}\wedge y_{k})$ and $(y_{i}\wedge y_{j}\wedge y_{k}, x_{i}\wedge x_{j}\wedge x_{k})$ and in these cases

the values are-2 and 2 respectively. Therefore we can conclude that

$\lambda_{f}([\varphi, \psi])=2\delta_{f}(\varphi, \psi)-2\delta_{f}(\psi, \varphi)$ .

This completes the proof of Proposition 4.5.

Lemma 4.6. Let $V$ be a handlebody of genus $g$ and fix any difFeomorphism $\partial V\cong$

$\Sigma_{g}$ . Let $\mathcal{M}_{g1}$ be the mapping class $gro$up of $\Sigma_{g}$ relati $ve$ to an embedded disc $D^{2}\subset$

$\Sigma_{g}$ and let $\mathcal{N}_{g,1}$ be the subgroup of $\mathcal{M}_{g’ 1}$ consisting of all th$e$ elemen $ts$ which $c$an

be extended to diffeomorphisms of $V$ (under the above identffication $\partial V=\Sigma_{g}$).

Let $H_{y}$ be the kernel of the Aomomorphism $H=H_{1}(\Sigma_{g} ; Z)arrow H_{1}(V;Z)$ , which

is induced from the inclusion $\Sigma_{g}=\partial Varrow V$ , and choose any symplectic $b$asis

24



153

$x_{1},$ $\cdots x_{g},$ $y_{1},$ $\cdots y_{g}ofH$ such that $y_{i}\in H_{y}$ for all $i=1,$ $\cdots g$ . Defin$e$ the subgroup
$W_{y}$ of $\Lambda^{3}H$ to be the one generated by the elements of the forms $x_{i}\wedge x_{j}\wedge y_{k},$ $x_{i}\wedge y_{j}\wedge y_{k}$

and $y_{i}\wedge y_{j}\wedge y_{k}$ . Then we bave

$\tau_{2}(\mathcal{I}_{g’ 1}\cap N_{g,1})=W_{y}$ .

We omit the proof of the above lemma because it follows from Lemma 2.5 of

[14] by an easy argument.

Proof of Theorem 4.3. By the assumption that $f$ : $\Sigma_{g}arrow M$ is a Heegaard em-

bedding, both of the pieces $V+andV$-are handlebodies of genus $g$ . Now as before

choose a symplectic basis $x_{1},$ $\cdots x_{g},$ $y_{1},$ $\cdots$ , $y_{g}$ of $H$ such that $x_{i}$ is homologous to $0$

in $V_{-}$ and $y_{i}$ is homologous to $0$ in $V+for$ all $i$ . Also fix an embedded disc $D^{2}\subset\Sigma_{g}$

and choose any lifts $\tilde{\varphi},\overline{\psi}\in \mathcal{I}_{g’ 1}$ of the given elements $\varphi,$ $\psi\in \mathcal{I}_{g}$ . Now write

$\tau_{2}(\tilde{\varphi})=\sum_{i<j<k}a_{ijk}y_{i}\wedge y_{j}\wedge y_{k}+\xi_{x}$

$\tau_{2}(\tilde{\psi})=\sum_{i<j<k}b_{ijk}x_{i}\wedge x_{j}\wedge x_{k}+\eta_{y}$

with respect to the basis of $\Lambda^{3}H$ which is associated to the symplectic basis of $H$ cho-

sen above. If we apply Lemma 4.6 to the pair $(V_{+}, f(\Sigma_{g}))$ , then we can conclude that

there exists two elements $\varphi+,$ $\psi+\in \mathcal{I}_{g1}$ such that (i) $\varphi+extends$ to a diffeomorphism

of $V_{+}$ (here we identify $f(\Sigma_{9})$ with $\partial V_{+}$ ) and $\tau_{2}(\varphi_{+})=-\sum a_{ijk}y_{i}\wedge y_{j}\wedge y_{k}$ (ii) $\psi_{+}$

extends to a diffeomorphism of $V_{+}$ and $\tau_{2}(\psi_{+})=-\eta_{y}$ . The same argument applied to

the pair (V-, $f(\Sigma_{g})$ ) implies the existence of elements $\varphi_{-},$ $\psi_{-}\in \mathcal{I}_{g’ 1}$ such that (iii) $\varphi_{-}$

extends to a diffeomorphism of $V$-and $\tau_{2}(\varphi_{-})=-\xi_{x}$ (iv) $\psi_{-}$ extends to a diffeo-

morphism of $V_{-}$ and $\tau_{2}(\psi_{-})=-\sum b_{ijk}x_{i}\wedge x_{j}\wedge x_{k}$ . Now set $\varphi_{1}=\varphi-\overline{\varphi},$ $\psi_{1}=\tilde{\psi}\psi+$ ,
$\varphi_{2}=\varphi_{-\varphi\varphi+}^{\sim}$ and $\psi_{2}=\psi_{-}\overline{\psi}\psi+\cdot$ Then since $\varphi+and\psi_{+}$ (resp. $\varphi_{-}$ and $\psi_{-}$ ) ex-

tends to diffeomorphisms of $V_{+}$ (resp. $V_{-}$ ), we have $M_{\varphi_{1}\psi_{1}}=M_{\varphi}\psi,$ $M_{\varphi_{2}}=M_{\varphi}$ and
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$M\psi_{2}=M\psi$ Hence

$\lambda_{f}(\varphi_{1}\psi_{1})=\lambda_{f}(\varphi\psi)$

$\lambda_{f}(\varphi_{2})=\lambda_{f}(\varphi)$

$\lambda_{f}(\psi_{2})=\lambda_{f}(\psi)$ .

Also observe that both of the elements $\varphi_{2}$ and $\psi_{2}$ belong to $\mathcal{K}_{g’ 1}$ because $\tau_{2}(\varphi_{2})=$

$\tau_{2}(\psi_{2})=0$ . Similarly we have $M_{\varphi_{1}\psi_{1}}=M_{\psi_{-}\varphi_{1}\psi_{1}\varphi+}$ and hence

$\lambda_{f}(\varphi_{1}\psi_{1})=\lambda_{f}(\psi_{-}\varphi_{1}\psi_{1}\varphi_{+})$.

On the other hand we have

$\psi_{-\varphi_{1}\psi_{1}\varphi_{+}=\psi_{-}\varphi_{2}\psi_{-}^{-1}[\psi_{-},\varphi_{+}^{-1}]\varphi_{+}^{-1}\psi_{2}\varphi+}$

and therefore

$\lambda_{f}(\psi_{-}\varphi_{1}\psi_{1}\varphi_{+})=\lambda_{f}(\psi_{-}\varphi_{2}\psi_{-}^{-1})+\lambda_{f}([\psi_{-}, \varphi_{+}^{-1}])+\lambda_{f}(\varphi_{+}^{-1}\psi_{2}\varphi_{+})$

by Proposition 2.1. But we have $\lambda_{f}(\psi_{-}\varphi_{2}\psi_{-}^{-1})=\lambda_{f}(\varphi_{2})$ and $\lambda_{f}(\varphi_{+}^{-1}\psi_{2}\varphi_{+})=$

$\lambda_{f}(\psi_{2})$ by Corollary 2.3,(i). If we combine the above equations, we see that

$\lambda_{f}(\varphi\psi)=\lambda_{f}(\varphi)+\lambda_{f}(\psi)+\lambda_{f}([\psi_{-}, \varphi_{+}^{-1}])$ .

Here recall that $\tau_{2}(\psi_{-})=-\sum b_{ijk}x_{i}\wedge x_{j}\wedge x_{k}$ and $\tau_{2}(\varphi+)=-\sum a_{ijk}y_{i}\wedge y_{j}\wedge y_{k}$ .

Hence $\lambda_{f}([\psi_{-}, \varphi_{+}^{-1})=\lambda_{f}([\varphi+, \psi_{-}])=\sum a_{ijk}b_{ijk}=2\delta_{f}(\varphi, \psi)$ by Proposition 4.5 and

the definition of $\delta_{f}$ . Therefore

$\lambda_{f}(\varphi\psi)=\lambda_{f}(\varphi)+\lambda_{f}(\psi)+2\delta_{f}(\varphi, \psi)$
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as required. This completes the proof.

Remark 4.7. In the general case where the embedding $f$ : $\Sigma_{g}arrow M$ is not Heegaard,

the formula of Theorem 4.3 seems to be not true in general anymore. However we

can still conclude that the mapping $\overline{\lambda}_{f}$ : $\mathcal{I}_{g}arrow Z/2$ , which is the $mod 2$ reduction of

$\lambda_{f}$ , is a homomorphism. This follows from the fact that we can modify the embedded

surface $f(\Sigma_{g})$ to a Heegaard one by adding l-handles from both sides.

5. Determination of $H^{1}(\mathcal{K}_{g}; Z)^{f\Lambda_{g}}$

Recall that we denote $\mathcal{K}_{g}$ for the subgroup of the mapping class group $\mathcal{M}_{g}$

generated by all the Dehn twists on separating simple closed curves on $\Sigma_{g}$ . The

purpose of this section is to determine $H^{1}(\mathcal{K}_{g} ; Z)^{\Lambda 4_{g}}$ which is the group consisting

of all homomorphisms $r$ : $\mathcal{K}_{g}arrow Z$ such that $r(\psi)=r(\varphi\psi\varphi^{-1})$ for all $\psi\in \mathcal{K}_{g}$

and $\varphi\in \mathcal{M}_{g}$ . Namely we will determine all the integer valued additive invariants

for elements of $\mathcal{K}_{g}$ which are invariant under the natural action of $\mathcal{M}_{g}$ . We also

determine $bhe$ related group $H^{1}(\mathcal{K}_{g’ 1} ; Z)^{\mathcal{M}_{g1}}$ which is the set of all $\mathcal{M}_{g’ 1}$ -invariant

homomorphisms $\mathcal{K}_{g’ 1}arrow Z$ . We first consider the group $\mathcal{K}_{g’ 1}$ . Recall that we have

a homomorphism $d:\mathcal{K}_{g1}arrow Z$ which is the “core” of the Casson invariant from the

point of view of our approach (see \S 2 and [14] for details). It has the property that for

any BSCC map $\varphi$ of genus $h$ , we have $d(\varphi)=4h(h-1)$ . It follows that $d$ is an element

of $H^{1}(\mathcal{K}_{g’ 1} ; Z)^{\Lambda 4_{g’ 1}}$ . Next we construct another element $d’\in H^{1}(\mathcal{K}_{g’ 1} ; Z)^{\mathcal{M}_{g1}}$ by

making use of Johnson’s homomorphism $\tau_{3,}:\mathcal{K}_{g’ 1}arrow\overline{T}$ (see \S 2 and [14]).

Proposition 5.1. The following two types of correspondences

(i) $d^{\overline{\prime}}((a\wedge b)^{\otimes 2})=-3(a\cdot b)^{2}$
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(ii) $\overline{d}’(a\wedge brightarrow c\wedge d)=-4(a\cdot b)(c\cdot d)-2(a\cdot c)(b\cdot d)+2(a\cdot d)(b\cdot c)$

define a well-defined $Sp(2g;Z)$-invariant homomorphi$sm$ d’ : $Tarrow Z$ . Moreover it is

trivial on $Ker(Tarrow\overline{T})$ so that it defines a homomorphism $d^{\urcorner}$ : $\overline{T}arrow Z$ (we use the

same letter).

Definition 5.2. We define a homomorphism d’ : $\mathcal{K}_{g’ 1}arrow Z$ to be the composition

$\mathcal{K}_{g1}arrow^{\tau_{3}}\overline{T}arrow^{d^{\overline}\prime}$ Z.

It is easy to see that d’ is $\mathcal{M}_{g’ 1}$ -invariant so that it is contained in $H^{1}$ $(\mathcal{K}_{g’ 1} ; Z)^{J\Lambda_{g1}}$ .

Proof of Proposition 5.1. First of all it is easy to check that the two formulae (i)

and (ii) are consistent with the relation $a\wedge brightarrow a\wedge b=2(a\wedge b)^{\otimes 2}$ . Next observe that

type (ii) correspondence is linear with respect to any variables and also it is skew

symmetric with respect to $a,$
$b$ and $c,$

$d$ respectively. Moreover the value remains to

be unchanged if we interchange the two pairs $(a, b)$ and $(c, d)$ . It follows that the

correspondence is well-defined. That the resulting homomorphism $\overline{d}$ is $Sp(2g;Z)-$

invariant follows directly from the definition. Finally we check that $\overline{d}$ is trivial on

$Ker(Tarrow\overline{T})$ . Recall that $Ker(Tarrow\overline{T})$ is generated by the elements of the form

$a\wedge brightarrow c\wedge d-a\wedge crightarrow b\wedge d+a\wedge drightarrow b\wedge c$ .

But a direct computation shows that the value of the homomorphism $\overline{d}$ on this

element is $0$ . This completes the proof.

Proposition 5.3. Let $\varphi\in \mathcal{K}_{g’ 1}$ be a BSCC map of genus $h$ . Then we have $d’(\varphi)=$

$h(2h+1)$ .

Proof. Let $\omega$ be the bounding simple closed curve on $\Sigma_{g}\backslash D^{2}$ correspondint to the

element $\varphi$ . Choose a symplectic basis $u_{1},$ $\cdots u_{h},$ $v_{1},$ $\cdots v_{h}$ of the homology of the
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subsurface which $\omega$ bounds. Then by Proposition 1.1 of [14], we have

$\tau_{3}(\varphi)=-(u_{1}\wedge v_{1}+\cdots+u_{h}\wedge v_{h})^{\otimes 2}$ .

On the other hand, a direct computation shows that

$d^{\urcorner}((u_{1}\wedge v_{1}+\cdots+u_{h}\wedge v_{h})^{\otimes 2})=-h(2h+1)$.

Hence $d’(\varphi)=h(2h+1)$ , completing the proof.

Theorem 5.4. The group $H^{1}$ $(\mathcal{K}_{g’ 1} ; Z)^{\Lambda t_{g’ 1}}$ is a free abelian group of rank two and

over the rationals it is genera$ted$ by $d$ and $d’$ .

Proof. It is easy to see that two BSCC maps of the same genus are conjugate each

other in $\mathcal{M}_{g’ 1}$ . On the other hand, according to Johnson [5], $\mathcal{K}_{g’ 1}$ is generated by

all BSCC maps of genus one and two. Hence the rank of $H^{1}$ $(\mathcal{K}_{g1} ; Z)^{\Lambda 4_{g1}}$ is at most

two. Since we have already constructed two elements $d,$ $d’$ of this group which are

clearly linearly independent, we are done.

Remark 5.5. We can restate the above theorem as follows. Namely a function $f(h)$ of
$h$ , where $h$ stands for the genera of BSCC maps in $\mathcal{K}_{g’ 1}$ , extends to an $\mathcal{M}_{g’ 1}$ -invariant

homomorphism $\mathcal{K}_{g’ 1}arrow Z$ if and only if $f(h)=ph+qh^{2}$ for some $p,$ $q\in Z$ .

Remark 5.6. Although the two homomorphisms $d$, d’ : $\mathcal{K}_{g’ 1}arrow Z$ are seemingly

similar each other, the essential meaning of them are completely different. More

precisely, for each element $\varphi\in \mathcal{K}_{g’ 1}$ let us consider the manifold $W_{\varphi}$ which is a

$\Sigma_{g}$ -bundle over the circle with its monodromy diffeomorphism equal to $\varphi$ . By the

assumption that $\varphi\in \mathcal{K}_{g’ 1}$ , the homology group of $W_{\varphi}$ is the same as that of $S^{1}\cross\Sigma_{g}$ .

But higher order intersectional properties may be different. In fact as is explained

in Johnson [8], his homomorphisms $\tau_{k}$ can be interpreted as the invariants which

measure higher order Massey products of the manifolds like $W_{\varphi}$ . Since our invariant

d’ is a quotient of $\tau_{3}$ , we can conclude that $d’$ can be read off from a certain higher
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order Massey product of $W_{\varphi}$ . In particular it is a local invariant in the sense that it

is computable by means of integrations of forms. On the contrary we have recently

found that the invariant $d$ can be interpreted as the Hirzebruch’s signature defect (see

[4]) of the 3-manifold $W_{\varphi}$ with respect to a certain canonical framing of its tangent

bundle (see [16] for details). If we recall here that the signature defect is closely

related with the $\eta$-invariant of Atiyah-Patodi-Singer [1] which is by no means a local

invariant, we may say that the invariant $d$ should be an essentially global invariant.

At least we can say that $d$ is a much more deep invariant than $d’$ .

Now we consider the case of closed surfaces.

Theorem 5.7. The group $H^{1}(\mathcal{K}_{g}; Z)^{1\cdot 1_{g}}$ is isomorphic to $Z$ whose rational generator
$d_{0}$ can be defined as follows. Let $\omega$ be a $sep$arating simple closed curve on $\Sigma_{g}$ su $ch$

that the genera of the two compact $s$urfaces which are obtain$ed$ by cutting $\Sigma_{g}$ alon$g$

$\omega$ ar$eh$ and $(g-h)$ . Then we have $d_{0}(D.)=h(g-h)$ where $D_{\omega}$ is the Dehn twist

on $\omega$ .

Proof. Since the natural homomorphism $H^{1}(\mathcal{K}_{g} ; Z)^{\Lambda 4_{9}}arrow H^{1}(\mathcal{K}_{g’ 1} ; Z)^{\mathcal{M}_{g1}}$ is cearly

injective, in view of Theorem 5.4 it is enough to prove that there is one and only

one relation between the two elements $d,$ $d’\in H^{1}$ $(\mathcal{K}_{g’ 1} ; Z)^{\Lambda 4_{9}}$ “ on $Ker(\mathcal{K}_{g’ 1}arrow \mathcal{K}_{g})$ .

More precisely, since we have

$12h(g-h)=4(g-1)\cdot h(2h+1)-(2g+1)\cdot 4h(h-1)$

and since $d(\varphi)=4h(h-1)$ and $d’(\varphi)=h(2h+1)$ for any BSCC map $\varphi\in \mathcal{K}_{g’ 1}$ of

genus $h$ , we have only to prove that the equality

$(2g+1)d(\varphi)=4(g-1)d’(\varphi)$

holds for any $\varphi\in Ker(\mathcal{K}_{g’ 1}arrow \mathcal{K}_{g})$ and that $d$ is non trivial on $Ker(\mathcal{K}_{g’ 1}arrow \mathcal{K}_{9})$ . Now

as was recalled in \S 4, $Ker(\mathcal{I}_{g’ 1}arrow \mathcal{I}_{g})$ is naturally isomorphic to $\pi_{1}(T_{1}\Sigma_{g})$ and also
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we have an exact sequence $1arrow \mathcal{K}_{g’ 1}arrow \mathcal{I}_{g’ 1}arrow\Lambda^{3}Harrow 1$ . Hence $Ker(\mathcal{K}_{g’ 1}arrow \mathcal{K}_{g})$ is

naturally isomorphic to $Ker(\tau_{2} : \pi_{1}(T_{1}Z_{g})arrow\Lambda^{3}H)$ . On the other hand we have a

central extension

$0arrow Zarrow\pi_{1}(T_{1}\Sigma_{9})arrow\pi_{1}(\Sigma_{g})arrow 1$

where the center $Z$ is generated by the element $\zeta\in \mathcal{K}_{g’ 1}$ , which is the Dehn twist on

a simple closed curve on $\Sigma_{9}\backslash IntD^{2}$ which is parallel to the boundary (see [14]). Since

$\tau_{2}(\zeta)=0$ , the homomorphism $\tau_{2}$ restricted to $\pi_{1}(T_{1}\Sigma_{g})$ is essentially equivalent to

a homomorphism $\tau_{2}$ : $\pi_{1}(\Sigma_{g})arrow\Lambda^{3}H$ (we use the same letter) and $\tau_{2}(\gamma)=[\gamma]\wedge\omega_{0}$

for any $\gamma\in\pi_{1}(\Sigma_{g})$ , where $[\gamma]\in H$ is the homology class of $\gamma$ and $\omega_{0}\in\Lambda^{2}H$ is the

symplectic class (see [7]). We can now conclude that $Ker(\mathcal{K}_{g’ 1}arrow \mathcal{K}_{g})$ is generated

by $\zeta$ and the elements of the form $[\alpha, \beta]\in \mathcal{K}_{g1}$ with $\alpha,$ $\beta\in\pi_{1}(T_{1}\Sigma_{g})\subset \mathcal{I}_{g1}$ . Now

we check that the required relation on these generators.

Since $d(\zeta)=4g(g-1)$ and $d^{t}(\zeta)=g(2g+1)$ (see Proposition 5.3), the reuired

relation $(2g+1)d=4(g-1)d’$ certainly holds on $\zeta$ . Next we consider the element of

the form $\varphi=[\alpha, \beta]\in \mathcal{K}_{g’ 1}$ with $\alpha,$ $\beta\in\pi_{1}(T_{1}\Sigma_{9})$ . Write the corresponding homology

classes $[\alpha],$ $[\beta]\in H$ as

$[ \alpha]=\sum_{*}(a_{i}x_{i}+b_{i}y_{i})$

$[ \beta]=\sum_{i}(cx_{i}+d_{i}y_{i})w^{i}$

where $x_{1},$ $\cdots x_{g},$ $y_{1},$ $\cdots y_{g}$ is a symplectic basis of $H$ . If we apply Proposition

5.1,(iv) to the element $\varphi=[\alpha, \beta]$ we obtain

$d(\varphi)=8(g-1)^{2}[\alpha]\cdot[\beta]$

$=8(g-1)^{2} \sum(a_{i}d_{i}-b_{i}c_{i})$ .

Next we compute $d’(\varphi)$ . We have $\tau_{2}(\alpha)=\sum_{i}(a_{i}x_{i}+b_{i}y_{i})\wedge\omega_{0}$ and $\tau_{2}(\beta)=\sum_{i}(c_{i}x_{i}+$
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$d_{i}y_{i})\wedge\omega_{0}$ where $\omega_{0}=x_{1}\wedge y_{1}+\cdots+x_{g}\wedge y_{g}$ . Therefore

$\tau_{3}(\varphi)=\chi(\tau_{2}(\alpha)\wedge\tau_{2}(\beta))$

$=_{\mu} \sum_{i,j,k,l}\{a_{i}c_{k}\chi$
( $\xi_{ij}$ A $\xi_{kf}$ ) $+a_{i}d_{k}\chi(\xi_{ij}\wedge\eta_{kt})$

$+b_{i}c_{k}\chi(\eta_{ij}\wedge\xi_{kl})+b_{i}d_{kx(\eta_{ij}}$ A $\eta_{kf}$)}

where $\xi_{ij}=x_{i}\wedge x_{j}\wedge y_{j},$ $\xi_{kI}=x_{k}\wedge x_{f}\wedge y_{f},$ $\eta_{ij}=y_{i}\wedge x_{j}\wedge y_{j}$ and $\eta_{kI}=y_{k}\wedge x_{f}\wedge y_{f}$ .

By Theorem 3.1 we have

$\chi(\xi_{ij}\wedge\xi_{k\ell})=-\delta_{il}x_{j}\wedge y_{j}rightarrow x_{k}\wedge x_{f}-\delta_{jty_{j}\wedge x_{i}}rightarrow x_{k}\wedge x_{f}$

$+\delta_{jk}x_{i}\wedge x_{j}rightarrow x_{f}\wedge y_{f}$

and hence $d’$ ( $\chi$ ( $\xi_{ij}$ A $\xi_{kf})$ ) $=0$ . Similarly we have

$\chi(\xi_{ij}\wedge\eta_{kl})=-\delta_{ik}x_{j}\wedge y_{j}rightarrow x_{f}\wedge y_{f}-\delta_{it}x_{j}\wedge y_{j}rightarrow y_{k}\wedge x_{f}$

$-\delta_{jk}y_{j}\wedge x_{i}rightarrow x_{f}\wedge y_{f}-\delta_{j\ell}y_{j}\wedge x_{i}rightarrow y_{k}\wedge x_{f}$

$+S_{J^{f}}x_{i}\wedge x_{j}rightarrow y_{f}\wedge y_{k}$

and therefore

$d’(\chi(\xi_{ij}\wedge\eta_{k\ell}))=-\delta_{ik}(-4-2\delta_{jt})-\delta_{it}(4\delta_{kl}+2\delta_{jk}\delta_{J^{f}})$

$-\delta_{jk}(4\delta_{ij}+2\delta_{j\ell}\delta_{il})-\delta_{jl}(-4\delta_{ji}\delta_{kf}-2\delta_{j\ell}\delta_{ik})$

$+\delta_{jt}(-2\delta_{i\ell}\delta_{jk}+2\delta_{ik}\delta_{jt})$ .

A direct computation shows that

$\sum_{k,l}d’(\chi(\xi_{ij}\wedge\eta_{kl}))=\delta_{ik}2(g-1)(2g+1)$
.
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By an obvious anti-symmetry of the above computations with respect to $x$ and $y$ , we

obtain

$\sum_{k,\ell}d’(\chi(\eta_{ij}\wedge\xi_{kI}))=-\delta_{ik}2(g-1)(2g+1)$ and

$d’(\chi(\eta_{ij}\wedge\eta_{kl}))=0$ .

We can now conclude that

$d’( \varphi)=2(g-1)(2g+1)\sum(a_{i}d_{i}-b_{i}c_{i})$ .

Hence $(2g+1)d(\varphi)=4(g-1)d’(\varphi)$ as required. This completes the proof.
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