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" An interpretation of a candidate’s formula

BEKETFHER ARK A # (Hisataka Kuboki)

Abstract. A candidate’s formula for the Bayesian predictive distribution of a
future observation is a predictive version of Bayes’ formula. However the formula
connects the expected entropy, a measure of the goodness of prediction fit, with the

expectéd information gain about a parameter.

1. Introduction

Let ¢(y) be thé density of a future observation y. Suppose that we can use the
observation z which has the density ¢(z). Assume that y and z are independent but
that z provides information on y through the same indexing parameter (Aitchison &
Dunsmore, 1975, p. 1). We consider the problem of estimating the true distribution
#(y). When the joint distribution ¢(y)¢(z) is a member of a parametric family
M = { f(y|8)g(z|6) : 6 € ©}, such an estimate f(y|z) is obtained from

fle) = [ £(w16)p(6le) ds,

using a distribution p(f|z) which specifies a parameter 6 based on the observation
z. Akaike (1978) termed p(f|z) an inferential distribution.

Consider the situation where the distributions ¢(y) and t¢(z) are chosen ran-
domly from the family M by a prior distribution m(#). Then the Bayesian predictive
distribution f*(y|z) is usually calculated from '

£(ule) = [ f(ulo)m(6le) do,



where 7(6|z) is the posferior distribution of §. Recently, it is pointed out by Besag
(1989) that f*(y|z) is expressible in the form

n  f(yle) = f(y18)7(8lz) /7 (6ly, )

without any need for integration, where n(f|y,z) is the posterior distribution of 6,
with z augmented by an additional observation y. This expression is termed a can-
didate’s formula. However, we remark here that (1) is a predictive version of Bayes’
formula; see also Leonard (1982). In fact, setting h(y,z) = [ f(y|9)g(z|0)n(6) df
and g(z) = [ h(y, z) dy, we can easily see that the formula (1) follows from Bayes’

formula

(2) 7(Bly, 2)h(y, 2) = £ (416)g(c|6)(6),
and the relation o

(3) f*(ylz) = hly, z)/9(z).

The purpose of the present note is to point out that the .expression (1) is of
theoretical importance, besides being useful in calculating f*(y|z). In the next
section, we give an information-theoretic mterpretatmn to this formula. The note
closes with some comments on those three methods of specifying prior dlstnbutlons

which are proposed by Akaike (1978, 1983) and Bernardo (1979).

2. An interpretation

When a distribution f(y) is used as an estimate of ¢(y), an appropriate measure

of the goodness of prediction fit is the entropy of ¢(y) with respect to f(y) defined

by
86,1 =~ [ Wiog 2} ) ;-

see Akaike (1978). Thus the neg-entropy —B(¢, f), which is identical to the well-
_known Kullback-Liebler information, is a measure of the badness of prediction fit

to #(y). Since the distributions $(y) and ¢(z) are produced from the family M
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according to the prior distribution m(6), the goodness of a predictive distribution

f(y|z) is then evaluated By the expected entropy

By BlB6, SC1e))) = = [ 6) [ o(s10) [ stalo)to{ FLL Y dyda .

We are interested in finding f(y|z) which will maximize the expected entropy or
minimize the expected neg-entropy. As noted by Aitchison (1975), the desired max-

imum is attained with f*(y|z); i.e.

(4) EoEop[B{¢, f*(|2)}] > EoEup[ B{¢, f(:|2)}]-

On the other hand, if we follow Lindley (1956), the amount of information about

9 provided by y after the value z is observed, with prior knowledge 7(f), can be
defined to be

Hr(ly, 2),7(1e)} = [ w(6ly, )log {”(g('eﬁ’j)}de

Thus the expected information gain about 8 is

Ey{H{n(ly, 2), 7o)} = [ [ H(ly,2), 7(12)}h(y, ) dy da.
The following result describes the relation between the expected neg—entropy and

the expected information gain.

THEOREM. For any inferential distribution p(6|z),

By o[I{n(-ly, z), n(-|2)}] < EoEaje[-B{4, f(:|2)}],

with equality if, and only if, f(y|z) agrees with the right hand side of (1).

The proof is straightforward from the formula (1) and the inequality (4). This
theorem shows that the expected information gain about 8 provided by y after the
value z is observed becomes a lower bound to the badness of the prediction fit to
#(y). Then the formula (1) states how the information gain about the parameter ¢

is converted into the best préaictfén of the future observation y.
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3. Discussion

. The theorem in §2 suggests the use of the lower bound E, .[I{n(|y, z), 7(-|z)}]
for the comparison of various possible prior distributions; that is, we select a prior
distribution 7(#) such that the future observation y adds ‘minimum’ amount of in-
formation to the corresponding posterior distribution 7(#|z). The impartial prior
distribution introdﬁced by Akaike (1978), although it is actually defined by a prior
distribution 7(f) which maximizes the quantity mingee E,p[B{4, f*(:|z)}], is sim-
ilar to this prior distribution. On the other hand, the definition of the reference
posterior distribution introduced by Bernardo (1979) is based on a prior distribu-
tion 7(6) which ‘maximizes’ the expected information gain about & provided by the

observation z:

7(6|z)
(6)

If interest is both in estimation of the parameter § and in prediction of the future

E.[I{n( |m), n} = /g :c)/7r(9|a:) log{ }dﬁd

observation y, then to compare various possible prior distributions, we should use
a criterion function which evaluates both the information gain about # and the

prediction fit to #(y). As a natural choice of such a function we adopt

(5) Ey[I{n(-|z), 7}] + Eo Eup[B{4, f*(:|2)}]-

We want then to find a prior distribution 7(6) which ‘maximizes’ this criterion

function.
Let us now consider the special situation where ¢(-) = (-) and f(:|8) = g(-|8).

From (2) and (3),
h(y,z) _ 7(6ly)f*(ylz)
9(y)g(z)  w(O)g(ylf)

Here using (2), we have

m(6ly, 2)h(y, x)log{%hg_%}

= g(z]0)g(y)=(8ly) log{ ﬂ;gfg)} — ﬂ(9)9($|9)9'(y19) 1°g{ﬁ(8f2) }




Qo
=p}

Since f(-|9) = g(:]6), it follows that E,[I{r(-|y), 7}] = E:[I{n(-|z),7}]. Thus we
obtain

[ 1o, a)1og{ Db dyds = Bl {m(la), 711+ Eo Bl B, £ ()N

y)g(
This observation shows that the minimal information prior distribution introduced

by Akaike (1983) agrees with that m(¢) which maximizes the criterion function (5).
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