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Remarks on Specified Strong \mbox{\boldmath $\varepsilon$}-Cores of Games

特性関数型ゲームの強コアに関する注意

Kensaku Kikuta (Toyama University)

菊田健作 (富山大学)

1. Introduction and Preliminaries.

This is a note on the game space and its dual space, which were
originally examined by Bondareva [1] and Shapley [7], and later studied
extensively by Maschler/Peleg/Shapley [3]. In Rosenmuller [4] and other
papers, solutions of extreme games are examined. It will be considered
later to rewrite the characterization of extreme games given in [4] in terms
of dual variables

The motivation for this note is a fact that a subconvex game has a
nonempty core, which was shown in Sharkey [11] by saying that the core of
a subconvex game is large. Alternatively we can see this via the inclusion
relation between dual sets. Furthermore, we can see relations of extreme
points of these dual sets, from which we can interpret the depth of a
minimal balanced set. By considering dual sets more we define a
generalization of balanced sets. Then we show that the characteristic-
function of a game satisfies a system of balanced inequalities if and only if
some strong epsilon-core is nonempty. This is a generalization of Theorem 1
of [7]. The epsilon defined in this note is a piecewise-linear function of-
characteristic-function. This epsilon-core may measure the strength of a
property that a game has.

We begin with giving basic definitions and the notation. Let $N=\{1,2,$ . .
. , $n$} be the set of players. Any subset of $N$ is called a coalition. A pair $\Gamma\equiv$

(N,v) is caUed a game where $v$ is a real-valued hnction on $2^{N}$ with $v(\phi)=0$ .
$v$ is said to be the characteristic function of $\Gamma$ . We assume $v$ always takes
finite values. For $S\subset N$ , a subgame , written as $\Gamma|S=(S,v|S)$ , of $\Gamma$ is a game
such that $S$ is the set of players and $v|S$ is the restriction of $v$ to $2^{S}$ . The
zero-nonnalization of $v$ is written as Nv, i.e., Nv(S) $=v(S)-\Sigma i\in Sv(\{i\})$ for

all S C N. For any finite set $K,$ $R^{K}$ is the $||K||$-dimensional Euclidean space
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whose coordinates are indexed by the elements of $K$ , where $||K||$ is the
number of elements in K. For a game $\Gamma=$ (N,v), let $X(\Gamma)\equiv\{x\in R^{N}$ : $x(N)=$

$v(N)\}$ , where $x(\cdot)$ is a short notation for $\Sigma_{i\in}$ . $xi$ . For convenience we let $x(\phi)$

$=0$. Any element of $X(\Gamma)$ is called a preimputation for $\Gamma$ .
The core of a game $\Gamma=(N,v)$ is defined by :

$C(\Gamma)\equiv$ { $x\in X(\Gamma)$ : $x(S)\geq v(S)$ for all $S\subset N$}.

Let $S1,$ $\ldots S_{P}$ be distinct, nonempty, proper subsets of N. The set $B=$

$\{S1, \ldots S_{P}\}$ is said to be a balanced set on $N$ if there exists positive
coefficients $w1$ $\cdots w_{P}$ such that

(1.1) $\Sigma_{i\epsilon Sj}$ wj $=1$ for all $i\in$ N.

Theorem 1.([1],[7]) A necessary and sufficient condition that a game $\Gamma=$

(N,v) has a nonempty core is that for every balanced set $B=$ {Sl, . . . ,Sp} on
$N$ it satisfies :

(1.2) $v(N)\geq\sum_{j=1}^{p}$ wj v(Sj)

where $w1$ , . . . , $w_{P}$ are associated positive coefficients

This theorem is a consequence of the duality theorem in linear
programming, and the basis for this note. A purpose of this note is to
extend this theorem. Thus we define extensions of the core and balanced
sets.

Let $\Gamma=$ (N,v) be a game and $\epsilon$ be a real number. The strong e-core of $\Gamma$

is defined by :

$C_{\epsilon}(\Gamma)\equiv$ { $x\in X(\Gamma)$ : $x(S)\geq v(S)-\epsilon$ for all $S\neq N,$ $\phi$}.

If $\epsilon=0$ then the strong e-core reduces to the core. For $S\subset N,$ $S\neq\phi$, we let
$\wp(S)\equiv 2^{S}1(\{\{i\} : i\in S\}U\{S, \phi\})$ and $W(S)\overline{\approx}R^{\wp(S)}$ . Throughout this note we
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simply write $W(N)$ as W. For $w\in W$ , we let $\underline{w}\equiv\Sigma_{S\in\wp(N)}w_{S}+\Sigma_{i\in N^{[1}}-$

$\Sigma i\in S,S\in\wp(N)w_{S}]$ . Any element of $W$ is said to be a generalized partition 2

on N. For $w\in W$ , if $\Sigma i\in S,S\in\wp(N)w_{S}\leq 1$ for all $i\in N$ , and if $w_{S}\geq 0$ for all $S\in$

$\wp(N)$ , then $w$ is associated with a balanced set $B$ defined by $B$ $=\{S$ : $w_{S}>$

0} $U\{\{i\} : 1 - \Sigma i\in S,S\in\Theta(N)w_{S}\rangle 0\}$. Conversely for a balanced set $B=\{S_{1}$ , . . .
$S_{P}\}$ with $w_{1},$ . . . , $w_{p}$, we define $w_{S}=w_{j}$ if $S=s_{j}$ and $S\in\wp(N)$ , and $w_{S}=0$

for other $S\in\wp(N)$ . Then $\Sigma i\in S,S\in\wp(N)w_{S}\leq 1$ for all $i\in$ N. Thus we let $W^{b}$

$\equiv$ {$w\in:$ $w_{S}\geq 0$, all $S\in\wp(N)$ , and $\Sigma i\in S,S\in\wp(N)w_{S}\leq 1$ , all $i\in N$}. This is the

set of all generalized partitions which are associated with balanced sets.
In the next section we investigate properties of subsets of $W$ that

characterize classes of games via the duality relation in linear programming.
In Section 3 we discuss on an inductive method for constructing balanced
sets. In Section 4 we state an extension of Theorem 1. Section 5 consists of
remarks.

2. Shapes of Dual Sets

If a class of games with the player set $N$ is defined by a statement,
which can be expressed in a form of balanced3 linear inequalities with
respect to characteristic-function, the class is characterized by a subset of
$W$ , so that

(2.1) Nv(N) $\geq<w;v>\equiv\Sigma_{Q\in\wp(N)^{WQ}}Nv(Q)$ , an $w\in W^{\alpha}$,

where $\alpha$ is a parameter which indicates some condition and $w^{\alpha}$ is a convex
and closed subset of $W$ such that it has a finite number of extreme points
and it is invariant under any permutation on N.

For example, we can see in the literature
$\alpha=e$ : A game $\Gamma=(N,v)$ is essential , i.e., Nv(N) $\geq 0$ ,

$=b$ : A game $\Gamma=(N,v)$ is balanced ,
$=c$ : A game $\Gamma=(N,v)$ is convex 4 i.e.,

$v$ ($S$ Ur) $+v(S\cap T)\geq v(S)+v(T)$ for all $S,$ $T\subset$ N.
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$W^{e}$ is a one-point set consisting of the zero vector in $W$ and $W^{b}$ has
already been defined and it is bounded. By Theorem 1 and the definition of
$W^{b}$ , we see that a game has a nonempty core if and only if it is balanced.
$W^{c}$ is not bounded. This is because the convexity, expressed by $c$, has the
following property : If a game $\Gamma=$ (N,v) satisfies a condition expressed by $\alpha$ ,

then the system of inequalities, (2.1), can be rewritten as the system about
a subgame $\Gamma|S$ , for any S C $N$, and any subgame $\Gamma|S$ satisfies it. This property
is called the totality 5 here for convenience. In general, if a condition
expressed by $\alpha$ has the totality then $w^{\alpha}$ is not bounded. Let $w_{+}$ be the
nonnegative orthant of W.

Proposition 2. Assume the statement of a condition expressed by $\alpha$ has
the totality and includes Nv(N) $\geq 0$ . Then $W^{\alpha}=w^{\alpha}- w_{+}$ .

In this section, hereafter we examine the shapes of $w^{b}$ and $W^{C}$ .
2.. The shape of $W^{c}$ .

When $n\rangle$ $3$ , for $i,$ $j\in N,$ $i\neq j$ , define $w^{ij}\in W$ by $w^{ij}N1\{i\}=w^{ij}N1\{j\}=1$ ,

$w^{ij}N\mathfrak{i}\{i,j\}=- 1$ , and $w^{ij}S=0$ for all other $S\in\wp(N)$ . When $n=3$ , for $i,$ $j\in N,$ $i$

$\neq j$ , define $w^{i}i\in W$ by $w^{i}i_{N1\{i\}}=w^{i}i_{N1\{j\}}=1$ , and $w^{ij}S=0$ for all other $S\in$

ge (N). Let $\kappa\equiv$ { $(S,T)$ : S,T $\subset N,$ $S\neq T,$ $T\backslash S\neq\phi$ , SNT $\neq\phi$ , and $||SUT||\leq n- 1$ }. For
(S,T) $\in\kappa$ , and for $z\in R^{1}$ , define a vector in $W$ by $d^{S,T}(z)=(d^{S,T}(z,Q))_{Q\in\wp(N)}$ ,

where
$d^{S,T}(z,Q)=)- z$ if $Q=S$ or $T$ , and $Q\in\wp(N)$ ,

$(ofora\mathbb{I}0ffierQ\in^{\wedge}\wp(N).\in\wp(N)$
,

Proposition 3. $(i)W^{C}$ is the convex hull of $U_{i\neq j}U_{\kappa}\{w^{ij}-d^{S,T}(z) : z\geq 0\}$ .
(ii) $\underline{w}\geq 1$ for all $w\in W^{c}$ .

$\underline{2.}$ Extreme points of $\underline{w}^{b}$ .
$w^{b}$ is a compact and convex set with a finite number of extreme points.

A balanced set on $N$ is called minimal if it includes no other balanced set on
N. A point in $W^{b}$ is an extreme point of $W^{b}$ if and only if it is associated
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with a minimal balanced set on $N^{6}$ . We want to express an extreme point as
a convex linear combination of points corresponding to generalized
partitions with some properties. Before stating it precisely we introduce
some notation and definitions. Let $Z$ be the set of all the integers. Let $E\equiv$

Z@ $(\copyright \equiv 2^{n})$ be the space of all $2^{n}$-tuples of integers $(z_{1}$ , . . . $z_{@}),$ $z_{r}\in Z,$ $r=$

1, $\ldots$ @. An addition in $E$ (denoted by $+*$) is defined to be :
$(z_{1}, . . z_{@})+*(z_{1}’, \ldots,z_{@}’)=(z_{1}+z_{1}^{1}, . . z_{@}+z_{@}’)$

and a multiplication by scalars in $Z$

$k(z_{1}, \ldots z_{@})=(kz_{1}, \ldots kz_{\copyright}),$ $k\in$ Z.
A subtraction (denoted by $-*$ ) is naturally defined by combining the
addition with the multiplication by $- 1$ . $E$ is closed with respect to these
operations. For $z^{1},$ $z^{2}\in E,$ $z^{1}\geq z^{2}$ means $z^{1_{r}}\geq z^{2_{r}}$ for all $r=1,$ $\ldots$ @, where
$z^{i_{r}}(i=1,2)$ is the r-th component. Number all element of $2^{N}$ . So $2^{N}=\{R_{1},$ . .
. $R_{@}$ }. Identify $R_{r}$ $(r=1$ , . . . \copyright $)$ with a unit vector in $E$, i.e., $z\in E$ such that
$z_{r}=1$ and $z_{r’}=0$ for $r’\neq r$ . Alternatively we can represent any $z\in E$ by
$z_{1}R_{1}+*z_{2}R_{2}+*$ $+*z_{@}R_{@}$ . $\Sigma^{*}$ is the summation operation with respect to
$+*$

$w\in W$ is called a signed partition on $N$ if there exist $P$ and $Q$ such that :

$P=\{p_{1}\ldots p_{k}\}$ is a partition of $N$ where Pj $\neq\phi$ for $j=1,$ $\ldots k$,

and $k>1$ .
$Q=\{Q_{1}, \ldots Q_{k}\}$ is a set of subsets which satisfies

Qj $\subset\llcorner I_{l=1}^{\grave{t}^{\sim 1}}p_{l}$ and Pj U $Q_{j}\neq N$ forj $=1,$ . . . , $k$, and7

(2.2) $ws=||$ {$j$ : Pj U $Q_{j}=S$ } $||-||$ {$j$ : Qj $=S$ } $||$ for all $S\in\wp(N)$ .

$k$ $k$

We let $S=(P, Q)$ and
$v(S)=\sum_{=j1}*$

(PjUQj) -*
$j1\sum_{=}*$

Qj. Note that Pj $\cap Q_{j}=\phi$ for $j=$

$1,$ $\ldots k$. By the definition of $P$ and $Q$ we have

(2.3) $||\{j:P_{j}UQ_{j}=\{i\}\}[|-[[\{j:Q_{j}=\{i\}\}[[+\Sigma_{i\in S,S\in\wp(N)^{w_{S}}}=1$ for all $i\in N$.

5



144

This is the reason why we call $w$ a signed partition. If $Q_{1}=\ldots=Q_{k}=\phi$ then
$w$ is a partition of N.

Let $B=\{S1, \ldots S_{P}\}$ be a balanced set on $N$ associated by $ml/m,$ $\ldots$

$m_{p}/m$ , where $m_{1}$ , . . . $m_{p}$ , and $m$ are positive integers.8 By (1.1), $m$ is
determined by $m_{1},$ $\ldots m_{p}$ . Let $M=$ $(m_{1}, \ldots\iota n_{p})$ and let $1^{t}(B;M)\equiv m_{1}S_{1}+*$

. $+^{*}m_{p}S_{p}$ .

Theorem 4. Let $m_{1},$ $\ldots m_{p}$ , and $m$ are positive integers. $B$ $=\{S_{1}, \ldots S_{p}\}$ is
a balanced set on $N$ associated by $m_{1}/m$ , . . . $m_{p}/m$ if and only if there exist
signed partitions on $N,$ $w^{1},$ $\ldots w^{t}$ , defined by $S^{1}=(P^{1},Q^{1}),$

$\ldots,$
$S^{t}=(P^{t},Q^{t})$

and there exist $m^{1},$ $\ldots m^{t}$ such that :

(2.4) $m^{1}+$ . $+m^{t}=m$, and

$t$

(2.5) }$\downarrow(B;M)=\Sigma^{*}m^{r}v(S^{r})$ ,
$r=1$

where $P^{r}=\{P^{r_{1}}, \ldots P_{kr}^{r}\}$ and $Q^{r}=\{Q^{r_{1}}, \ldots Q_{kr}^{r}\}$ for $r=1,$ $\ldots t$ .

We call (2.5) a representation of $B$ by $S^{1},$ $\ldots S^{t}$ . From Theorem 4, we
have $w=(m^{1}w^{1}+ . . +m^{t}w^{t})/m$ by dividing both sides of (2.5) by $m$ and
applying (2.2). The proof of Theorem 4 gives a procedure to get a
representation of a balanced set by a family of signed partitions.

We have a question : Let $B$ be a minimal balanced set.. Is a
representation of $B$ by signed partitions uniquely determined ? Suppose $\{S$

$1\ldots St\}$ and $\{S’ 1, , S’t’\}$ gives two representations. We define a relation
$F\sim^{F^{1}}$ by:

(i) $t=t’$ and
(2.6) (ii) There are permutations $\pi$ and $p$ on {1, . . . ,t} and $N$

respectively such that $v(Sj)=v(pS^{\pi}0))$ for all $j=1$ , . . $\backslash ,$ $t$,

where $pS^{j}$ is defined by $pP_{j}=$ { $p(i)$ : $i\in$ Pj} and $p\dot{\emptyset}=$ { $p(i)$ : $i\in$ Qj}. It is
easy to see that the uniqueness holds when $n=3$ . But we have an example
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of a minimal balanced set such that two representations are not equivalent
in the sense of (2.6). Thus a representation of a minimal balanced set is not
always determined uniquely.

Suppose $B$ in Theorem 4 is a minimal balanced set. We know associated
positive coefficients are uniquely determined and they are rational
numbers. Hence it is possible to define the least common denominator of
them. Let $m$ be that number. $m$ is called the depth of $B$. From Theorem 4,
the depth is the minimum number of signed partitions which are necessary
to represent $B$.

3. A Discussion on Constructing Balanced Sets

In this section we discuss on an inductive method for constructing
balanced sets, applying the arguments in Section 2. We can give an
inductive proof of Theorem 4 , using the procedure just mentioned below.

Assume $t!(B;M)=m\sum_{j=1}$
’ $v(S^{j})$ . Here $B=\{S_{1}, \ldots S_{p}\}$ is a balanced set on $N$

associated by $m_{1}/m$ , . . . $m_{p}/m$ where $m_{1}$ , . . . , $m_{p}$ and $m$ are positive
integers and $M=(m_{1}, \ldots m_{p})$ . $S^{1},$ $\ldots S^{m}$ are signed partitions such that $S^{j}=$

($P^{j_{Q}1_{),P}j}=\{P^{j_{1}}, \ldots,P^{j_{kj}}\},$ $Q^{j}=\{\dot{Q}_{1}, \ldots,Qi_{kj}\}(i=1, \ldots m)$. Compare this

representation with (2.4) and (2.5). It may happen that $S^{i}=S^{j’}$ for some $j$

and $j’$ , etc. We construct a balanced set $B(f,x)$ on $NU\{n+1\}$ where $f$ and $x$ are
defined below. Define $6^{0}\equiv\{0\delta : Q^{i_{p}}\neq\phi\}$ . Let $\alpha\equiv\{(|,l)$ : $1\leq l\leq k_{j},$ $1\leq j\leq$

$m\}$ . Since $S^{1},$ $\ldots S$ m gives a representation of $B$ , that is, $m\sum_{j=1}*v(S^{j})$ has no

negative coefficient, we can define a one-to-one mapping $f$ from $e^{0}$ into $\alpha$

such that

(3.1) Oi, $l$) $=(|’,l)$ ,

where $Q^{j_{\chi}}=P_{p}^{j’},\cup Q^{i_{p}’},$ . Let $\beta(0=\alpha\backslash f(6^{0})$ . Note that

(3.2) $\mu(B;M)=\Sigma^{*}Q,l)\epsilon\beta(f)(P^{j_{l}}\cup Q^{i_{p}})$.
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Define $x=(x(|,\delta)(|,\phi\in\beta(1)$ by $x(i,\delta=1$ or $0$ for all $(i,\ell\rangle$ $\in\beta(f)$. Let

(3.3) $m(x)\equiv||\{(|,,l) : x\mathfrak{h},l)=1\}||$ and $q(x)\equiv\max(m,m(x))$ .

Define $p_{+}j_{(x)}=\{p_{+}^{j}1’ \cdot\cdot p_{+}^{j_{kj+1}}\}$ for $1\leq j\leq m$ and $P_{+}j_{(X)}=\{p_{+}^{j_{1’}}p_{+}^{j_{2}}\}$ for
$m+1\leq j\leq q(x)$ by :

(34)

$p_{+}^{j_{l}}=[_{N^{j_{A-1}}ifl=2andm+l\leq j\leq q(x)}^{\{n+1\}ifl=1andl\leq j\leq q(x)}Pifl\geq 2andl\leq j\leq m,and$

.

Defme $Q_{+}i(x)=\{Q_{+}^{j_{1}}, \ldots Q_{+}^{j_{kj+1}}\}$ for $1\leq j\leq m$ and $Q\dot{4}(x)=\{Q_{+}^{j}1’ Q_{+}^{j_{2}}\}$ for
$m+1\leq j\leq q(x)$ as follows.

(3.5) $Q_{+}^{j_{l}}=\phi$ for $l=1,1\leq j\leq q(x)$ , and for $l=2,$ $m+1\leq j\leq q(x)$ .

Define $Q_{+}^{j_{p+1}}$ for all $0\delta\in\beta(f)$ , that is,

(3.6)
$Q_{+}^{j_{l+1}}=\backslash _{\mathfrak{U}^{i_{p}}\cup\{n+1\}}^{Q}$ $i_{ifx(|,\beta}fx(|,l)=_{=}0_{1},$

.

Let $61=e^{0}\cap\beta(f)$ . Define for all $(|’,l)\in f(6^{1})$ ,

(3.7) $Q_{+p\prime}^{j’}=Q_{+}^{j_{l}}-p_{+}^{j^{\dagger}}l’$

where $Q,l$) is defined by (3.1) and $Q_{+}^{j_{l}}$ is already defined by (3.6). Let $6^{2}=$

$6^{0}\cap f(6^{1})$ . 6 $\cap 6^{2}=\phi$ since $6^{1}\subset\beta(D=\alpha lf(6^{0})$ and $6^{2}\subset f(6^{1})\subset f(6^{0})$ . Hence
$f(6^{1})\cap f(6^{2})=\phi$ since $f$ is one-to-one. Define $Q_{+}^{j’}l$

’ by (3.7), for all $Ci’,l$) $\in$

$f(6^{2})$ . Let $e^{3}=6^{0}\cap f(6^{2})$. $6^{3}\cap 6^{2}=\phi$ since $6^{3}\subset f(6^{2}),$ $6^{2}\subset f(6^{1})$ , and
$f(6^{1})\cap f(6^{2})=\phi$. $6^{3}\cap 6^{1}=\phi$ since $6^{3}\subset f(6^{2})\subset f(6^{0})$ and $6^{1}\subset\beta(f)=\alpha If(6^{0})$ .
Hence 6, $6^{2}$ and $6^{3}$ are mutually disjoint. $f(6^{1}),$ $f(6^{2})$ and $f(6^{3})$ are also
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mutually disjoint. Continue with this operation and the same argument until
it occurs that

(3.8) $6^{r}\neq\phi$ and $e^{r+1}=\phi$.

6, $\ldots 6^{r}$ are mutually disjoint. Also $f(6^{1}),$ $\ldots f(6^{r})$ are. Let 6 :: $6^{0}l(61\cup$

$U6^{r})$ . $6\subset 6^{0}16^{1}\subset f(6^{0})$ . Hence $6\subset 6^{0}\cap f(6^{0})=6^{0}\cap(f(6^{1})\cup\ldots Uf(6^{r})Uf(6))=$

$(6^{0}\cap f(6^{1}))\cup\ldots U(6^{0}\cap f(6^{r}))U(6^{0}\cap f\Phi))=6^{2}\cup\ldots U6^{r}U(6^{0}\cap f(6))$. This and the
definition of 6 imply 6 $\subset 6^{0}\cap f(6)$ . But $||6||=||f(6)||$ since $f$ is one-to-one. Hence
$6=f(6)$ . But this is possible only if $6=\phi$ because of the definition of $f$ and
since 6 is a finite set. Consequently we have:

(3.9) $60=61\cup\ldots U6^{r}$ (disjoint sum), and
$\alpha=\beta(f)Uf(6^{1})U\ldots Uf(6^{r})$ (disjoint sum).

Thus, for each $0^{l)}\in\alpha,$ $Q_{+}^{j_{l}}$ has been defined and

(3. 10) $Q_{+}^{j_{l+1}}=eitherQ^{j_{p}}$ or $\mathfrak{U}^{U\{n+1\}}$

by (3.1),(3.4),(3.5),(3.6),(3.7) and (3.8).

Let $S^{j}(f,x)=(P_{+}^{j_{Q_{+}}j_{(x))}}$ for $j=1,$ $\ldots q(x)$ . It follows that
$Sj_{(f,x)}$ is a signed partition on $NU\{n+1\}$ , from the definitions of $P_{+}^{j}$ and $Q_{+}^{j}(x)$

i.e., (3.4), (3.5), (3.6), (3.7) and (3.10), and from the fact that $Si$ is a signed
partition on N.

Proposition 5. Let

$\}!0^{\equiv}m\sum*v(S^{j}(f,x))+*$ $\sum^{q(x)_{*}}v(S^{j}(f,x))$ . Negative coefficients in the right
$j=1$ $j=m+1$

hand side vanish.

By Proposition 5, $S^{1}(f,x),$ . . . $S^{q(x)}(f,x)$ define a balanced set, $B(f,x)$ , on
$NU\{n+1\}$ . Let $M_{+}\equiv(m- m(x),m_{1}, \ldots m_{p})=(m- m(x),M)$ when $m\rangle$ $m(x)$ and let
$M_{++}\equiv(m_{1}, \ldots m_{p},m(\dot{x})- m)=(M,m(x)- m)$ when $m\leq m(x)$ . Then }$\iota(B(f,x);M_{+}).=$

$U0$ when $m\rangle$ $m(x)$ , and }$1(B(f,x);M_{++})=$ }$\iota 0$ when $m\leq m(x)$ .
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Theorem 6. Let $B$ be a balanced set on N. Suppose $B$ has two
representations, say by $(S^{1}$ , . . . $S^{m})$ and by $(S^{\prime 1}$ , . . . $S^{\prime m})$ . Then

(3. 11) { $B$ (f,x): all $f$ and all $x$ from $(S^{1},$ $\ldots S^{m})$ }
$=$ { $B$ (f,x’) : all $f$ and all $x’$ from $(S^{\prime l},$ $\ldots S^{\prime m})$ }.

4. Epsilon Cores

In this section we define a special epsilon in order to extend Theorem 1
in Section 1. Then we examine properties of the epsilon-shift. Let for a
game $\Gamma=$ (N,v) and a condition $\alpha$ ,

$h^{\alpha}(\Gamma)\equiv\sup\{<w;v> : w\in W^{\alpha}\}$ .

Then by (2.1) $\Gamma$ satisfies a condition $\alpha$ if and only if Nv(N) $\geq h^{\alpha}(\Gamma)$ . $h^{\alpha}(\Gamma)$ is,

in a sense, an average of wonhes of proper coalitions. For any $\Gamma,$ $h^{\alpha}(\Gamma)$ has a
value which is finite if $\alpha=b$ or $\alpha=e9$ since $W^{\alpha}$ is bounded. Let $\Gamma=$ (N,v)

be a game. For conditions $\alpha$ and $b$ , define

(4. 1) $\epsilon(\alpha)\equiv\epsilon(\alpha,\Gamma)\equiv\sup\{[<w;v>- h^{\alpha}(\Gamma)]/\underline{w} : w\in W^{b}\}$ .

In (4.1) “
$\sup’’$ in the right hand side can be replaced by $\max$

“ if $h^{\alpha}(\Gamma)$ is
finite, since $W^{b}$ is compact and convex, and since $[<w;v>-h^{\alpha}(\Gamma)]/\underline{w}$ is
continuous in $w$ and $\underline{w}\rangle$

$0^{\iota 0}$. Indeed $\epsilon(\alpha)$ is the maximum of a finite number
of quantities which are attained at extreme points of $W^{b}$ . The following is
an extension of Theorem 1.

Proposition 7. A game $\Gamma=$ (N,v) satisfies a condition $\alpha$ if and only if $h^{\alpha}(\Gamma)$

is finite and $C_{\epsilon(\alpha)}(\Gamma)\neq\phi$.

Remark 8. $w^{\alpha}\supset w^{\alpha’}\Leftarrow\Rightarrow\epsilon(\alpha,\Gamma)\leq\epsilon(\alpha’,\Gamma)$ for all $\Gamma$ .
$\Leftarrow\Rightarrow C_{\epsilon(\alpha)}(\Gamma)\subset C_{\epsilon(a’)}(\Gamma)$ for all $\Gamma$ ,

where $\alpha$ and $\alpha’$ are conditions.
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Proposition 9. Let $\Gamma=$ (N,v) be a game. Then

$\epsilon(\alpha,\Gamma)={\rm Min}_{x(N)=h}\alpha_{(\Gamma)}{\rm Max}\{Nv(S)- x(S) : S\neq\phi, N\}$ .

Let $\Gamma=$ (N,v) be a game. For a real number $\epsilon$ , the $\epsilon$-shifled game $\Gamma_{\epsilon}\equiv$

$(N,v_{\epsilon})$ is

$v_{\epsilon}(s)=I_{v(S)-\epsilon}^{v(N)}$ $i^{ifS=N}fS\neq\phi,$ $N^{and}$

In particular, for a condition $\alpha$ , we write the $\epsilon(\alpha)$-shift as $\psi^{\alpha}$ , that is, for a
game $\Gamma=$ (N,v), $\psi^{\alpha}(\Gamma)\equiv(N,v_{\epsilon(\alpha)})$ . It is easy to see $C_{\epsilon}(\Gamma)=C(\Gamma_{\epsilon})$ and $X(\psi^{\alpha}(\Gamma))$

$=X(\Gamma)$ for all $\Gamma$ . Let $G(\alpha)\equiv$ { $\Gamma=(N,v)$ : $\Gamma$ is a game and $h^{\alpha}(\Gamma)<+\infty$}. $\iota\rho^{a}$ is a
mapping from $G(\alpha)$ to $G\equiv$ { $\Gamma=$ (N,v) : $\Gamma$ is a game}.

Proposition 10. Let $\Gamma^{1}=(N,v^{1})$ and $\Gamma^{2}=(N,v^{2})$ be games such that $\Gamma^{1}$ , $\Gamma^{2}\in$

$G(\alpha)$ . Then

(i) $\psi^{\alpha}(\Gamma^{1})=\Gamma^{2}\Rightarrow h^{\alpha}(\Gamma^{1})+n\epsilon(\alpha,\Gamma^{1})=h^{b}(\Gamma^{2})$ .
(ii) $\iota\rho^{\alpha}(\Gamma^{1})=\backslash \nu^{\alpha_{(\Gamma^{2})}}\Rightarrow h^{\alpha}(\Gamma^{1})+n\epsilon(\alpha,\Gamma^{1})=h^{\alpha}(\Gamma^{2})+n\epsilon(a,\Gamma^{2})$ .
(iii) $\psi^{a}(\Gamma^{1})=\psi^{a}(\Gamma^{2})\Rightarrow v^{1}=v^{2_{a}}$ for some real number $a$ .

Theorem 11. Assume $w^{\alpha}$ is convex, it has a finite number of extreme

points, and $\underline{w}>0$ for all $w\in w^{\alpha}$. Then

(i) $\psi^{a}$ : $G(\alpha)arrow G$ is one-to-one.

(ii) Moreover, if $w^{\alpha}$ is bounded, then $\psi^{a}$ is also onto and continuous.
(iii) The inverse of $\psi^{\alpha}$ is given by : For $\Gamma=$ (N,v), there exists w# $\in W^{b}$ such

that $<w\#;v>=h^{b}(\Gamma)$ . Choose $\epsilon$ so that $h^{\alpha}(\Gamma_{-\epsilon})+n\epsilon=<w\#;v>$ . Then $(\psi^{\alpha})^{-1}(\Gamma)=$

$\Gamma’=$ (N,u), where $u(S)=v(S)+\epsilon$ for all $S\neq\phi$, N.
(iv) If $\Gamma=$ (N,v) is additive, i.e., Nv(S) $=0$ for all S C $N$, then $\Psi^{\alpha}(\Gamma)=\Gamma$ .

If $W^{\alpha}$ is not bounded then $\Psi^{\alpha}$ is not necessarily onto. To see this,
suppose $a=c$ “, i.e., “convex.“ $W^{c}$ is not bounded. Let $\Gamma=$ (N,v). Let $N=$

$\{1,2,3\},$ $v(N)=1,$ $v(\{23\})=v(\{13\})=v(\{12\})=- 1$ , and $v(\{i\})=0$ for $i=1,2,3$ .
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Assume $\psi^{c}(\Gamma’)=\Gamma$ and $\Gamma’=$ (N,u). Then $u(\{ij\})-\epsilon(c\Gamma’)=- 1$ and $u(\{i\})-\epsilon(c\Gamma’)$

$=0$ . Hence $\Gamma’$ is symmetric. Let $a=\epsilon(c\Gamma’)$ . $b_{2}\equiv u(\{ij\})=a- 1$ , bl $\equiv u(\{i\})=a$.
$h^{c}(\Gamma’)=\sup\{(b_{2}-2b_{1)[W23^{+W13^{+W12]}}} : w\in W^{c}\}$

$=|^{\prime^{\backslash }}2b_{2}- 4b_{1}$

if $b_{2}\geq 2b_{1}$ , and
$+\infty$ otherwise.

Hence, if $b_{2}\geq 2b_{1}$ , a $=\epsilon(c\Gamma’)=(2b_{1^{-}}b_{2)/}3$ , which, combined with $b_{2}=$ a-l
and $b_{1}=a$ , implies $b_{1}=1/2$ and $b_{2}=-1/2$ . But this contradicts $b_{2}\geq 2b_{1}$ .
Hence $\Psi^{c}$ is not onto. Note that $C(\Gamma)\neq\phi$.

From Proposition 7 and Theorem 11, if $w^{a}$ is bounded then $\Psi^{\alpha}$ is a
transformation between the set of games with condition a and the set of
balanced games, which is one-to-one and onto.

5. Remarks

(i) Let $\Gamma=$ (N,v) be a game. Define a half-space in $W$ by $W(\Gamma)=\{w\in W$ :
Nv(N) $\geq<w;v>$ }. Conversely, a half-space in $W$ characterizes a game to some
extent. That is, we have :

Proposition 12. Let $\Gamma=$ (N,v) and $\Gamma’=$ (N,v‘) be games. Then $W(\Gamma)=W(\Gamma’)$

if and only if either
$Q\Gamma$ and $\Gamma’$ are strategically equivalent, i.e., there exist a positive number $k$

and real numbers $a_{i}(i\in N)$ such that $v(S)=$ kv’(S) $+a(S)$ for all $S\subset N$ ,
$or$

a $\Gamma$ is additive and $\Gamma’$ satisfies $Nv^{1}(S)=0$ for all $S$ $\neq N$ and Nv’(N) \rangle $0$ .

In the same way we easily have :

Proposition 13. Let $\Gamma=$ (N,v) be a game. $W(\Gamma)=W$ if and only if either $\Omega^{1}$

$\Gamma$ is an additive game or $\Omega$ it satisfies Nv(S) $=0$ for all $S\neq N$ and Nv(N) \rangle $0$ .
$W(\Gamma)=\phi$ if and only if Nv(N) \langle $0$ and Nv(S) $=0$ for all $S\neq$ N.

(ii) The Shapley value [6] and the nucleolus [5] are solution-concepts for
characteristic-function games with sidepayments. They are invariant under
the transformation $\Psi^{\alpha}$ . Thus $\Gamma$ and $\Psi^{\alpha}(\Gamma)$ have the same Shapley value and
the nucleolus.

12
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(iii) With respect to the problem of existence of the core in the games
without sidepayments, we can find some papers stating the generalizations
of the K-K-M Theorem. [9] is the first which treated the subject on this line.
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$1_{They}$ have given finer results than that in Theorem 1. See Theorem 2 at p.457 of
Shapley [7].
$2_{Bondareva}$ [2] defined a generalized covering, which is slightly different from the
definition of generalized partition
$3_{See}$ Shapley [7] for the definition of balancedness. (1.2) and (2.1) are examples of
balanced inequalities.
$4_{See}$ Shapley [8].
$5\prime\prime Total$ balancedness“ is a well-known example of a condition which has the totality.
See Shapley/Shubik [10].
$6_{See}$ p.457 of Shapley[71.
$7_{From}$ this $Q_{1}=\phi$ , but we use $Q_{1}$ for convenience.
$8_{It}$ is well-known that a balanced set has at least one family of associated coefficients
consisting of rational numbers. See Shapley [7].
$9_{We}$ assume $v(S)$ is a finite number for every $S\subset$ N.
$10_{It}$ is easy to see $\underline{w}\geq n/(n- 1)$ if $w$ is associated with a balanced set.
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