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Abstract.

We strengthen the theory of analytic semigroups in $\zeta$-convex Banach spaces and derive

global in time a priori $I\nearrow-L^{q}$ estimates for solutions of the nonstationary Stokes equations

in domains which are not necessarily bounded. We apply these estimates to obtain various

new global estimates for weak solutions of the Navier-Stokes equations.

1. Introduction

We are concerned with global $L^{p}$ estimates of initial-boundary value problems for

linear parabolic equations. We are especially interested in the nonstationary Stokes system.

in a domain $\Omega$ in $\mathbb{R}^{n}(n\geq 2)$ with smooth boundary $\partial\Omega$ (at least $\partial\Omega\in C^{2+\mu},$ $0<\mu<1$ ):

(1.1) $\frac{\partial\tau\iota}{\partial t}-\Delta\tau\iota+\nabla\varphi=f$, $div\tau\iota=0$ , $\tau\iota|_{\partial\Omega}=0$

(1.2) $u(x, O)=a(x)$ .

Here $u=$ $(u^{1}(x,t)\cdots$ , $u^{n}(x,t))$ and $\varphi(x,t)$ represent the unknown velocity and pressure,

respectively; $f$ represents a given external force and $a$ denotes the initial velocity. For the

moment we assume $a=0$ to simplify the explanation. When $n=3$ and $\Omega$ is a bounded or

an exterior domain, for every $f\in L^{p}(\Omega\cross(0, T))^{n},$ $0<T<\infty,$ $1<_{-}p<\infty$ , Solonnikov [41]

constructed a unique solution $(u, \nabla\varphi)$ of $(1.1)-(1.2)$ in $\Omega\cross[0, T$) satisfying the $L^{p}$ estimate

(1.3) $\int_{0}^{T}||\frac{\partial u}{\partial t}(t)||_{p}^{p}dt+\int_{0}^{T}||\nabla^{2}u(t)||_{p}^{p}dt+\int_{0}^{\tau}||\nabla\varphi(t)||_{p}^{p}dt\leq C\int_{0}^{T}||f(t)||_{p}^{p}dt$
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with $C=C(T, \Omega,p)$ independent of $f$ . Here $||\cdot||_{p}$ denotes the norm in $IP(\Omega)$ or $L^{p}(\Omega)^{m}=$

$m$

$L^{p}(\Omega)^{\bigwedge_{\cross\cdots\cross}}L^{p}(\Omega)$ with $m=n$ or $n^{2}$ and $\nabla^{2}u=(\partial_{i}\partial_{j}u)_{i,j=1,2,\cdots,n}$ is the matrix of the

second order derivatives of $u$ . When $\Omega$ is unbounded, Solonnikov’s estimate (1.3) in [41]

is not global in time because $C(T, \Omega,p)$ may tend to infinity as $Tarrow\infty$ . His approach is

based on methods in the theory of partial differential equations, in particular potentials,

and it seems difficult to extend his method to get a global estimate i.e. the estimate (1.3)

with $C$ independent of $T$.
This paper strengthens such $I\nearrow$ estimates for parabolic equations in two directions.

First, our estimate is global in time. Secondly, the integral norms we use have different

exponents in space and time. For example let us consider the Stokes system in an exterior

domain $\Omega$ in $R^{n}$ with $n\geq 3$ . We $shaU$ prove that for every $f\in L^{p}(0, t;L^{q}(\Omega)^{n}),$ $0<T\leq\infty$ ,

$1<q<\infty$ , there is a unique solution $(u, \varphi)$ of $(1.1)-(1.2)$ so that

(1.4) $\int_{0}^{\tau}||\frac{\partial u}{\partial t}(t)||_{q}^{p}dt+\int_{0}^{\tau}||\nabla^{2}u(t)||_{q}^{p}dt+\int_{0}^{T}||\nabla\varphi(t)||_{q}^{p}dt\leq C\int_{0}^{\tau}||f(t)||_{q}^{p}dt$

with $C=C(\Omega,p, q)$ independent of $T$ and $f$ provided $1<q<n/2;a=0$ is assumed for

simplicity. Here $L^{p}(0, T;X)$ denotes the space of $L^{p}$ functions in $(0, T)$ with values in a

Banach space $X$ . Since $C$ does not depend on $T$ , we may include the case $T=\infty$ ; this

gives new global properties of the solution $u$ .
To derive global $L^{q}-L^{p}$ estimates such as (1.4) we extend an abstract parabolic

semigroup theory recently developed by Dore and Venni [13]. Let us first review their

theory. We consider an ordinary differential equation for functions with values in a Banach

space $X$ :

(1.5) $u’+Au=f$, $u(O)=0$ , $(u’=du/dt)$ ,

where $A$ is a densely defined closed linear operator in $X$ . The operator $A$ is assumed to be

nonnegative, i.e., no negative real number is in the spectrum of $A$ and the operator norm

of $t(t+A)^{-1}$ is bounded in $t>0$ . We also assume that the pure imaginary powers $A^{i}$ are

bounded linear operators and their operator norm is estimated by

(1.6) $||A^{i}||\leq Ke^{\theta|\cdot|}$ , $s\in \mathbb{R}$
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with some $K\geq 1$ and $\theta$ satisfying

(1.7) $0\leq\theta<\pi/2$

independent of $\epsilon$ . $h[13]$ Dore and Venni proved that when $A$ has a bounded inverse, the

equation (1.5) has a unique solution for given $f\in L^{p}(0,T;X),$ $0<T<\infty,$ $1<p<\infty$

such that

(1.8) $\int_{0}^{\tau}||u’(t)||_{X}^{p}dt+\int_{0}^{T}||Au(t)||_{X}^{p}dt\leq C\int_{0}^{T}||f(t)||_{X}^{p}dt$

with $C=C(T,p, X)$ provided that (1.6) with (1.7) holds and that $X$ is $\zeta$-convex. In

this paper we extend their theory to the case where $A$ may not have a bounded inverse.

Moreover we show that (1.8) holds with $C$ independent of $T$ , so we obtain a global estimate

if $A$ has a dense range.

As in [13], the estimate (1.8) is reduced to properties of the inverse $(A+B)^{-1}$ when

both $A$ and $B$ are nonnegative and $sa\overline{t_{1}}sfy(1.6)$ with $\theta_{A}$ and $\theta_{B}$ , respectively. Assuming

that $A$ and $B$ are resolvent commuting, i.e.,

(1.9) $(t+A)^{-1}(t+B)^{-1}=(t+B)^{-1}(t+A)^{-1}$ , for all $t>0$ ,

we prove a fundamental result (extending that of [13]). It reads:

if $\theta_{A}+\theta_{B}<\pi$, then $(A+B)^{-1}$ is bounded

from $X$ to $\hat{D}(A+B)$ provided that
(1.10)

$X$ is $\zeta$ -convex and the ranges of $A$ and $B$

are dense-in $X$ .

Here $\hat{D}(A+B)$ is the completion of the intersection of domains of $A$ and $B$ under the

norm 1 Au$||+||Bu||$ . The idea of the proof is basically similar to that in [13]. However,

since $A^{z}$ is in general not a bounded operator even if ${\rm Re} z<0$ , we should be careful to

understand the commutativity of $A^{z}$ and $B^{w}$ from (1.9) as well as a choice of $g$ such that
$A^{z}B^{w}g$ is $we\mathbb{L}defined.\overline{I}n$ this paper we give a whole proof of (1.10). Recently, Pr\"uss and

the second author [33] found another proof of essentially the same result as (1.10).
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We now apply our estimate (1.8) with $C=C(p,X)$ for the Stokes system $(1.1)-(1.2)$ .

As is well known, the system can be transformed into (1.5) by taking $A$ as the Stokes

operator with Dirichlet condition in

$X=L_{\sigma}^{q}(\Omega)=\{u\in L^{q}(\Omega)^{n}; divu=0, u\cdot\nu|_{\partial\Omega}=0\}$ ,

where $1<q<\infty$ and $\nu$ is the outer normal vector in $\partial\Omega$ . For the Stokes operator the

estimate of imaginary powers (1.6) is known for every $\theta>0$ . This estimate was first

proved by [20] when $\Omega$ is bounded and by [23] when $\Omega$ is an exterior domain in $\mathbb{R}^{n}$ with

$n\geq 3$ . We show in Appendix that the same estimate holds when $\Omega$ is a halfspace using

results in [3]. Since $L^{q}(\Omega)$ and also $L_{\sigma}^{q}(\Omega)$ are typical examples of $\zeta$-convex spaces (cf.

[13]), our abstract theory is applicable. We obtain (1.8) with $X=L_{\sigma}^{g}(\Omega)$ and the Stokes

operator. The estimate (1.4) with $C=C(\Omega,p, q)$ easily follows if we apply the a priori

estimate $||\nabla^{2}u||_{q}\leq C||Au||_{q}$ for $1<q<n/2$ due to Solonnikov [41] (for $n=3$ and [23]

for $n\geq 3$ ) when $\Omega$ is exterior; the restriction $q<n/2$ is unnecessary when $\Omega$ is bounded

or a hal&pace.

The estimate (1.4) is important in studying regularity and large time behavior of weak

(or strong) solutions of the nonstationary Navier-Stokes system in an exterior domain

(1.11) $\frac{\partial v}{\partial t}-\Delta v+(v, \nabla)v+\nabla\psi=f$, $divv=0$ , $v|_{\theta\Omega}=0$ ,

$v(x, O)=a(x)$ , $(v, \nabla):=\sum_{1=1}^{n}v^{i}\partial:$ , $\partial:=\partial/\partial x_{i}$

and recently this problem is extensively studied [4, 5, 18, 24, 27, 28, 30, 31, 38, 39,40].

Although a global weak solution under suitable assumptions on $a$ and $f$ is known to exist,

its regularity is not known unless $n=2$ . As an application of (1.4) we derive various global

a priori estimates both for $v$ and $\psi$ . For example, when $\Omega$ is an exterior domain in $\mathbb{R}^{n}$

with $n\geq 3$ , we have

(1.12) $\int_{0}^{\infty}||\nabla^{2}v(t)||_{q}dt+\int_{0}^{\infty}||\nabla\psi(t)||_{q}dt<\infty$

for $n+1=n/q+2/s,$ $1<q,$ $s<\infty$ , provided that $v$ solves (1.11) in the weak sense and

that $v\in L^{2}(0, \infty;L_{\sigma}^{2}(\Omega)),$ $\nabla v\in L^{2}$ ( $\Omega\cross(0$ , oo))$n^{2}$ and $f\in L$ “ $(0, \infty;L_{\sigma}^{q}(\Omega))$ (and $a=0$ for
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simplicity). The estimate (1.12) implies that one can choose the pressure $\psi$ so that

(1.13) $\int_{0}^{\infty}||\psi(\ell)||:dt<\infty$ , $n/r+2/s=n$ .

We note that this pressure estimate for $n=3,$ $r=s=5/3$ simplifies the partial re-

gularity theory of suitable weak solutions in [9]. The global result (1.13) is new while

$\psi\in L$‘ $(0, T;L’(\Omega))$ for finite $T$ is known by [39]. Ekon (1.12) we also deduce a global

decay result of $v$ :

(1.14) $\int_{0}^{\infty}||v(t))||_{h}^{\rho}dt<\infty$ , $n/k+2/\rho=n-1$ , $\rho\geq s$ , $k\geq q$

Although there are many results on large time behavior of weak solutions (see e.g. [4])

our result (1.14) is not contained in the literature because (i) our estimate holds for weak

$s$olutions which need not satisfy energy inequalities and (ii) we estimate the decay as $tarrow\infty$

by an integral norm while the algebraic dacay order of $||v(t)||_{k}$ as $tarrow\infty$ is studied in the

literature.
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