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On the existence of viscosity solutions to nonlinear problems

involving an integro-differential operator

神戸大・理 山田直記 (Naoki Yamada)

1. Introduction

This is a part of the joint work [11] with Suzanne M. Lenhart at University of

Tennessee, Knoxville.

In this note we consider the existence of viscosity solutions for an obstacle prob-

lem involving an integro-differential operator associated with piecewise-deterministic

processes.

Let

$Lu(x)=-g(x) \cdot\nabla u(x)+\alpha(x)u(x)-\lambda\backslash (x)\int_{\Omega}(u(y)-u(x))Q(dy, x)$ ,

where. is the inner product in $R^{n},$ $\nabla u$ is the gradient vector of $u$ and $Q(\cdot,\backslash x)$ is a

probability measure.

We consider the following obstacle problem:

(1.1) $\min\{Lu-f, u-\psi\}=0$ in $\Omega$ ,

with the boundary condition

(1.2) $u(x)= \int_{\Omega}u(z)Q(dz, x)$ on $\partial\Omega$ .

The operator $L$ arises as a generalized infinitesimal generator of a piecewise-determinis-

tic (PD in short) process. These PD processes have deterministic dynamics $g$ between
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randomjumps. The jump distribution is represented by transition probability measure

$Q(\cdot, x)$ . See Davis [4] for the detail of PD processes.

In the case that $L$ is an infinitesimal generator of a diffusion process, it is well

known that the unilateral obstacle problem (1.1) with the Dirichlet boundary condition

arises as a dynamic programming equation associated with an appropriate optimal

control problem (see Bensoussan and Lions [1]).

The equation (1.1) is also the dynamic programming equation associated with an

optimal control problem in which the underlying process is a PD process.

In the case that the domain $\Omega$ is a bounded domain in $R^{n}$ , the PD processjumps

back into the interior upon hitting the boundary which leads to the boundary condition

(1.2) (see Davis [4]).

The obstacle problem (1.1), (1.2) is first treated by Lenhart and Liao [9], [10]

by using singular perturbation method. After introduction of the notion of viscosity

solution by Crandall and Lions [2], Lenhart [8] has proved the existence and uniqueness

of viscosity solution for a system of obstacle problems.

In these articles, it is commonly assumed that

$\alpha(x)\geq\alpha_{0}>0$ for sufficiently large $\alpha_{0}$ .

The perpose of this note is to eliminate the condition of largeness for the zero-th

order term by using Perron’s method which is introduced by Ishii [6].

In section 2, we state the notion of viscosity solutions and assumptions. We also

give a brief review of Perron’s method. In section 3, we shall explain how to apply the

Perron’s method to get a viscosity solution of (1.1) satisfying the boundary condition

(1.2). To show the existence of super- and subsolution, which are needed to apply

Perron’s method, we consider also a linear first order PDE with the boundary condition

(1.2). Our main result is Theorem 3.3.
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2. Assumptions and Perron’s method

Let

(2.1) $Lu(x)=-g(x) \cdot\nabla u(x)+\alpha(x)u(x)-\lambda(x)\int_{\Omega}(u(y)-u(x))Q(dy, x)$ ,

where . is the usual inner product in $R^{n},$ $\nabla u$ is the gradient vector of $u$ and $Q(\cdot, x)$ is

a probability measure.

We consider the following obstacle problem.

(2.2) $\min\{Lu-f, u-\psi\}=0$ in $\Omega$ ,

(2.3) $u(x)= \int_{\Omega}u(y)Q(dy, x)$ on $\partial\Omega$

We assume the following conditions.

(H.1) $\Omega$ is a bounded domain in $R^{n}$ with smooth boundary $\partial\Omega$ .

(H.2) $g(x)$ : $\Omegaarrow R^{n}$ is Lipschitz continuous, $\alpha(x),$ $\lambda(x)$ : $\overline{\Omega}arrow R$ are continuous.

(H.3) There exists $\alpha_{0}>0$ such that $\alpha(x)\geq\alpha_{0}$ for $x\in\overline{\Omega}$ .

(H.4) $\lambda(x)>0$ for $x\in\Omega$ .

(H.5) $Q(\cdot, x)$ satisfies:

(i) $Q(\cdot, x)$ is a probability measure on $\Omega$ for $x\in\overline{\Omega}$ such that

$| \int_{\Omega}v(y)Q(dy, x)|\leq C||v||_{L^{1}(\Omega)}$ for all $v\in L^{1}(\Omega)$ .

(ii) The function

$x arrow\int_{\Omega}v(y)Q(dy, x)$ ,

is continuous with respect to $x\in\overline{\Omega}$, uniformly on $v\in L^{\infty}(\Omega)$ .

(H.6) $g(x)\cdot\eta(x)>0$ for $x\in\partial\Omega$ , where $\eta(x)$ is the outward unit normal at $x\in\partial\Omega$ .

(H.7) $f,$ $\psi$ are continuous on St.

We denote that

$F(x, u,p, r)= \min\{-g(x)\cdot p+(\alpha(x)+\lambda(x))u-\lambda(x)r-f(x), u-\psi(x)\}$.
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for $x\in\Omega,$ $u\in R,p\in R^{n},$ $r\in R$ . Notice that if we fix $v\in L^{\infty}(\Omega)$ , then the equation

$F(x,$ $u(x),$ $\nabla u(x),$ $\int_{\Omega}v(y)Q(dy, x))=0$ in $\Omega$

is an obstacle problem with a first order Hamiltonian.

We give some notation necessary to state the definition of viscosity solution. For

bounded functions, we set

$u^{*}(x)= \lim_{rarrow 0}\sup\{u(y)||x-y|<r\}$ upper semi-continuous envelope of $u$

and

$u_{*}(x)= \lim_{rarrow 0}\inf\{u(y)||x-y|<r\}$ lower semi-continuous envelope of $u$ .

Now we state the definition of viscosity solutions.

Definition. Let $u$ be a bounded measurable function.

(i) $u$ is a viscosity subsolution of (2.2) if

$F(x,$ $u^{*}(x),$ $\nabla\phi(x),$ $\int_{\Omega}u^{*}(y)Q(dy, x))\leq 0$

wherever $u^{*}-\phi$ attains its maximum for $\phi\in C^{1}(\Omega)$ .

(ii) $u$ is a viscosity supersolution of (2.2) if

$F(x,$ $u_{*}(x),$ $\nabla\phi(x),$ $\int_{\Omega}u_{*}(y)Q(dy, x\rangle$$)\geq 0$

wherever $u_{*}-\phi$ attains its minimum for $\phi\in C^{1}(\Omega)$ .

(iii) $u$ is a viscosity solution if $u$ is a viscosity sub- and supersolution.

In the following, ($(sub/super)$ solution” means “viscosity (sub/super) solution”.

Assume that there exists a supersolution $W$ of (2.2) such that

(24) $W(x) \geq\int_{\Omega}W(y)Q(dy, x)$ on $\partial\Omega$ .
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Define

$S=\{v|v$ is a subsolution of (2.2) such that

$v\leq W$ in $\Omega$ and

$v(x) \leq\int_{\Omega}v(y)Q(dy, x)$ on $\partial\Omega$ }.

We put

$u_{0}(x)= \sup\{v(x)|v\in S\}$ .

Perron’s method consists of the following two propositions:

Proposition 2.1. Assume that $S$ is not empty, then $u_{0}\in S$ .

Proposition 2.2. Assume $S\neq\emptyset$ . If $v\in S$ is not a supersolution, then there

exists $w\in S$ such that $v(y)<w(y)$ at some $y\in\Omega$ .

These two Propositions can be proved by the same idea of Ishii [6]. So we omit

the proofs. See [11] for the detail.

Note that $u_{0}$ is a viscosity solution of (2.2).

3. Main existence result

First we assume that there exists a supersolution $W$ of (2.2) satisfying (2.4).

By Perron’s method, there exists a solution $u_{0}$ . Note that $u_{0}$ satisfies the boundary

inequality

$u_{0}(x) \leq\int_{\Omega}u_{0}(y)Q(dy, x)$ on $\partial\Omega$ .

Theorem 3.1. Assume (H. $1$ )$-(H.7)$ . Suppose that there exists a supersolution $W$

of (2.2) satisfying (2.4), and a solution $u_{1}$ of

(3.1) $F(x,$ $u_{1},$ $\nabla u_{1},$ $J_{\Omega}^{-}u_{0}(y)Q(dy, x))=0$ in $\Omega$
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satisfying the Dirichlet boundary condition

(3.2) $u_{1}(x)= \int_{\Omega}u_{0}(y)Q(dy, x)$ on $\partial\Omega$ .

If $u_{1}\leq W$ , then $u_{0}$ is a solution of (2.2) satisfying the boundary condition (2.3).

Proof. We calim $u_{1}\in S$ . Let $\phi\in C^{1}$ such that $u_{1}^{*}-\phi$ attains its maximum at $y_{0)}$

then

$F(y_{0},$ $u_{1}^{*}(y_{0}),$ $\nabla\phi(y_{0}),$ $\int_{\Omega}u_{0}(y)Q(dy, y_{0}))\leq 0$ .

Note that the comparison principle for two viscosity solutions holds for the equa-

tion of a first order Hamiltonian $F$ ( $x,$ $u$ , Vu, $u_{0}$ ). Since $u_{0}$ is also a subsolution of (3.1),

we have $u_{0}\leq u_{1}$ in $\Omega$ . Using $u_{0}\leq u_{1}$ and the monotonicity of $F$ with respect to the

argument $u$ , we have

$F(y_{0},$ $u_{1}^{*}(y_{0}),$ $\nabla\phi(y_{0}),$ $\int_{\Omega}u_{1}(y)Q(dy, y_{0}))\leq 0$ .

Also we have

$u_{1}(x)= \int_{\Omega}u_{0}(y)Q(dy, x)\leq\int_{\Omega}u_{1}(y)Q(dy, x)$ on $\partial\Omega$ .

Hence, we have the claim. By the definition of $u_{0}$ and $u_{0}\leq u_{1}$ , we have $u_{0}\equiv u_{1}$ in $\overline{\Omega}$.

This completes the proof.

To assure the assumptions of Theorem 3.1, we consider the equation

(3.3) $Lu(x)=f(x)$ in $\Omega$

(3.4) $u(x)= \int_{\Omega}u(y)Q(dy, x)$ on $\partial\Omega$ .

Theorem 3.2. Assume $(H.1)-(H.7)$ , Then there exists a unique solution of the

equation (3.3) satisfying the boundary condrtion (3.4).
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Proof. First we note that

$w(x)=- \frac{||f||_{\infty}}{\alpha_{0}}$ is a subsolution,

and

$W(x)= \frac{||f||_{\infty}}{\alpha_{0}}$ is a supersolution.

of (3.3) satisfying (3.4).

Applying Perron’s method, we have that there exists a solution $u_{0}$ of (3.3) satis-

fying the boundary inequality

$u_{0}(x) \leq\oint_{\Omega}u_{0}(y)Q(dy, x)$ on $\partial\Omega$ .

Next we consider the equation

(3.5) $-g \cdot\nabla u_{1}+(\alpha+\lambda)u_{1}-\lambda\int_{\Omega}u_{0}(y)Q(dy, x)=f$ in $\Omega$

with the Dirichlet boundary condition

(3.6) $u_{1}(x)= \int_{\Omega}u_{0}(y)Q(dy, x)$ on $\partial\Omega$ .

The comparison principle for this equation is well known $[2,3]$ . By (H.6) and the

method of [12], we can prove the existence of sub- and supersolutions. Then there

exists a continuous solution $u_{1}$ of the equation (3.5) with (3.6). We can apply the same

argument in the proof of Theorem 3.1 to yield that $u_{1}\equiv u_{0}$ . The uniqueness follows

from Lenhart [8]. The proof is complete.

Now we can prove the main result.

Theorem 3.3. Assume (H. $1$ )$-(H.7)$ . Then there exists a unique solution of the

obstacle problem (2.2) satisfying the boundary condition (2.3).

Proof. It is sufficient to check thehypothesis of Theorem 3.1. To do so, we consider

the obstacle problem (3.1) with (3.2).
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Using the boundary inequality of $u_{0}$ and $u_{0}\geq\psi$ in $\Omega$ , the compatibility condition

$\psi(x)\leq\int_{\Omega}u_{0}(y)Q(dy, x)$ on $\partial\Omega$

is satisfied.

First assume

(3.7) $h(x)= \int_{\Omega}u_{0}(y)Q(dy, x)\in C^{1}(\Omega)\cap C(\overline{\Omega})$

and

(3.8) $h(x)= \int_{\Omega}u_{0}(y)Q(dy, x)>\psi(x)$ on $\partial\Omega$

In this case, problem (3.1) with (3.2) is equivalent to

(3.9) $\min\{-g\cdot.\nabla w_{1}+(\alpha+\lambda)w_{1}-f, w_{1}-\psi\}=0$ in $\Omega$

(3.10) $w_{1}(x)=0$ on $\partial\Omega$

where $f,$ $\psi$ satisfy the same properties as $f,$ $\psi$ in (3.1) and $\psi<0$ on $\partial\Omega$ . We show the

existence of a solution to (3.9) with (3.10) by Perron’s method. lndeed, the solution

of the linear equation

$-g\cdot\nabla w+(\alpha+\lambda)w=f$ in $\Omega$ ,

$w=0$ on $\partial\Omega$

is a subsolution of (3.9) with (3.10).

To construct a supersolution, we follow a barrier construction argument from

Oleinik and Radkevic [12] as in Ishii and Koike [7]. Since $\psi<0$ on $\partial\Omega$ , there exists

a local barrier, $\psi_{z}$ in $C(\Omega\cap V_{z})\cap C^{2}(\Omega\cap V_{z})$ where $z\in\partial\Omega,$ $V$ is a sufficiently small

neighborhood of $z$ satisfying

$\psi_{z}(z)=0$ , $\psi_{z}\geq 0$ on $\overline{\Omega\cap V_{z}}$ ,

$\psi_{z}\geq||f||_{\infty}/\alpha_{0}$ on $\overline{\Omega}$ 口 $\partial V_{z}$ ,

$-g\cdot\nabla\psi_{z}+(\alpha+\lambda)\psi_{z}\geq f$ in $\Omega\cap V_{z}$ , and

$\psi_{z}\geq\psi$ in $\Omega\cap V_{z}$ .
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Define

バ

$z(z)=\{\begin{array}{l}\max\{\psi_{z}(x),\max\{||f||_{\infty}/\alpha_{0},||\psi||_{\infty}\}\}\max\{||f||_{\infty}/\alpha_{0},||\psi||_{\infty}\}\end{array}$ $otherwisein\Omega\cap V_{z}$

,

and

$\hat{\psi}(x)=\inf\{\hat{\psi}_{z}(x)|z\in\partial\Omega\}$ .

Then $\hat{\psi}$ is a supersolution. This implies that there exists a continuous solution of (3.1)

with (3.2).

For general continuous boundary value $h$ , which is not necessarily satisfy (3.7)

and (3.8), we choose an approximating sequence $\{h_{n}\}$ such that $h_{n}\in C(\Omega)\cap C^{1}(\Omega)$ ,

$h_{n}>\psi$ on $\partial\Omega$ and $h_{n}arrow h$ uniformly in St. Let $u_{n}$ be a solution of (3.1) with (3.2)

associated with boundary value $h_{n}$ . By standard comparison argument, we have

$\sup_{\Omega}|u_{n}(x)-u_{m}(x)|\leq\sup_{\partial\Omega}|h_{n}(x)-h_{m}(x)|$.

Hence $\{u_{n}\}$ converges to some $u\in C(\overline{\Omega})$ and by stability of viscosity solutions, we have

that $u$ is a solution of (3.1) with (3.2).

By the comparison result for obstacle problems, we have $u_{1}\leq W$ . Hence by

Theorem 3.1, $u_{0}$ satisfies the boundary condition (3.2).

Since the uniqueness follows from the argument in Lenhart [10], the proof is com-

pleted.
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