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abstract
We propose a sufficient condition for the confluence of noetherian

quasi-closed membership conditional term rewriting systems (MCTRS).
The condition is the critical pair lemma for MCTRS. For that purpose, we
introduce contextual rewriting which modifies contexts attached to terms,
and we extend the notion of critical pair to the rules of such rewriting.
By allowing modification of contexts, we can treat wider class of MCTRS
than the previous work. As an application of the condition, we propose a
completion algorithm for such systems. Additionally we use the comple-
tion algorithm for an inductionless induction like proof of a property of a
recursively defined function.

1. Introduction
Most of our computation is based on equalities, and formalization and mechanization

of such calculi have been investigated. In this direction, unconditional TRS appeared by
regarding equalities as directed rewriting rules. Much research on TRS is stressed on its
two principal characteristics, noetherian and confluent properties. When we try to apply
the results to automated theorem proving, algebraic specification, program verification and
transformation, we face to a difficulty. In real program, for example, the application of
equalities is usually restricted by some conditions, then we come to a natural extension,
conditional TRS in which rewriting rules have conditions for their usage. Such systems
have already been investigated well, and we can find also results on the confluence of such
systems.

But there is another approach for conditional TRS, membership conditional TRS
whose rewriting rules are restricted by membership conditions on the variables in left
hand sides of rules. Restrictions on types and values for variables in real programs can be
expressed naturally using them. Moreover, such systems can describe a infinite number
of rules in one. Thus membership conditional TRS will enable us to discuss automated
theorem proving, specification, verffication and transformation based on them.

Discussions on the confluence of unconditional TRS can be classified in two categories:
one assumes left-linearity and non-overlappingness and another noetherian property. Re-
search on conditional TRS has also similar two approaches and the reader can find more

$*$ A preliminary form was presented for RIMS Symposium on Algorithm and Complexity Theory and
LA Symposium, held at RIMS, Kyoto University on February 1-3, 1990.
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details in $[4],[9],[10]$ . As for membership conditional TRS, the results in the former $cat-|$

egory are already known [13],[14] and we are going to show that in the latter. And $we|$

propose a completion algorithm for membership conditional TRS. This paper can $treat|$

more wide class of membership conditional TRS than the previous work [15] by $introduc-|$

ing contextual rewriting which allows modification of context parts. Furthermore, we will
apply our algorithm to show a property of famous 91-function, which is defined recursively
and needs some inductive method to prove the property.

2. Term Rewriting Systems
I\’{n} this section we briefly explain TRS and prepare necessary notions for the following

sections. We assume that the reader is familiar with TRS and she or he can consult with
the literatures (e.g., $[2],[3],[5],[8]$ ), if necessary.

A term set $T=T(F, V)$ is the set of first order terms composed of the elements in
a set of function symbols $F$ graded by arities and a denumerable set of variables $V$ such
that $F\cap V=\phi$ . We use $Var(t)$ for the set of all the variables in a term $t$ .

For any term $t$ we can define its occurrences $\mathcal{O}(t)$ , a subset of the set of sequences of
positive integers $N_{+}^{*},$ and subterm $t/u$ of $t$ at occurrence $u\in \mathcal{O}(t)$ as follows.

$\mathcal{O}(t)=\Lambda$ the empty sequence of $N_{+}^{*}$ and $t/\Lambda\equiv t$ for $t\equiv x\in V$,
$\mathcal{O}(t)=\{\Lambda\}\cup\{iu|i=1, \cdots , n, u\in \mathcal{O}(t_{i})\},$ $t/\Lambda\equiv t$ and $t/iu\equiv t_{i}/u$

for $t=ft_{1}\cdots t_{n}$ where $f\in F,$ $t_{i}\in T$ .

Next we define $t[uarrow s]$ or simply $t[s]$ for $t,$ $s\in T$ and $u\in \mathcal{O}(t)$ by

$t[\Lambdaarrow s]\equiv s$ , $ft_{1}\cdots t_{n}[iuarrow s]\equiv ft_{1}\cdots t_{i-1}(t_{i}[uarrow s])t_{i+1}\cdots t_{n}$.

A substitution $\theta$ is a map from $V$ to $T(F, V)$ such that $\theta(x)\equiv x$ almost everywhere.
A rewriting rule on $T$ is a pair of two terms $(l, r)$ with $Var(l)\supset Var(r)$ and $l\not\in V$ .

We denote a set of rewriting rules $by\triangleright$ , and write $l\triangleright r$ iff $(l, r)\in\triangleright$ . A term $t$ reduces to a
term $t’$ at occurrence $u\in \mathcal{O}(t)$ by a rewriting rule $l\triangleright r$ iff $t\equiv s[uarrow l\theta],$ $t’\equiv s[uarrow r\theta]$ for
some $s\in T$ , substitution $\theta$ , and occurrence $u\in \mathcal{O}(t)$ such that $t/u\not\in Var(t)$ . The relation
of the two terms is indicated by $tarrow t’$ and the subterm $t/u$ is called a redex of the rule in
$t$ .

We define term rewriting system.
Deflnition 2.1. (Term Rewriting System)
A TRS is a structure $(T, arrow)$ with an object set $T$ and a binary $relationarrow defined$ by a
set of rewriting $rules\triangleright onT$ .

We express $byarrow^{*}$ the transitive reflexive closure $ofarrow$ . A term $t$ is said to be a
normal form iff there is no $t’$ such that $tarrow t’$ . A term $t’$ is called a normal form of $t$ iff
$tarrow^{*}t’$ and $t’$ is a normal form and denoted by $t\downarrow$ . Two terms $t_{1}$ and $t_{2}$ converge or are
convergent iff there is a term $s$ such that $t_{1}arrow^{*}s$ and $t_{2}arrow^{*}s$ .
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Two rules $l_{i}\triangleright r_{i}$ for $i=1,2$ with no common variables in a TRS are overlapping
iff $l_{i}\theta_{i}/u\equiv l_{j}\theta_{j}$ for some $\theta_{i},$ $\theta_{j},$ $u\in \mathcal{O}(t)$ such that $l_{i}/u\not\in V$. Hereafter any two rules are
assumed to have no common variables, if not stated.

We can define a critical pair of two overlapping rules.
Definition 2.2. (Critical Pair)
A pair of terms \langle $P,$ $Q$ } is a critical pair of two rules $l_{i}\triangleright r_{i}$ for $i=1,2$ overlapping in
$u\in \mathcal{O}(l_{1})$ is:

$P\equiv l_{1}\theta[uarrow r_{2}\theta]$ , $Q\equiv r_{1}\theta$

where $\theta$ is the most general unifier of $l_{1}/u\not\in V$ and $l_{2}$ .

The following two notions characterize TRS.
Definition 2.3. (Noetherian)
A TRS $R=(T, arrow)$ is noetherian iff every reduction in $R$ terminates, i.e., there is no
infinite reduction sequence as $t_{1}arrow t_{2}arrow t_{3}arrow\cdots$ where $t_{i}\in T$ .

Definition 2.4. (Confluence and Local Confluence)
A TRS $R=(T, arrow)$ is confluent iff

$\forall u,$ $v,$ $w\in T$ [ $uarrow^{*}v,$ $uarrow^{*}w\Rightarrow\exists u’$ such that $varrow u’,$$w*arrow^{*}u’$ ]

and locally confluent iff

$\forall u,$ $v,$ $w\in T$ [ $uarrow v,$ $uarrow w\Rightarrow\exists u’$ such that $varrow^{*}u’,$ $warrow^{*}u’$ ].

These two properties have been of our chief concern, because noetherian property
guarantees the existence of normal forms, and confluence does uniqueness of normal forms
provided existence of them. A TRS equipped with both properties is said complete. In
such systems, every term has necessarily an unique normal form.

For noetherian unconditional TRS the following results on the confluence are well-
known.

Lemma 2.5. (Critical Pair Lemma)
A noetherian TRS $R$ is locally confluent if and only if every critical pair of $R$ converges.

We note the next lemma for general noetherian relations.
Lemma 2.6.
A noetherian relation is confluent if and only if it is locally confluent.

Combining these two lemmas, the next theorem on the confluence of unconditional
noetherian TRS holds.
Theorem 2.7.
A noetherian TRS $R$ is confluent if and only if every critical pair of $R$ converges.
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3. Membership Conditional Term Rewriting Systems
We introduce a kind of conditional TRS, membership conditional TRS.

Definition 3.1. (c-Term, MC-Rule)
A c-term is a term with membership conditions on the variables in the term:

$t$ : $(x_{1}, \cdots, x_{n})\in S_{1}\cross\cdots\cross S_{n}$

where $\{x_{1}, \cdots , x_{n}\}=Var(t)$ and $Si\subset T$ for all $i$ , and written simply as $t$ : $c$ . We call
$c=$ $(x_{1}, \cdots , x_{n})\in S_{1}\cross\cdots\cross S_{n}$ the context of the c-term. A MC-rule $l\triangleright r$ : $c$ is a rewriting
rule $l\triangleright r$ with membership conditions $c$ on the variables in $l$ .

We say that a term $t$ reduces to a term $t’$ by a MC-rule $l\triangleright r$ : $(x_{1}, \cdots , x_{n})\in S_{1}\cross\cdots\cross S_{n}$

in a membership conditional TRS, when

$t\equiv s[l\theta]$ , $t’\equiv s[r\theta]$ for some $s\in T$, substitution $\theta$ and $x_{1}\theta\in S_{1},$ $\cdots,$
$x_{n}\theta\in S_{n}$ .

Definition 3.2. (Membership Conditional TRS)
A membership conditional $TRS$ is a term rewriting system defined by a set of MC-rules.

An example of membership conditional TRS and its $re$ductions are shown below.
Example 3.3.
Let $F=\{eq, d, +, s, 0\}$ and $F’=\{+, s, 0\}$ . Next membership conditional TRS $R$ defines
the $addition+$ , the double $d$ , and $eq$ on the set of natural numbers $N=T(\{s, 0\})$ .

$R$ : $\{\begin{array}{l}x+0\triangleright x\cdot.x\in Tx+s(y)\triangleright s(..x+y).\cdot(x_{/}d(x)\triangleright x+x\cdot.x\in T(Feq(x,x)\triangleright xx\in T(F)^{)^{y)\in T^{2}}}\end{array}$

In this system, we have the following $re$duction sequence:

$eq(d(O), d(O))arrow eq(O+O, d(O))arrow eq(O+O, 0+0)arrow 0+0arrow 0$.

Note that a direct reduction $eq(d(O), d(O))arrow d(O)$ is impossible by the third rule in $R$ since
$d(0)\not\in T(F’)$ .

Deflnition 3.4. (Closed, Quasi-Closed, Terminating and Normal)
A set of terms $S\subset T$ is closed iff $\forall s\in S\forall t\in T[sarrow t\Rightarrow t\in S]$ , quasi-closed iff $s\downarrow\in S$

for all $s\in S$ , terminating iff there is no infinite reduction sequence $sarrow s^{l}arrow s^{ll}arrow\cdots$

for $\forall s\in S$ , and normal iff $S$ consists of normal forms. A membership conditional TRS
$R$ is closed, quasi-closed, terminating, and normal iff every set not equal to term set $T$

which appears in membership conditions of its rules is closed, terminating, normal and
quasi-closed respectively. We $re$mark that a normal membership conditional TRS is closed
and terminating.
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Membership conditional TRS might be paradoxical and NOT well-defined as other
conditional TRS. The reader can refer to [14] about the point. We also assume that
membership conditional TRS treated are all well-defined.

On the confluence of NOT-noetherian membership conditional TRS, there are some
results in [13],[14]. Now we seek for some criterion on the confluence providing noetherian
property as in the case of the other TRS (cf. [1], [4], [8]).

4. Contextual Rewriting
First we introduce contextual rewriting which differs from the one in [16], and we

suite it to membership conditional TRS. The notion is prerequisite to discuss critical pairs
of MC-rules. Furthermore we extend the previous work [15] by allowing modification of
context parts of c-terms even in a restricted manner.

Definition 4.1. (c-Reduction)
A c-term $t$ : $c$ is c-reducible by a MC-rule $l\triangleright r$ : $(x_{1}, \cdots , x_{n})\in S_{1}\cross\cdots\cross S_{n}$ iff some subterm
$t^{l}\equiv t/u$ at occurrence $u$ of $t$ is $le$ for some substitution $\theta’$ and $x_{i}\theta’\in Si$ for $i=1,$ $\cdots,$

$\uparrow\tau$

hold under $c$ . Then $t$ : $c$ c-reduces to $s$ : $c\equiv t[uarrow r\theta’]$ : $c$ and we denote $t$ : $carrow cs$ : $c$ .
In the above definition, as each $x_{i}\theta$

‘ includes variables restricted by context $c$ , we have to
verify that $x_{i}\theta’\in S_{i}$ . The transitive reflexive closure $ofarrow_{C}$ is denot $edbyarrow_{c}^{*}$ . A c-term
$t:c$ is a c-normal form iff there is no $t’$ : $c$ such that $t:carrow_{c}t’$ : $c$ , and $t’$ : $c$ is a c-normal
form of $t$ : $c$ iff $t$ : $carrow_{c}^{*}t’$ : $c$ , and $t’$ : $c$ is a c-normal form. Two c-terms $t_{1}$ : $c$ and $t_{2}$ : $c$

with a common context c-converge iff there is a c-term $s$ : $c$ such that $t_{1}$ : $carrow_{c}^{*}s$ : $c$ and
$t_{2}$ : $carrow^{*}s$ :$cc$

This is a kind of contextua,1 rewriting that preserves contexts written by membership
conditions and we show an example.
Example 4.2.
By a MC-rule $f(x)\triangleright g(x):x\in N$ , we have a c-reduction:

$h(f(s^{2}(y)))$ : $y\in Narrow_{C}h(g(s^{2}(y)))$ : $y\in N$ .

In this cas$e$ , we have to check $s^{2}(y)\in N$ under $y\in N$ and succeed.

We formalize the relation between terms and c-terms.
Definition 4.3. (Instance of c-Term, Associated c-Term)
A term $t\theta$ is called an instance of a c-term $t$ : $c$ , iff $x\theta$ satisfies the condition $c$ for any
variable $x\in Var(t)$ . Conversely, we call $t:c$ an associated c-term of $t\theta$ . We call a set of
c-terms $T_{c}=$ { $t:c|t\in T$ with membership conditions $c$} as an associated c-term set of $T$ .

We have to establish a correspondence between terms and c-terms and one between
TRS and c-TRS.
Lemma 4.4. (Existence of Associated c-Term)
For any term $t$ there is some associated c-term $t’$ : $c’$ and $t\equiv t’\theta$ .
Proof.
Clear by the inclusion map $t t$ : $x_{1}\in\{x_{1}\},$ $\cdots$ , $x_{n}\in\{x_{n}\}$ . $\square$
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Lemma 4.5.
If $t$ : $c$ c-reduces to $s$ : $c$ and $t\theta$ is an instance of $t$ : $c$ , then there is an instance $s\theta$ of $s$ : $c$

such that $t\thetaarrow s\theta$ . That is, the diagram below is commutative:

$t:c$ $arrow_{c}$ $s:c$
$\downarrow$ $\downarrow$

$t\theta$ $arrow$ $s\theta$

Proof.
Let $t$ : $carrow cs$ : $c$ by applying a c-rule $l\triangleright r$ : $\tilde{c}$ to a redex $t/u$ : $c$ of $t$ : $c$ . If the rule is
applicable also to $t\theta/u$ , then we have the below commutative diagram:

$t$ : $c\equiv t[l\theta’]$ : $c$ $arrow_{c}$ $s[r\theta’]$ : $c\equiv t$ : $c$

1 $\downarrow$

$t\theta\equiv t\theta[l\theta\theta’]$ $arrow$ $s\theta[r\theta\theta’]\equiv t\theta$

Then it remains only to show that the rule is applicable to $t\theta/u$ . Let $y\in S$ be a condition
in $\tilde{c}$ , then $y\theta’\in S$ under $c=(x_{1}, \cdots, x_{n})\in S_{1}\cross\cdots\cross S_{n}$ . From the definition of instance
$(x_{1}\theta, \cdots , x_{n}\theta)\in S_{1}\cross\cdots\cross S_{n}$, we have $y\theta^{l}\theta\in S$ , i.e., $t\theta/u$ is also a redex of the rule. $\square$

By lemmas 4.4 and 4.5, we can define the associated $cTRS(T_{c}, arrow_{C})$ of TRS $(T, arrow)$ .
Definition 4.6.
For a TRS $R=(T, arrow)$ we have a set of associated c-terms $T_{c}$ and a c-reduction relation
$arrow_{C}$ and a TRS $(T_{c}, arrow_{C})$ called the associated $cTRS$ of $R$ . Moreover we can necessarily
define the associat$edcTRS$ for any TRS.

Based on the notion of c-reduction, we can define a critical pair of two MC-rules.
Before that, we have to clarify the notion of overlapping in the case of $cTRS$ .

Definition 4.7. (c-Overlapping)
Two MC-rules with no common variables

$l_{1}\triangleright r_{1}$ : $(x_{1}, \cdots , x_{m})\in S_{1}\cross\cdots\cross S_{m}$ and
$l_{2}\triangleright r_{2}$ : $(x_{m+1}, \cdots, x_{m+n})\in S_{m+1}\cross\cdots\cross S_{m+n}$

are c-overlapping in root iff
(1) there is the most general unifier $\theta=mgu(l_{1}, l_{2})\neq\phi$ of $l_{1}$ and $l_{2}$ , and
(2) for every substitution $x_{i}/\theta(x_{i})\in\theta,$ $\theta(x_{i})\in S_{i}$ under $(x_{i_{1}}, \cdots, x_{i_{k}})\in S_{i_{1}}^{l}\cross\cdots\cross$

$S_{i_{k}}^{l}\subset S_{i_{1}}\cross\cdots\cross S_{i_{k}}$ where $\{x_{i_{1}}, \cdots, x_{i_{k}}\}=Var(\theta(x_{i}))$ .
They are c-overlapping in occurrence $u\in \mathcal{O}(l_{1})$ iff $l_{1}/u\not\in V$ and $l_{2}$ are c-overlapping

in root.

Now we can introduce c-critical pair of two c-overlapping rules.
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Definition 4.8. (c-Critical Pair)
Let

$l_{1}\triangleright r_{1}$ : $(x_{1}, \cdots , x_{m})\in S_{1}\cross\cdots\cross S_{m}$ and
$l_{2}\triangleright r_{2}$ : $(x_{m+1}, \cdots, x_{m+n})\in S_{m+1}\cross\cdots\cross S_{m+n}$

be two MC-rules c-overlapping in occurrence $u\in \mathcal{O}(l_{1})$ . The MC-critical pair { $P,$ $Q$ ) $:c$ of
the two MC-rules in $u\in \mathcal{O}(l_{1})$ is

$P\equiv l_{1}[uarrow r_{2}\theta]$ , $Q\equiv r_{1}\theta$ , and $c\equiv(x_{j_{1}}, \cdots, x_{j_{k}})\in S_{j_{1}}’\cross\cdots\cross S_{j_{k}}’$

where $\{x_{j_{1}}, \cdots, x_{j_{k}}\}=Var(P)\cup Var(Q)$ and $S_{j_{\mu}}’\subset S_{j_{\mu}}$ which makes two rules c-
overlapping for $\mu=1,$ $\cdots,$

$k$ .

Remark 4.9.
The notions of c-overlapping and c-critical pair are also effective in contextual membership
conditional TRS in which modification of conditions is allowed.

We will try to find a c-critical pair of the following two rules:

$f(f(y))\triangleright h(y)$ : $y\in g(T)\cup h(T)$ and
$f(g(z))\triangleright g(z)$ : $z\in T$.

We have a substitution $y/g(z)$ to made the two rules c-overlapping. Then we have to find
some subcondition of $z\in T$ from $g(z)\in g(T)\cup h(T)$ . In this example, we can immediately
find such a condition $z\in T$ and a c-critical pair $\langle f(h(z)), h(g(z))\rangle$ : $z\in T$ .

Contextual rewriting as c-reduction and related notions are too restricted. For exam-
ple, we try to c-reduce a single c-term $f(x)$ : $x\in N$ by two rules:

$f(x)\triangleright O:x\in$ {even} and $f(x)\triangleright 1$ : $x\in$ {odd}

But we find that $f(x)$ : $x\in N$ is c-irreducible. Then we introduce extended reduction
which can handle above example.

Definition 4.10. (Splitting)
A context $c=(x_{1}, \cdots, x_{k})\in S_{1}\cross\cdots\cross S_{k}$ splits into $c_{1},$ $\cdots,$ $c_{n}$ iff some of sets in it, for
example, $S_{1},$

$\cdots,$ $S_{k_{0}}$ with $k_{0}\leq k$ are disjoint unions of several sets, i.e., $Si=us_{i}^{(J:)}$ . We
denote this by $c=c_{1}u\cdots uc_{n}$ and $c_{i}=s_{1}^{(j_{1})}u\cdots us_{k_{0}}^{(j_{k_{0}})}us_{k_{0}+1}u\cdots us_{k}$ .

A c-term $t$ : $c$ sc-reducible iff there is a splitting $c=c_{1}u\cdots Uc_{n}$ and $m\leq n$ such
that $t$ : $c_{j}arrow_{C}t_{j}$ : $c_{j}$ for all $j\leq m$ and $t$ : $c_{j}$ is c-irreducible for all $j>m$ . $Re$garding
a single c-term $t$ : $c$ with splitting $c=u_{J\leq n^{C}j}$ as a set of c-terms, we have a sc-reduction
$\{t : c\}arrow sc\{t_{j}’ : c_{j}\}$ when either $t$ : $c_{j}arrow_{c}t_{j}’$ : $c_{j}$ for $j=1,$ $\cdots,$ $n-1$ and $t$ : $c_{n}\equiv t_{n}’$ : $c_{n}$

is c-irreducible or $t$ : $c_{j}arrow_{C}t_{j}’$ : $c_{j}$ for $j=1,$ $\cdots,$ $n$ . Two c-terms $t’$ : $c$ and $t”$ : $c$ with a
common context $c$ sc-converge iff $c$ splits into $c_{1}u\cdots uc_{n}$ such that every pair $t’$ : $c_{i}$ and
$t^{l/}$ : ci c-converge.
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Definition 4.11.
The $scTRS$ of a membership conditional TRS $R=(T, arrow)$ is $R_{sc}=(2^{T_{c}}, arrow_{sc})$ constructed
from its associated $cTRSR_{c}=(T_{c}, arrow_{C})$ by allowing splitting.

As is easily seen, every scTRS can be regarded as a $cTRS$ , because every term and
reduction in scTRS correspond to several terms and reduction sequences in $cTRS$ .

Using these notions we can execute a kind of reduction in the last example:

$\{f(x):x\in N\}arrow sc$ {$0;x\in$ {even}, 1 : $x\in$ {odd}}.

Unfortunately this extension draws another difficulty, that is, even if a membership con-
ditional TRS $R$ is noetherian, its scTRS $R_{sc}$ might be no longer noetherian. Then it is
impossible to determine whether or not critical pairs are convergent. We consider the
following noetherian membership conditional TRS:

$R$ : { $f(s(x))\triangleright f(x)$ : $x\in N$ .

We have the next infinite sequence:

$f(x)$ : $x\in N$ $arrow$ $f(x’)$ : $x’\in N$ $arrow$ $f(x”)$ : $x”\in N$ $arrow$

1 $\downarrow$ 1
$f(O)$ : $x=0$ $f(0)$ : $x=1$ $f(O)$ : $x=2$

where $x=s(x’)=s(s(x”))=\cdots$ We $re$strict ourselves to the cases in which infinite
sequences as above do not occur. In fact, when sets in membership condition not equal to
$T$ are finite, such pathological $re$ductions do not occur.

5. Confluence of Membership Conditional Term Rewriting Systems
Next lemma is the critical pair lemma for $cTRS$ .

Lemma 5.1.
Let $R_{c}=(T_{c}, arrow_{C})$ be a noetherian quasi-closed $cTRS$ . If every c-critical pair of $R_{c}$ con-
verges, then $R_{c}$ is locally confluent.

$($

Proof.
Similar to the unconditional case and the other conditional cases. $\square$

The following is our key lemma which allows us to interpret the locally confluence of
$cTRS$ into that of TRS.
Lemma 5.2.
A TRS $R=(T, arrow)$ is locally confluent, if its associat$edcTRSR_{c}=(T_{c}, arrow_{c})$ is locally
confluent.
Proof.
Let $t_{1},$ $t_{2}$ be two terms reduced from a single term $t$ in $R$ , then there ar$e$ thr$ee$ associated
c-terms $s$ : $c,$ $s_{1}$ : $c$ and $s_{2}$ : $c$ of $t,$ $t_{1}$ and $t_{2}$ respectively such that $s_{1}$ : $c,$ $s_{2}$ : $c$ are
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c-reduced from $s$ : $c$ in $R_{c}$ .

$s$ : $c$

$\downarrow$

$J$ $t$ $\lambda$

$J$ $\backslash$

$s_{1}$ : $c$ $arrow$ $t_{1}$ $t_{2}$ $arrow$ $s_{2}$ : $c$

$\backslash *$ $*\swarrow’$

$\lambda*$ $t’$ $*\swarrow’$

$\uparrow$

$s’$ : $c$

By the hypothesis there is a c-term $s^{l}$ : $c$ such that $s_{1}$ : $carrow_{c}^{*}s’$ : $c$ and $s_{2}$ : $carrow_{c}^{*}s^{l}$ : $c$ .
Thus we have an instance $t’$ of $s’$ : $c$ such that $t_{1}arrow^{*}t$

‘ and $t_{2}arrow^{*}t^{l}$ by lemma 4.5. $\square$

Now we can give a criterion of the confluence assuming noetherian property for mem-
bership conditional TRS as in the unconditional and other conditional cases.
Theorem 5.3.
Let $R$ be a noetherian quasi-closed membership conditional TRS. If every c-critical pair
of $R$ c-converges, then $R$ is confluent.
Proof.
We have the associated $cTRSR_{c}$ of $R$ . As its every c-critical pair converges, $R_{c}$ is locally
confluent by lemma 5.1. Then $R$ is also locally confluent using lemma 5.2, mor$e$over
confluent for its noetherian property and lemma 2.6. $\square$

Note that a c-reduction can be regarded as sc-reductions and a c-critical pair is also
a critical pair of contextual rewriting rules allowing splitting. Then the following lemma
is clear.

Lemma 5.4.
If every c-critical pair in $R_{sc}$ sc-converges, every c-critical pair c-converges in $R_{c}$ .

It is clear that every c-critical pair in $R_{c}$ can be regarded also as the one in $R_{sc}$ . Then
using this lemma and theorem 5.3, we can easily have the following theorem.

Theorem 5.5. (Main Theorem)
Let $R$ be a noetherian quasi-closed membership conditional TRS. If every c-critical pair
in $R$ sc-converges, then $R$ is confluent.

Based on the above theorem we can design a completion algorithm as in the uncon-
ditional case ([6], [11]) and the other conditional cases (e.g., [10]).

Let a set of quasi-closed membership conditional equalities $E$ and some reduction
$ordering\gg be$ given. We assume that selection of equality $m=n:c$ from $E$ satisfies the
fairness hypothesis in [6]. The hypothesis ensures every equality $E$ will be selected within
a finite number of steps in the completion algorithm below.

$g$



34

Completion Algorithm
$E$ : a set of quasi-closed MC-equalities (given)
$R$ : a set of MC-rules (initially $=\phi$ )

Loop while $E\neq\phi$ do
if $E=\phi$ then return(R) ;;; Stops with success, $R$ is complete.
$f$ $:=m=n:c$ ;;; A candidate of a new rule, chosen from $E$ .
$r$ $:=\{l\triangleright r : c_{i}\}$

;;; New rules, $l_{i},$
$r_{i}$ are c-nornal forms of $m:c_{i},$ $n:c_{i}$

;;; by the current rule set $R$ and $l_{i}\gg r_{i}$ . If c-normal forms
;;; of $m:c_{i}$ and $n:c_{i}$ are IN-comparable $by\gg$ , then stops with failure.

$R’$ $:=$ { $l’\triangleright r’$ : $c’\in R|l’$ : c’ or $r’$ : $c$
‘ sc-reducible by some $l_{i}\triangleright r_{i}$ : $c_{i}\in r$ }

$R_{eq}’$ $:=$ {$l’=r’$ : c’ $|l’\triangleright r’$ : $d\in R’$ }
$R$ $:=R+r-R’$
$E:=E-\{f\}+R_{eq}^{l}+CP\langle R,$ $r$ }

;;; $CP(R,$ $r$ } is all the c-critical pairs between the rules in new $R$ and $r$ .

Now we show a theorem on the completeness of above algorithm and its proof.

Theorem 5.6.
For a given set of quasi-closed MC-equalities $E$ and a $re$duction $ordering\gg$ , when above
algorithm stops and we have a membership conditional TRS $R$ , then $R$ is complete, that
is, noetherian and confluent and moreover $=\equiv\sim$ . Here $=Eand\sim R$ denote equivalence
relations generated by $=ofEandarrow ofR$ respectively.
Proof.
We indicate $E,$ $R,$ $\cdots$ in i-th loop with suffix $i$ as $E_{i},$ $R_{i},$ $\cdots$ . As $=E_{i+1}\cup\sim R_{i+1}\supset=E_{i}\cup\sim R$;

clearly and its converse is also true by $=\subset=\cup=f;$ ’ we have $=\equiv\sim$ . When
$E=\phi,$ $R$ is locally confluent because there is no critical pair, and noetherian by the
ordering used in the algorithm. $\square$

This completion algorithm can be used as a proof method similar to inductionless
induction in the unconditional case in [7]. Under axioms described by a complete member-
ship conditional TRS $R$ satisfying some property alike definition principle, we can prove
whether or not $m=n$ : $c$ is a theorem of $R$ by trying to complete $R\cup\{m=n : c\}$ . If
the completion stops with success the equality is a theorem and if stops with failure not a
theorem. Proof of this method in our case is similar to the unconditional case. Now the
next example is examined.

Example 5.7. (91-function)
The famous 91-function $f$ in [12] is recursively defined by

$f(x)=$ if $x\leq 1OO$ then $f(f(x+11))$ else $x-10$

and has a property
$f(x)=91$ for all $x\leq 1OO$ .
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We can reformulate the definition of $f$ by the following membership conditional equalities
(1) and (2), the property by (3). We indicate membership conditions by equalities or
inequalities which define the sets in them, e.g., $x\leq 1OO$ means $x\in\{n\in N|n\leq 100\}$ .

$E:\{\begin{array}{l}f(x)=x-10101\leq x(1)f(x)=f(f(x+l1))x\leq l00(2)f(x)=91x\leq 100(3)\end{array}$

Now we prove the property (3) using our completion algorithm for membership conditional
TRS. That is, we show that our completion generates a complete set of MC-rules from
the MC-equality system $E$ . Before completing above $E$ , we notice that our algorithm alos
succeeds in completing $\{(1),$(2) $\}$ . From now on we denote current MC-rule set by $R$ and
assume the order to be $f\gg s\gg O$ where $s$ is the successor function and $N=T(\{s, 0\})$ .

We have the following membership conditional TRS $R$ choosing (1) and (3) from $E$

or reverse order.
$R:\{\begin{array}{l}f(x)\triangleright x-1010l\leq xf(x)\triangleright 91x\leq 100\end{array}$ $(3’)(1_{l})$

Then we try to add the last equality (2) in $E$ as a news rule, then the equality is reduced
as below by (1’) and (3’).

$f(x):x\downarrow\leq 100$
$=$

$f(f(x+11))\downarrow$
: $x\leq 1OO$ $arrow$ $f(x+1)$ :

$90\downarrow\leq x\leq 100$

$arrow$

$x-9:\downarrow x=10$

$91$ : $x\leq 1OO$ $f(91):x\leq 89$ 91 : $90\leq x\leq 99$ 91 : $x=1O0$

1
91 : $x\leq 89$

This shows that the both sides of equality (2) reduce to the same, there remains no equality
in $E$ and our completion succeeds.

Thus we have proved the intended property of 91-function, by describing it by a
membership conditional TRS and applying our completion algorithm to the syst$em$ . If
we do not utilize membership conditional TRS, then we have to define $f$ by the following
unconditional TRS which includes many rules and takes much effort for completion.

$\{\begin{array}{l}f(s_{11}^{11}(0))\triangleright f(0)f(s^{11}(s(0)))\triangleright f(s(0))f(s(s(s(0))))\triangleright f(s(s(0)))f(s^{101}(x))\triangleright s^{91}(x)f(s^{11}(s^{100}(0)))\triangleright f(s^{91}(0))\end{array}$

Comparing with this method, our method is simpler and more efficient as it has much less
number of equalities and rules.
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7. Conclusion
We investigated the confluence of noetherian quasi-closed membership conditional

TRS. For that purpose we introduced contextual terms, contextual rewriting which modi-
fies contexts of them, and contextual critical pairs. Using such notions, it was shown that
a noetherian quasi-closed membership conditional TRS is confluent if its every contextual
critical pair sc-converges. Based on this criterion, we proposed a completion procedure
for membership conditional TRS. Moreover the completion was used in our inductionless
induction like proof of a property of famous 91-function.

As membership conditional TRS is a natural method to treat equality systems and
programs expressed by equalities, so our algorithm is applicable to automated theorem
proving, verification and transformation of programs.
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