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Abstract

In the distribution-independent model of concept learning from examples intro-
duced by Valiant [Va184], it has been shown that the existence of an Occam algorithm
for a dass of concepts implies the computationally feasible (polynomial) learnability
of that class $[BEHW87a, BEHW87b]$ . An Occam algorithm is a polynomial-time
algorithm that produces, for any sequence of examples, a nearly minimum hypoth-
esis consistent with the examples. These works, however, depend strongly on the
assumption of perfect, noise-less examples. This assumption is generally unrealistic
and in many situations of the real world there is always some chance that a noisy
example is given to the learning algorithm. In this paper we present a practical ex-
tension to Occam algorithms in the Valiant learnability model: Occam algorithms
that can tolerate the classification noise, a noise process introduced in [AL88] (clas-
sifying the example is subject to independent random mistakes with some small
probability), and it is shown that the noise-tolerant Occam algorithm is a powerful
algorithmic tool to establish computationally feasibk learning that copes with the
classification noise; the existence of a noise-tolerant Occam algorithm for a class of
concepts is a sufficient condition for the polynomial learnability of that class in the
presence of noise.
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1 Introduction

Inductive learning (concept learning) from examples is viewed as a heuristic search through
a space of hypotheses. Inductive learning algorithms are often faced with a common
problem, which is that of how to search a large space efficiently to find a consistent hy-
pothesis that describes the given examples. Occam’s razor is an old scientffic heuristic,
with a sound basis in human behavior [Sa185, BP89]. This heuristic claims that “entities
should not be multiplied unnecessarily”, which usually means that when offered a choice
among explanations, all other things being equal, the simplelSt $one/$ is to be preferred.
This principle can be interpreted in the area of machine learning to mean a “inductive
bias” [Hau86, Utg86] that among hypotheses consistent with a given sample of examples,
the learning algorithm should choose the simplest hypothesis. Usually “simplest” means
“minimum size” of the representation for the hypothesis.

However this is not always practical, because for many domains it is a very hard
problem (NP-hard) to find a consistent hypothesis of minimum size. In the distribution-
independent model of concept learning introduced by Valiant [Va184], in order to obtain
computationally feasible (polynomial) learning, so-called Occam algorithms $[BEHW87b$ ,
$BEHW87a]$ have been proposed that weaken this criterion of minimality. An Occam al-
gorithm is a polynomial-time algorithm that produces its consistent hypothesis of size
polynomially larger than minimum and sublinearly on the size of the given sample.
$[BEHW87b]$ has shown that the existence of an Occam algorithm for a class of concepts
implies polynomial learnability for that class. Thus Occam algorithms guarantee that
it suffices to produce simpl $er$ hypotheses rather than simplest ones for feasible learning.
Several interesting concept classes have been shown to be polynomially learnable by using
Occam algorithms while it is NP-hard to find a consistent hypothesis of minimum size in
those classes.

Many works making progress in the Valiant learnability model including Occam al-
gorithms depend strongly on the assumption of perfect, noise-less examples. However,
this assumption is generally unrealistic and in many situations of the real world, we are
not always so fortune, our observations will often be aMicted by noise and hence there is
always some chance that a noisy example is given to the learning algorithm. Few works
have suggested any way to make their learning algorithms noise tolerant and two formal
models of noise have been studied so far in the Valiant learnability model [AL88, KL88].

The main contributions of this paper are a practical extension to Occam algorithms in
the Valiant learnability model: Occam algorithms that can tolerate the classification noise,
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a noise process introduced in [AL88] (classifying the example is subject to independent

random mistakes with some small probability), and evidence that the noise-tolerant Oc-

cam algorithm is in fact an algorithmic tool to establish computationally feasible learning
that copes with the classification noise; the existence of a noise-tolerant Occam algorithm
for a class of concepts is a sufficient condition for the polynomial learnability of that
class in the presence of noise. Further we demonstrate an example of learning geometric
concepts to exhibit how the noise-tolerant Occam algorithm can be used to establish the
polynomial learnability of many concept classes in the presence of classification noise.

2 Polynomial Learnability

We first give a brief outline of Valiant’s learnability model [Va184] and the notion of
polynomial learnability $[BEHW87a, BEHW87b]$ . A concept is defined by a subset of some
instance space (domain) $X$ . A sample of a concept is a sequence of examples, each of
which is an instance of the concept, called positive example, $labeled+or$ a non-instance of
the concept, called negative example, labeled-. Samples are assumed to be created from
independently, random examples, chosen according to some fixed but unknown probability
distribution $P$ on $X$ . The size of a sample is the number of examples in it. Let $H$ be a
class of concepts defined on $X$ . We define a learning algorithm for $H$ as an algorithm that
takes as input a sample of a target concept in $H$ and produces as output a hypothesis that
is itself a concept in $H$ . A hypothesis is consistent with the given sample if it includes all
positive examples and no negative examples in the sample. A consistent hypothesis may
still disagree with the target concept by failing to include unobserved instances of the
target concept or including unobserved non-instances of the target concept. The error of
a hypothesis is the probability that the hypothesis will disagree with a random example
of the target concept selected according to the distribution $P$ . A successful learning
algorithm is one that with high probability with respect to $P$ finds a hypothesis whose
error is small.

Two performance measures are applied to learning algorithms in this setting.

1. The convergence rate of the learning algorithm is measured in terms of the sample
size that is required for the algorithm to produce, with high probability, a hypothesis
that has a small error.

2. The computational efficiency of the learning algorithm is measured in terms of the
computation time required to produce a hypothesis from a sample of a given size.
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With respect to these two measures the notion of polynomial learnability is going to be
defined. Before giving that, we nust assume some representation for the hypotheses
produced by a learning algorithm and a complexity measure for the concepts with respect
to the representation because the sample size needed for a successful learning algorithm
usually depends on the complexity of the target concept. Let $\Gamma$ be a (not necessarily
finite) alphabet used to describe representations for hypotheses. We fix some encoding
(function) from I” to $2^{X}$ so that a set of strings $R\subseteq\Gamma^{*}$ represent a class of concepts
and let the size of a concept be the number of characters needed to $re\underline{pr}\ovalbox{\tt\small REJECT}^{nt}$ it in the
encoding (that is, the length of the representation).

A class of concepts $H$ is polynomially learnable (with respect to a fixed en-
coding) if there exists a learning algorithm for $H$ and a function $m(\epsilon, \delta,n)$ ,
polynomial in $\frac{1}{\epsilon},$ $\frac{1}{\delta}$ and $n$ , such that

1. for any target concept $C\in H$ of size at most $n$ and any distribution $P$

on $X$ , given a sample of size $m(\epsilon, \delta,n)$ of $C$ , the algorithm produces a
hypothesis in $H$ with error at most $\epsilon$ with probability at least $1-\delta$ , and

2. the algorithm produces its hypothesis in time polynomial in the length
of the given sample.

The algorithm that has the property 2 is called a polynomial hypothesis finder for $H$ .
Notice that the sample size is not only polynomially bounded in the inverses of $\epsilon$ and $\delta$

but also allowed to grow polynomially in the size of the target concept.

3 Occam’s Razor and Occam Algorithms

Length-based Occam algorithm First we consider the case where the alphabet $\Gamma$ is
finite. This is typically the case when concepts are defined over discrete domains (e.g.,
automata, Boolean formulas, etc.). Assume some fixed encoding to represent a hypothesis
in F.

Given a sample of a target concept in $H$ , the fundamental strategy that a learning
algorithm takes is producing its hypothesis consistent with the sample. When a hypothesis
class $H$ is infinite, there may be infinitely many consistent hypothesis and a polynomial
learning algorithm for $H$ cannot in general afford to choose its consistent hypothesis
arbitrarily, it needs some (inductive bias” [Hau86, Utg86}. Occam’s Razor would suggest
that a learning algorithm should choose its consistent hypothesis among those that have
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“minimum” size. In fact, given a sample of size $\frac{n}{\epsilon}\ln(\frac{|\Gamma|}{\delta})$ for a target concept $C\in H$

of size at most $n$ , a learning algorithm for $H$ that produces its hypothesis of minimum
size consistent with the sample could produce a hypothesis with error at most $\epsilon$ with
probability at least $1-\delta$. This satisfies the property 1 of polynomial learnability for $H$ .

However, this is not always practical. For example, finding a minimum state deter-
ministic finite automaton consistent with positive examples and negative examples of a
regular language is a NP-hard problem. Thus for many domains finding a hypothesis
of minimum size cannot be a polynomial hypothesis finder. In order to obtain polyno-
mial algorithms, Occam algorithms are proposed that weaken this criterion of minimality
$[BEHW87b]$ .

An (l-based) Occam algorithm for $H$ with a polynomial $p(x)$ and a constant
$\alpha,$ $0\leq\alpha<1$ , (with respect to a fixed encoding) is a learning algorithm that

1. produces a consistent hypothesis of size at most $p(n)m^{\alpha}$ when given a
sample of size $m$ of any target concept in $H$ of size at most $n$ , and

2. runs in time polynomial in the length of the sample.

Thus an Occam algorithm allows the size of the hypothesis produced by a learning algo-
rithm to be polynomially larger than minimum and sublinearly on the size of the given
sample. By taking $m \geq\max[\frac{2}{\epsilon}\ln(\frac{1}{\delta}), (\frac{2p(n)\ln\{|\Gamma|)}{\epsilon})^{\frac{1}{1-\alpha}}]$ , the existence of an Occam algo-
rithm for $H$ implies polynomial learnability for $H[BEHW87b]$ .

Dimension-based Occam algorithm When $\Gamma$ is infinite, the existence of a l-based
Occam algorithm is not sufficient to guarantee polynomial learnability. The proof of suf-
ficiency and the sample size needed for a l-based Occam algorithm depends critically on
the finiteness of F. Consequently the proof fails when $\Gamma$ is infinite. Such representations
typically occur when concepts are defined over continuous domains (for example, sev-
eral geometric concepts such as axis-parallel rectangles in Euclidean space). $[BEHW87a]$

defines a more general type of Occam algorithm, which uses a combinatorial parameter
called the Vapnik-Chervonenkis dimension ($VC$ dimension) to measure the complexity of
the class of hypotheses produced by the learning algorithm. The larger the VC dimension
of the class of hypotheses, the greater the expressibility, and hence the complexity, of that
hypothesis class. Rather than measuring simplicity by the length of the representations
produced by the Occam algorithm, this definition uses the notion of VC dimension to
measure the simplicity of the class of hypotheses produced by the Occam algorithm.
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The following definition of an Occam algorithm $[BEHW87a]$ allows the learning al-
gorithm for $H$ to produce hypotheses from a class of VC dimension $p(n)m^{\alpha}$ in $H$ for a
target concept of size at most $n$ in $H$ , where $m$ is the size of the given sample, $p(x)$ is a
polynomial and $0\leq\alpha<1$ .

An (d-based) Occam algorithm for $H$ is a learning algorithm that

1. produces a consistent hypothesis such that the class of hypotheses-pr6-
duced has the VC dimension at most $p(n)m^{\alpha}$ when given a sample of size
$m$ of any target concept in $H$ of size at most $n$ , and

2. runs in time polynomial in the length of the sample.

By taking $m \geq\max[\frac{4}{\epsilon}\log(\frac{2}{s}), (\frac{8p(n)}{\epsilon}\log(\frac{13}{\epsilon}))^{\frac{1}{1-\alpha}}]$ , the existence of an Occam algorithm
for $H$ implies polynomial learnability for $H[BEHW87a]$ . The proof of sufficiency of a
d-based Occam algorithm relies on the fact that a learning algorithm is successful if and
only if the VC dimension of the class of hypotheses produced by the learning algorithm
is finite.

4 Noise-Tolerant Occam Algorithms

Classification noise model Many works making progress in the Valiant learnability
model or on machine learning from examples depend strongly on the assumption of per-
fect, noise-less examples. However, this assumption is generally unrealistic and in many
situations of the real world, we are not always sc fortune, our observations will often be
aMicted by noise and hence there is always some chance that a noisy example is given
to the learning algorithm. Few works have suggested any way to make their learning
algorithms noise tolerant and two formal models of noise have been studied so far in the
Valiant learnability model. One is the malicious ermr model initiated in [Va185] and in-
vestigated in [KL88]: independently for each example, the example is replaced, with some
small probability, by an arbitrary example classified perhaps incorrectly. The goal of this
model is to capture the worst possible case of noise process by the adversary. The other
is the classification noise model introduced in [AL88]: independently for each example,
the label of the example is reversed with some small probability. The goal of this model
is to study the question of how to compensate for randomly introduced errors, or “noise,
in classifying the example data. In this paper, we consider the classification noise model
to study the effect on the polynomial learnability.
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In the classification noise model, an example is selected from the instance space $X$

according to the relevant distribution $P$ without error, but the process of determining and
reporting whether the example is positive or negative is subject to independent random
mistakes with some unknown probability $\eta$ . The precise definition of it is that indepen-
dently for each example, after it has been selected and classified but before presentation
to the learning algorithm, the label of the example is reversed with probability $\eta$ . It is
assumed that the rate of noise $\eta$ is less than}.

In [AL88], the following argument is discussed: in the presence of noise, we should
assume that there is some information about the noise rate $\eta$ available to the learning
algorithm, namely an upper bound $\eta_{b}$ such that $\eta\leq\eta_{b}<\frac{1}{2}$ , and we should also permit the
size of samples to depend on the upper bound $\eta_{b}$ and just as the sample size for polynomial
learnability is permitted in the absence of noise to be polynomial in $\frac{1}{\epsilon}$ and }, we should
permit the polynomial to have $\frac{1}{1-2\eta_{b}}$ as one of its arguments. Thus the statement “there
exists. . . a function $m(\epsilon, \delta, n)$ , polynomial in $\frac{1}{\epsilon}’\frac{1}{\delta}$ and $n$

’ in the definition of polynomial
learnability will be replaced with “ there exists.. . a function $m(\epsilon, \delta, n, \eta_{b})$ , polynomial in
$\frac{1}{\epsilon}f\frac{1}{\delta}n,$ and $\frac{1}{1-2\eta_{b}}$ in the presence of noise.

Length-based noise-tolerant Occam algorithm When the sample contains noise,
the fundamental strategy of finding a hypothesis consistent with the given sample may
fail because there is no guarantee that such consistent hypotheses will exist. For a fi-
nite concept class, [AL88] has proposed the simple strategy of finding a hypothesis that
minimizes the number of disagreements with the given sample; a learning algorithm for
a finite class $H$ of $N$ concepts that produces its hypothesis minimizing the number of
disagreements could produce a hypothesis with error at most $\epsilon$ with probability at least
$1-\delta$ when given a sample of size $\frac{2}{\epsilon^{2}(1-2\eta_{b})^{2}}\ln(\frac{2N}{\delta})$ . To establish polynomial learnability
for an infinite concept class, however, this strategy could not work because any hypoth-
esis that minimizes the number of disagreements may have the exponentially larger size.
The following Occam algorithm solves this problem by taking the strategy of finding a
hypothesis whose rate of disagreements is less than some fixed value calculated from $\epsilon$

and $\eta_{b}$ instead of finding one of minimum rate so that with high probability hypotheses of
at most polynomially larger size can be found among the hypotheses that have the rate
of disagreements less than the value.
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A (l-based) noise-tolerant Occam algorithm for $H$ (with respect to a fixed
encoding) is a learning algorithm that

1. produces a hyp$0$thesis of size at most $p(n)m^{\alpha}$ such that

$\frac{thenumberofdisagreements}{m}\leq\eta_{b}+\frac{\epsilon(1-2\eta_{b})}{2}$ ,

when given a sample of size $m$ of any target concept in $H$ of size $\ovalbox{\tt\small REJECT}$

$n$ , and

2. runs in time polynomial in the length of the sample.

Thus a noise-tolerant Occam algorithm is identical to an (usual) Occam algorithm, ex-
cept that rather than finding a consistent hypothesis, the algorithm finds a hypothesis
consistent with at least $(1-( \eta_{b}+\frac{\epsilon(1-2\eta_{b})}{2}))m$ of the examples. The similar notions can be
found in [BP89, KL88].

Theorem 1 Given independent examples of any concept in $H$ of size at most $n$ afflicted
by classification noise of rate $\eta,$ $a$ (l-based) noise-tolerant Occam algorithm produces a
hypothesis with error at most $\epsilon$ with probability at least $1-\delta$ using sample size polynomial
in $\frac{1}{\epsilon}’\frac{1}{5}fn$ , and $\frac{1}{1-2\eta_{b}}$ The sample size required is

$m \geq\max[\frac{4}{\epsilon^{2}(1-2\eta_{b})^{2}}\ln(\frac{2}{\delta}),$ $( \frac{p(n)\ln(|\Gamma|)}{\epsilon^{2}(1-2\eta_{b})^{2}})^{\frac{1}{1-\alpha}}]$ .

Sketch ofproof. Let $s= \frac{\epsilon(1-2\eta_{b})}{2}$ . The first lower bound on $m$ implies that the probability
that the target concept has more than $(\eta_{b}+s)m$ disagreements with the sample is less than

$\frac{\delta}{2}$ by the Hoeffding’s inequality lemma in [AL88]. The second lower bound on $m$ implies
that $|\Gamma|^{p(n)m^{\alpha}}\leq e^{-2s^{2}(-m/2)}$ . Since the number of hypotheses of size at most $p(n)m^{\alpha}$ is
$|\Gamma|^{p\langle n)m^{\alpha}}$ and the probability that a hypothesis with error greater than $\epsilon$ has at most
$(\eta_{b}+s)m$ disagreements is $e^{-2s^{2}m}$ by the Hoeffding’s inequality lemma, the probability of
producing a hypothesis with error greater than $\epsilon$ is less than $|\Gamma|^{p(n)m^{\alpha}}e^{-2s^{2}m}\leq e^{-2s^{2}m/2}$ ,
which is less than $\frac{5}{2}$ by the first lower bound on $m$ . $\square$
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Dimension-based noise-tolerant Occam algorithm

A (d-based) noise-tolerant Occam algorithm for $H$ is a learning algorithm that

1. produces a hypothesis such that

$\frac{thenumberofdisagreements}{m}\leq\eta_{b}+\frac{\epsilon(1-2\eta_{b})}{4}$ ,

and the class of hypotheses produced has the VC dimension at most
$p(n)m^{\alpha}$ when given a sample of size $m$ of any target concept in $H$ of size
at most $n$ , and

2. runs in time polynomial in the length of the sample.

Theorem 2 Suppose that $\eta\leq\eta_{b}\leq\frac{\epsilon}{4}$ Given independent examples of any concept in
$H$ of size at most $n$ afflicted by classification noise of rate $\eta,$ $a$ (d-based) noise-tolerant
Occam algorithm produces a hypothesis with error at most $\epsilon$ with probability at least $1-\delta$

using sample size polynomial in $\frac{1}{\epsilon}2\frac{1}{s}n_{y}$ and $\frac{1}{1-2\eta_{b}}$ The sample size required is

$m \geq\max[\frac{8}{\epsilon^{2}(1-2\eta_{b})^{2}}\ln(\frac{2}{\delta}),$ $\frac{128}{\epsilon^{3}}\ln(\frac{16}{\delta}),$ $( \frac{256p(n)}{\epsilon^{3}}\ln(\frac{256}{\epsilon^{3}}))^{\frac{1}{1-\alpha}}]$ .

Sketch of proof. Let $s= \frac{\epsilon(1-2\eta_{b})}{4}$ We use the following fact from $[BEHW87a]$ : given
a sample of size $m$ of a target concept in $H$ of VC dimension $d$ , the probability that a
hypothesis consistent with at least $(1-\gamma)\epsilon m$ of the examples has error greater than $\epsilon$ is
at most $8( \frac{2em}{d})^{d}e^{-\gamma^{2}\epsilon m/4}$ and when $m= \max[\frac{8}{\gamma^{2}\epsilon}\ln(\frac{8}{\delta}), \frac{16d}{\gamma^{2}\epsilon}\ln(\frac{16}{\gamma^{2}\epsilon})]$, it is less than $\delta$ .

The first lower bound on $m$ implies that the probability that the target concept has
more than $(\eta_{b}+s)m$ disagreements with the sample is less than $\frac{s}{2}$ Therefore with proba-
bility at least $1- \frac{s}{2}$ , the number of examples on which the target concept and a hypothesis
that has at most $(\eta_{b}+s)m$ disagreements disagree is less than $2(\eta_{b}+s)m$ . By letting
$\gamma=\frac{1}{2}+(1-\frac{2}{\epsilon})\eta_{b}$ , the probability of producing a hypothesis with error greater than $\epsilon$

is less than $8( \frac{2em}{p(n)m^{a}})^{p(n)m^{\alpha}}e^{-\gamma^{2}\epsilon m/4}$ and by the second and third lower bound on $m$ and
$\eta_{b}\leq\frac{\epsilon}{4}$ , it is less than $\frac{\delta}{2}$

$\square$

Application: learning finite unions of geometric concepts We now demonstrate
an example of learning geometric concepts to exhibit how the noise-tolerant Occam algo-
rithm can be used to establish the polynomial learnability of many concept classes in the
presence of classffication noise. The target concept class $H_{*}$ is the set of all finite unions
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of axis-parallel rectangles in Euclidean k-dimensional space $E^{k}$ , that is, $H_{*}= \bigcup_{s\geq 1}H_{s}$ ,
where $H_{s}$ is the class of s-fold unions of axis-parallel rectangles. Each concept $C$ of $H_{s}$

can be represented as the form of $C=C_{1}\cup C_{2}\cup\cdots\cup C_{s}$ (each tuple $C_{i}(1\leq i\leq s)$ is
an axis-parallel rectangle). Let $H$ denote the class of axis-parallel rectangles in $E^{k}$ . Let
the size of a concept $C$ in $H_{*}$ be the smallest $s$ such that $C=C_{1}\cup C_{2}\cup\cdots\cup C_{s}$ , where
$C;\in H(1\leq i\leq s)$ . $H$ has the finite VC dimension $2k$ , but $H_{*}$ has the infinite one. $H_{s}$

has the finite VC dimension $4ks\log(3s)[BEHW87a]$ . Thus the problem is $for\ovalbox{\tt\small REJECT}$aed as
follows: Given independent examples of any union of at most $s$ axis-parallel rectangles in
$H$ aMicted by classification noise of rate $\eta$ , find a hypothesis in $H_{*}$ with error at most $\epsilon$

with probability at least $1-\delta$ using a sample of size polynomial in $\frac{1}{\epsilon},$ $\frac{1}{\delta}s$ , and $\frac{1}{1-2\eta_{b}}$ in
time polynomial in the length of the sample.

While there exists a polynomial hypothesis finder for the class $H$ of axis-parallel rect-
angles, it is NP-hard to find a union of $s$ or fewer axis-parallel rectangles that contains all
positive examples and no negative example in the given sample of any union of at most
$s$ axis-parallel rectangles, because this problem can be formulated as a “set cover prob-
lem”. Hence given a sample of any union of at most $s$ axis-parallel rectangles afllicted by
classification noise, it is also NP-hard to find a union of $s$ or fewer axis-parallel rectangles
such that the rate of disagreements with the sample is less than $\eta_{b}+\frac{\epsilon\langle 1-2\eta_{b})}{4}$ . The key
techniques used in the following are a simple approximation algorithm for the set cover
problem and a (d-based) noise-tolerant Occam algorithm.

First we assume that the classification noise model is restricted to that the label of
the negative example is only reversed with probability $\eta$ and no errors will be made in
reporting the positive example. Then the problem becomes finding a union of axis-parallel
rectangles that contains more than $(1- \eta_{b}-\frac{\epsilon(1-2\eta_{b})}{4})m-m_{neg}$ positive examples and no
negative example, where $m$ is the size of the given sample and $m_{neg}$ is the number of
the negative examples. This problem can be formulated as a “partial cover problem”.
By employing a greedy approximation algorithm of [KL88] for the partial cover problem,
a (d-based) noise-tolerant Occam algorithm can be given to establish the polynomial
learnability for $H_{*}$ in the presence of classification noise.

Given a sample $S$ of a target concept $C=C_{1}\cup C_{2}\cup\cdots\cup C_{s}$ of s-fold union
of axis-parallel rectangles, Algorithm $A$ takes the following procedure:

1. Let $\Pi_{H}(S)$ denotes the set of all ways the instances in $S$ can be labeled
$with+and-so$ as to be consistent with at least one axis-parallel rect-
angle in $H$ . Find the largest set in $\Pi_{H}(S)$ that contains only positive
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examples;

2. Use the polynomial hypothesis finder for $H$ to produce an axis-parallel
rectangle that includes only these instances in $S$ ;

3. By deleting these instances from $S$ and iterating this procedure, obtain
a union of axis-parallel rectangles that contains more than (1 $-\eta_{b}-$

$\frac{\epsilon(1-2\eta_{b})}{4})m-m_{neg}$ positive examples and no negative example in $S$ .

By [KL88], the algorithm $A$ produces a hypothesis of a union of at most $s(c\log(m)+3)$

axis-parallel rectangles ( $c$ is a constant). The VC dimension of the hypothesis class of
$s(c\log m+3)$-fold unions of axis-parallel rectangles is $O(s\log(m)(\log(s)+\log\log(m)))$

$[BEHW87a]$ . Hence $A$ is a (d-based) noise-tolerant Occam algorithm and thus by Theorem
2, $H_{*}$ is polynomially learnable in the presence of restricted classification noise.

5 Concluding Remarks

We have introduced noise-tolerant Occam algorithms in the Valiant learnability model
and shown that the existence of a noise-tolerant Occam algorithm for a class of concepts
is a sufficient condition for the polynomial learnability of that class in the presence of
noise. An application of noise-tolerant Occam algorithms has been demonstrated in the
example of learning finite unions of axis-parallel rectangles in the presence of noise. The
validity of the learning algorithm $A$ in the example, however, depends on the assumption
of “restricted” classification noise. Can we find a noise-tolerant Occam algorithm that
learns finite unions of axis-parallel rectangles (or some other geometric concepts) in the
presence of classification noise (not restricted one)?

[BP89] has proved that not only are Occam algorithms a sufficient condition for poly-
nomial learnability, but they are in fact a necessary condition for many natural concept
classes. It would be interesting to investigate whether this result can also be hold in the
presence of noise; the existence of a noise-tolerant Occam algorithm is also a necessary
condition for polynomial learnability in the presence of classification noise, which will
turn out to prove the correctness of our definition of noise-tolerant Occam algorithms.
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