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Abstract

Equal matrix grammars are one of parallel rewriting systems. This type of paral-
lel rewriting systems has been investigated in several areas such as L-systems and the
syntactic pattern recognition. In this paper, we introduce two types of structural infor-
mation and show that if these are available and there is a method of learning regular sets
in polynomial time, then for any positive integer k the class of equal matrix grammars of
order k is learnable in polynomial time. We also show that for any equal matrix language
there exists an equal matrix grammar learnable efficiently only from positive structural

examples. These results are applied to the problem of learning multitape automata and
the same results are obtained.

1 Introduction

Equal matrix grammars introduced by Siromoney [7] are one of parallel rewriting systems.
This type of parallel rewriting systems has been investigated in several areas such as L-
systems (n-parallel right linear grammars [11]) and the syntactic pattern recognition [6].
Also, they are one of general extensions of regular grammars and closely related to multitape
automata, which are one of generalizations of finite automata. These observations lead us
to the study of learning method for equal matrix grammars and languages.

At first, we consider a relation between the learning problem for equal matrix languages
and the problem for regular sets. Then, we introduce two types of structural information
on equal matrix grammars and define two subclasses of the grammars for each order k
(k is a positive integer). It is shown that if there is a method of learning regular sets in
polynomial time, then for each order k these subclasses are learnable in polynomial time
with the method. This implies that if the structural information on grammars is available
then the class of equal matrix grammars of order k is learnable efficiently. We also show that
for any equal matrix language there exists an equal matrix grammar learnable efﬁdently
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only from positive structural examples. These results are applied to the problem of learning
multitape automata and the same results are obtained.

2 Preliminaries

Let ¥ denote an alphabet and ¥* denote the set of all strings over ¥ including the null string
A. lg(w) denotes the length of a string w. A language over ¥ is a subset of X*.

A finite automaton over I is defined as usual and denoted by a 5-tuple M = (K, %, 8, ¢o, F),
where K is a set of states, é is a transition function, qo is the initial state, and F is the set of
final states. We abbreviate a deterministic and nondeterministic finite automaton as DFA
and NFA respectively. A regular set R is a subset of ©* accepted by an NFA.

Let k be a positive integer. An equal matriz grammar of order k, abbreviated k-EMG, is
a (k + 3)-tuple G = (Ny,..., N, E,I1,S). Ny,...,Ni are finite nonempty pairwise disjoint
sets of nonterminals. S is not in jU..-U Nk U X and is called the start symbol. II is
a finite nonempty set of the following three types of matriz rules: [S — u;A;---urAgl,
[A; = w1 By,..., Ar — wBy], and [A; — uy,..., Ax — uy), where for each i (1 < i < k),
A;, B; are in N and u; € ¥*. Especially, a k- EMG G° is said to be mzmmal if and only if
for any i, IV; is a singleton, i.e., N; = {S;}.

In What follows, we denote any matrix rule with its unique label 7. The size of a matrix
rule 7, denoted sz'ze('ir), is defined as follows: If  is of the form [S — z] then size(w) = lg(z).
If = is of the form [A; — =zy,..., A — zi] then size(n) = maz(lg(z,),...,lg(zk)).

Let G = (Ny,...,Ni, 5,11, S) be a k-EMG. We denote N;U---U N, UX U {S} by V.
For any z,y € V*, z =;> y if and only if either £ = S and 7 : [S — y] is in II or there
exist Uy, ..., Uk, U1,..., 0 in B*, z9,..., 2 €ach z; in (V; U £)*, and A,,...,A; each A; in
N; such that £ = uy Ajvy - - - wp Agvg, ¥ = Uy 210y - - Up 2k Vg, and 7 : [A] — 21,..., A — 2] 1s
in II. We write z :%4» y if and only if either z = y and a = A, or there exist z¢,...,z, € V*

such that = = z¢, y = z,, and z; =7;='> zi4y foreachianda=m - -m,. = =‘-’G:> y is called a
derivation from x to y with an associate word o in G. A k-EMG G is said to be unambiguous
if and only if for any string w € £*, S =Z> w and S =Z=I> w imply a = o'.

The language generated by G, denoted L(G), is the set L(G) = {w € ¥*|S _—%> w} and

is called the equal matriz language of degree k (abbreviated k-EML) generated by G.
Clearly, any 1-EML is a regular set and it is easy to show that any 2-EML is a linear
language. For any positive integer k > 3, the class of k-EMLs contains some context-sensitive
languages. For example, the context-sensitive language {a™b"c*|n > 1} is a 3-EML. Also,
there exists a context-free language which is not a k-EML for any positive integer k [4]. For
example, the context-free language {a"b™|n > 1}* is not a k-EML for any k. The class of
k-EMLs forms a hierarchy of languages in the family of equal matrix languages [4].

3 Representation Theorem

In this section, we show a representation theorem for k-EMLs. The theorem claims that
any k-EML is generated by a minimal k-EMG with a regular control set. This suggests a
relation between the problem of learning k-EMLs and the problem of learning regular sets.
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Definition Let G = (MNy,..., N, %11, S) be a k-EMG and A(G) = {«|S =;> w,w €
L(G)}. Then, a subset C of A(G) is called a control set for G and Lo(G) = {we T*|S =;>
w, a € C} is called the language generated by G with the control set C.

We denote by #° : R(w, S, ..., Sk) the matrix rule such that all occurrences of nontermi-
nals of N; in 7 are replaced by S; for every ¢ (1 <1< k).

Let G = (Ny,..., N, Z,I1,5) be a k-EMG and G° = ({S1},..-,{S},Z,1I%S) be a
minimal k-EMG such that II° D {#° : R(x,S;,...,S:) | € II}. Then we define a homo-
morphism % from II* to II°" such that A(r) = #° if and only if 7° : R(x, Sy,...,Sk). Also,
we define the NFA M = ({S,qs} U (N1 x - -+ x Ni),II°, 8, S, {qs}) corresponding to G, where
gs ¢ Ny U---UN and § is defined as follows: (where u; € £* for each ¢)

§(5,7% = {(A1,...,Ar)|m € R (7% and 7: [S — w1 A; - - - ur Ak},

6((A1,...,Ax), ™) = {(Bi,...,Bi)|7m € A7 (x°) and 7 : [4; — w1 By,..., Ax — uBil},
§((A1y-- -, A),7°) = {g;} i 7m€hr (%) and 7: [Ay, = ug,..., A — ui].

The following lemma can be proved by an induction on the length of associate words.
Lemma 3.1 For any w € £*, (Ay,...,Ax) € Ny X --- X Ny, and o € A(G), Ay -+ Ax :i—ét- w
. . h(a

if and only if Sy--- Sy %—og w and g5 € 6((A1,..., Ar), h(a)).

From definitions, S =;> U1 A; - - - urp Ag ifand only if S "=§§ u1Sy - - - uk Sk and (A, ..., Ak) €

8(S, h(x)). Therefore, by Lemma 3.1, for any w € £*, S =;=> w if and only if S %%g w and
qs € 8(S,h(e)). Hence, we have the following:

Lemma 3.2 For any k-EML L, there ezist a minimal k-EMG G° and a regular control set
C for G° such that L = Lc(G®) holds.

Lemma 3.3 Let G° be a minimal k-EMG and C be a regular control set for G°. Then
L = Lo(G®) is a k-EML.

Proof. Let G° = ({S1},...,{Sk},%,1I°% S) be a minimal k-EMG and M = (N,1I°,6, S, F)
be a DFA which accepts C. We define a k-EMG G = ({S1},...,{Sk-1}, N, E,IL, S) and a
homomorphism h from IT* to TI°" as follows: (1) if §(S,7°) = A and 7°: [S — u;S; - - - uk Sk},
then 7 : [S — u;S;---ukA] is in II and &(7) = % (2) if §(A,7°) = B and 7% : [S; —
u1S1, ..., Sk — ugpSk), then 7 : [S; — ©15;,...,A = wB] is in II and h(r) = #°, (3) if
8(A,7°) € F and 7° : [S; — wy,...,S; — w;] where each w; is in ©*, then 7 : [S; —

.y A — wy] is in IT and h(7) = 7°. By the similar argument in the proof of Lemma 3.2,
it is easy to prove that for any w € £*, S % w and §(S,a%) € F if and only if S =;> w

- where a € h7*(®). Therefore, L = Lo(G°) = L(G) is a k-EML. O
We summarize Lemmas 3.2 and 3.3 in the following theorem:

Theorem 3.4 For any language L, L is a k-EML if and only if there exist a mmzmal k-EMG
G° and a regular control set C for G0 such that L = Lo(G®) holds.
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From this, we define a k-EML in terms of a minimal k-EMG and a regular control set for it.

Definition Let L be a k-EML. A primitive k-EMG of L is a minimal k-EMG G° such
that there exists a regular control set C for G° with which G° generates L.

4 Learning Method Based on Control Sets

We assume that a learner is a procedure which (1) gets strings as examples, (2) outputs
strings for queries, and (3) outputs grammars as conjectures. Although various learning
methods for formal languages have been proposed up to now (see [3], for example), this
assumption seems to be general enough to include any known learning protocol. Therefore,
without loss of generality, we may assume that a learner for regular sets gets strings, outputs
strings, and outputs DFAs, and a learner for k-EMLs gets strings, outputs strings, and
outputs k-EMGs.

Theorem 3.4 implies that an unknown k- EML L can be 1dent1ﬁed by identifying a primitive
k-EMG G° and a regular control set C for G°. From this, we divide tasks of a learner for.
k-EMLs into the following two main tasks: (1) identifying G°® of L and (2) identifying C for
G°. In order to construct a learner for k-EMLs which carries out the above two main tasks,
the following three auxiliary tasks may be needed: (a) converting a string to associate words
by parsing in G°, (b) converting an associate word to a string by generating in G°, and (c)
constructing a k-EMG from a DFA. While for the first auxiliary task a method to convert a
string to an associate word and its efficiency seem to depend on primitive k-EMGs, for the
other two auxiliary tasks, there are general methods, which the reader finds in [10]. Their
time complexities are bounded by polynomials of p, ¢, and the length of associate words or
the number of states of a DFA, where p is the cardinality of the set of matrix rules of G°
and ¢ is the maximum size of the matrix rules of G°.

For any alphabet ¥ there exists a minimal k-EMG G* fized for ¥ which is a primitive k-
EMG of any k-EML over % [10]. This implies that a k-EML can.be identified by identifying
a regular control set for G*. However, for each k-EML L, there exist more than one regular
control sets for G* and it seems to be impossible to fix a regular control set for G* effectively.
Furthermore, more than non-polynomial number of associate words can be converted from
an inout string w by parsing in G*.

Finally, we show a condition on minimal k-EMGs so that there exists a unique regular
control set.

Lemma 4.1 Let L be a k-EML and G° be a primitive k-EMG of L. If G® is unambiguous,

then a control set C' with which G° generates L is regular and unique. Moreover, C = {a €
n|s =;? w, w € L}.

Proof.  Assume that C’ is another control set such that L = Lg/(G®). Since G° is unam-
biguous, for any string w € L there exists a unique associate word a such that S :a> w.
Since C and C' are subsets of A(GO) w € L if and only if @ € C if and only if « E C'.
Therefore, C = C'.

Let G be a k-EMG such that L = L(G) and II° D {#°: R(m, Sy,...,Sk) | = € I} where II
and II° are sets of matrix rules of G and G° respectively. By the assumption and Theorem 3.4,
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such a k-EMG exists. Let C” be a regular control set which the NFA corresponding to G
accepts. Since a control set for G° is unique, C = C”, hence C is regular. [

Therefore, for an unknown k-EML L, if an unambiguous primitive k&-EMG G° of L is found,
the learner has only to identify a unique regular control set C. In this case, for any string
weXif S ? w, then w € L exactly means a € C and w ¢ L means a ¢ C. If there is

no « such that S =G—‘1°> w, then w ¢ L. This implies the following proposition:

Proposition 4.2 The problem of identifying a regular control set for an unambiguous min-
imal k-EMG is reduced to the problem of identifying a regular set.

5 Learning t-Even Equal Matrix Grammars

In this section, we introduce the structural information called ¢-evenness and define a sub-
class of k-EMGs, called t-even k-EMGs. It is shown that the learning problem for the
class of languages generated by t-even k- EMGs is reduced to the problem for regular sets in
polynomial time.

Definition Let ¢ denote a k-tuple (%1,...,%) such that each ¢; is a positive integer. A
t-even k-EMG Gy = (Ny,..., Ny, 5,11, S) is a k-EMG such that each matrix rule in II,
is of the form (1) ms : [S — A;---Axl, (2) 7n : [A1 — wiBy,..., Ay = wBy), or (3)
77 : [A1 = uy,..., Ay — w;), and for each 7w € II, of the form 7y or 77, there exists a
positive integer n such that lg(u;) = nt; for each i, where A;, B; € N;, u; € £* for each 1.

A t-even k-EML is a language generated by a t-even k-EMG. We note that from the defini-
tion, for any t-even k- EML L;, for any element w in L;, w can be partitioned into k number
of substrings wy, ..., w such that there exists a positive integer n and Ig(w;) = nt; for each
i.

Clearly, any t-even 1-EML is a regular set. The class of ¢-even 2-EMLs is included in the
class of k-linear languages described in [1]. For a positive integer k£ > 2, the class of t-even
k-EMLs contains some context-sensitive languages.

At first, we show a normal form of ¢t-even k- EMGs without the proof.

Lemma 5.1 Let t = (ty,...,t). For any t-even k-EML L,, there ezists a t-even k-EMG
Gy = (M, ..., Nk, 5,11, S) such that L; = L(Gt) and each matriz rule is of the form (1) 7s :
[S— Ay--- AR], (2) on: [A1 = wi By, .., Ap = wi By, or (3) 7 : [A1 — ua, ..., Ar — g,
where for each i, A;, B; € N;, u; € X%, and lg(u;) = ¢;.

Given an alphabet ¥ and t = (t1,...,%), we define the universal t-even k-EMG GT =
({S1},--.,{S:}, 2,117, S), where IIT consists of the following matrix rules:
nr = {zZ:[S = S;--- S} ‘
U {w{, : [S1 — uiS1, ..., Sk — urSik) |u; € ¥ and lg(w;) = t;}
U {7 2 [S1 o urye .., Sk — w) |us € 37 and lg(w;) = 4}
It is easy to verify that GT is unambiguous and generates any string w over ¥ such that w
can be partitioned into k£ numbers of substrings w;,...,w; so that there exists a positive

integer n and lg(w,) = nt; for each i. Also, note that G'T has 2 []%_, m% +1 number of matrix
rules, where m is the cardinality of an alphabet Y. ‘ -
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Ay . . wbbbw

Ao U I bwwwb

Az O IR bwwwb - = b
S = Mg i I bwwwb

Ag bwwwb ° =W

2g bw

A7 wbbbw

Figure 1: The scheme of encoding the figure ‘0’ into a string

Theorem 5.2 For any language L; over ¥, L; is a t-even k-EML if and only if there exists
a regular control set C for the universal t-even k-EMG GT such that Ly = Lc(GT) holds.

Proof. By Lemma 5.1, we may assume that any t-even k-EML is generated by a t-even
k-EMG G, of the form described in Lemma 5.1. To prove this theorem, we have only to note
that GT is a primitive t-even k-EMG of G; and a homomorphism k and the corresponding
NFA to G; can be defined in the same way as in the proof of Theorem 3.4. []

Since the universal t-even k-EMG GT is unambiguous, by Lemma 4.1, for any t-even
k-EML L, over %, a control set C for GT such that L, = Lo(G7T) is regular and unique.
Moreover, C = {a| S %;? w, w € L;}. Therefore, since G7 is fixed for £, a learner for ¢-even

k-EMLs has only to identify C. To construct the learner, we have only to prepare a front-end
processing algorithm and add it to a learner for regular sets. The algorithm performs three
auxiliary tasks described in the section 4. Note that the time complexity of parsing an input
string w in GT is bounded by a polynomial of n and m [10], where n = lg(w) and m is
the cardinality of the alphabet ¥. Therefore, the front-end processing algorithm reduces the
problem of identifying an unknown t-even k-EML to the problem of identifying an unknown
regular control set for a universal ¢t-even k-EMG GT in polynomial time of sizes of strings,
associate words, and DFAs. Hence, we have the following theorem.

Theorem 5.3 The problem of learning t-even k-EMLs is reduced to the problem of learning
reqular sets. Moreover, if the time complezity of a learner for regular sets is bounded by a
polynomial, then that of a learner for t-even k-EMLs wzth using the learner for regular sets
is also bounded by a polynomial.

Example Equal matrix languages can be considered as digital picture languages intro-
duced in [6]. Figure 1 illustrates how to encode the figure ‘0’ represented on 7 x 5 matrix of
rectangular arrays into strings. The figure ‘0’ is encoded into the string wbw(bw3b)>wbiw.
Figure 2 shows all figures represented on matrices and their encoded strings. In this case,
the set of the figures and finite sequences of them is encoded in (1,1,1,1,1,1,1)-even 7-EMG
and from the results described in this section, we can construct a pattern recognition system
which can learn this type of digital pictures.

6 Structured Equal Matrix Grammars

A structured k-EMG is a k-EMG which dlsplays derlvatlons in correspondlng strmgs This
implies that a learner may use supplemental information on derlvatlons of the k-EMG. .
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| wbsw (bw3b) Subw wbwbbw (wbw) 4pbb wb‘?’wbwabwq'bw‘?’bw wbswbwz'bw“bwwbbw wwbww (wbw3) 2
wwbwwbw3b5 w4bbw3bwb3w (bwwbw) 2505w
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bw%wbaw . (bwz'b) zwbs » wwbww(u(bw:”)2 (bw:”b) %ﬂbs w"'bbv:.':”bwltz3

e =W E:b

Figure 2: The encoded figures

Definition Let # be a special symbol not in an alphabet ¥. For a k-EMG G =
(N1, ...,y Nk, 8,10, S), the structured k-EMG of Gis a k-EMG G, = (Ny, ..., Nk, BU{#},11,, S)
such that (1) 75 : [S — wyA1# - -wiArft] € I, if 7% : [S — wA;---u A € 11, (2)

N [A1 = #u By, ..., Ax = #uBy) € I, if ofy : [4; — ulBl, S Ar — upBy] € 11, or
(3) 7r : [A1 — #us,..., A — Fui) € IL, if 77 @ [A; — wy,..., Ax — ui), where for each ¢
(1 <i<k), A, B; are in N; and u; is in X*. :

A structured k-EMG is a structured k-EMG of some k-EMG. A structured k-EML is a

language generated by a structured k- EMG. Note that from the definition, for any structured

k-EML L,, any element w in L, contains kc number of #s, where c is a positive integer.
The following lemma can be proved by an induction on the length of strings.

Lemma 6.1 Any structured minimal k-EMG is unambiguous.

Note that the time complexity of parsing an input string w in a structured minimal k-EMG
G? is bounded by a polynomial of n, p, and ¢ [10], where n = Ig(w), p is the number of
matrix rules of G?, and ¢ is the maximum size of the matrix rules of G9.

Let L, be a structured k-EML. Since any structured minimal k—EMG is una.mblguous,
" by Lemma 4.1, for any primitive k-EMG G2 of L,, a control set C = {a|S :> w, w € L,}

for G0 is regular and unique. From this, a learner identifies a structured k EML L, by
identifying a primitive k-EMG G° of L, and a unique regular control set C for G2. We next
show that G° can be identified efficiently from the given examples.

Let G, be a structured k-EMG. A string w is said to ezercise a matrix rule 7 of G, if

and only if there exists a derivation S :———> z =:> Yy => w. ‘A matrix rule 7 of G, is said to

be live if and only if there exists a stmng w in L(G’ ) Wthh exercises .
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Algorithm CRA
Dividing w into k number of substrings wy,...,wk
such that w = wy# - -- wy# and each w; has the same number of #s;
For each i, divide w; into u;y,...,ui, such that w; = uj1# - - - #uin and u;; € X%
O,:= {rs:[S — w1 S1# - ug Sk#)} :
U{rn : [S1 — #u1;51,...,5 — #ukjSk] [2<i<n-1}
U{WT : [Sl — #u1n,-.. » Sk — #ukn]};
output II; and halt;

Figure 3: An algorithm generating matrix rules

Definition A finite subset RS(L,) of a structured k-EML L, is said to be a representative
sample of L, if and only if there exists a structured k-EMG G, such that L, = L(G,) and
for every live matrix rule 7 of G,, there exists an element in RS(L,) which exercises «.

Let RS be a finite subset of a structured k-EML L,. Given a string w of L,, Algorithm
CRA illustrated in Figure 3 outputs a set of matrix rules. Let II9 be the union of the output
sets of CRA for RS. Then from the definition of representative samples we have:

Lemma 6.2 If RS is a representative sample of L,, then G = ({S1},-.., {Sk}, ZU{#}, 1%, S)
is a primitive k-EMG of L,. v

Note that it is obvious from the construction that given a string w such that n = lg(w), the
_cardinality of the output of Algorithm CRA is bounded by a polynomial of n and also note
that the time complexity of CRA is bounded by a polynomial of n.

A learner is said to identify a k-EMG G from structural ezamples if and only if it iden-
tifies the structured k-EMG of G from examples. Since any structured minimal k-EMG is
unambiguous, it follows from Proposition 4.2 that for any unknown structured k-EML L,,
if a primitive k-EMG G? of L, is found, then the problem of identifying L, is reduced to the
problem of identifying a regular set. Therefore, after constructing G? with Algorithm CRA,
the learner has only to identify a regular control set with using a learner for regular sets.
Note that the number of matrix rules of G is bounded by the number of examples given
to Algorithm CRA and the maximum length of any given example, and that the maximum
size of the matrix rules of GY is also bounded by the maximum length of any given example.
Hence, we have:

Theorem 6.3 Given a learner for reqular sets such that its ttme complexity is bounded by a
polynomial, one can construct a'learner which identifies any k-EMG from structural exzamples
in polynomial time. '

Example Again, we show an example for digital picture languages. Figure 4 illustrates
an encoding of the correspondence between tables and their histograms into equal matrix
languages. In this case, the histogram shows its structure with coloring. This correspondence
can be encoded in a structured 6- EMG and from the results described in this section, we can
construct a pattern recognition system which can learn this type of digital picture processing.

7 Learning from Positive Examples

Angluin [2] has introduced zero-reversible finite automata and shown that the class of zero-
reversible finite automata is learnable from positive examples. A DFA M = (K, %, 6, qo, F')

8
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iteml item2 item3
memberl | 4 5 3 o A 4#543%
member2 | 2 3 2 ) A 243424
member3 | 4 2 3 . , Az 442434%
*
s = =
memberl Ay b S
member2 A5 bz#g3#w2#
member3 Ag b4#gz#w3#

cg [-=w

Figure 4: A table and a histogram

is said to be reset-free if and only if for no two distinct states ¢; and ¢, do there exist a € ¥ -
and g3 € K such that 6(q;,a) = g3 = 6(qz,a). A zero-reversible finite automata is a DFA
such that it has at most one final state and is reset-free.

A k-EMG G is said to be deterministic if and only if there are no two distinct matrix
rules mgy 1 [S — u14; - urAg] and 7gy : [S — uy By - - - u;Byi] and there are no two distinct
matrix rules mn, : [A1 = wBi,...,Ar = By and 7wy, ¢ [AL = wCy, ..., A = urChl].
A k-EMG G is said to be reset-free if and only if there are no two distinct matrix rules
7y : [By = 21,...,Br — ) and 73 : [C1 — 4,...,Cr — zk). '

Definition A k-EMG G is said to be in reversible form if and only if G is deterministic
and reset-free.

Proposition 7.1 For any k-EML L, there ezists a k-EMG G in the reversible form which
generates L.

Proof. Let G’ be a k-EMG which generates L. Without loss of generality, we may assume

that G’ has no matrix rule of the form = : [A; — By,..., Ay — Byi]. At first, we introduce
new nonterminals Cj,...,C; and a new matrix rule =y : [C; — A,...,Cy — A] into G'.
Also, we replace each matrix rule of the form nr : [A; — uy,...,Ar — uwg] by 77 : [A1 —

u1Cy,. .., A;p — uxCy] where each u; € *. Then we construct an NFA corresponding to &,
convert the NFA into the DFA, and again construct a k-EMG from the DFA. Let G” be the
modified k-EMG. It follows from Theorem 3.4 that G” is deterministic.

Let my : [By, — w1As,..., B, = ugAy],...,m; : [B;; = wiAy,...,Bj, — upAg] beall j
number of distinct matrix rules of G” which violate the reset-free condition for (4y,. .., Ak).
Then we introduce (j —1)k number of new nonterminals Cy,,...,C1,,...,Ci=1)1,- - -» C(i=1),
into G” and replace my,...,7; by new matrix rules 7} : [By, = w1 Ay,..., By, — upAg], 75 :
[Bsy, = wChy,...y By, — wCyl,...,7h ¢ [Bjy = wiCioay,, ..., Bj, — wiC(i-y,] and

9
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7(';’ : [Ch — Al,---,Clk — Ak], 1l'g H [C’"_)1 — 0117"'702k — Czk],...,‘)r;-' : [C(j-—l)1 —
Cii-2)15-- > Ci-1)x — C(i-2),)- It is easy to verify that by a finite number of repetitions
of this modification the modified G” is reset-free and generates L. Let G be the modified
k-EMG. Also, if G” is deterministic before the modification, then G is still deterministic
because at each step of repetitions of the modification, we introduce new nonterminals. [J

Since it is obvious from Theorem 3.4 that the corresponding DFA to a k- EMG in reversible
form is a zero-reversible automaton, we have the following theorem:

Theorem 7.2 For any k-EML L, there ezist a minimal k-EMG G° and a zero-reversible
automaton M such that L = L1(p)(G°) holds.

We consider the problem of learning k-EMLs from positive structural examples. As we
have noted in Section 6, for any unknown structured k-EML L,, if a primitive k-EMG G?
of L, is found, then the problem of identifying L, is reduced to the problem of identifying
a regular set. Also, since a representative sample consists of only positive examples, G° can
be found only from positive examples. These observations imply the following theorem:

Theorem 7.3 For any k-EML, there exist a k-EMG G learnable only from positive struc-
tural examples.

Note that since the time complexity of Angluin’s learner is bounded by a polynorrlial there
exists a learner which learns a k-EMG in reversible form from the given positive structural
" examples in polynomial time.

8 Application to Learning Multitape Automata

k-EMGs are closely related to k-tape automata. In this section, we apply the learning
methods for k-EMGs described in the above to the problem of learning k-tape automata.
For a positive integer k, we denote a k-tape (nondeterministic) automaton M} (over an
alphabet ) by a 5-tuple (K, %,8,Q, F) where K is a finite set of states, § is a finite subset
of (k + 2)-tuples K x ** x K, Q C K is the set of initial states, and F C K is the set of

final states. We extend 6 in a natural way to 6* in the following way: (g,w1,...,wk,q') € 6°
if and only if ¢ = ¢’ and w; = -+ = wr = A, (g, wr,...,wk,q') € 6™t if and only if
there exist ¢",uy,...,ux,v1,...,v¢ such that w; = wv; for each i, (q,uy,...,u,¢") € 6™,

and (¢",v1,...,0,¢") € 8. 6" = U,506". The set of all k-tuples accepted by M, denoted
T(My), is the set

T(M;) = {(ws, .- .., wy) | there exist go € @ and q;b € F such that (go,ws,...,ws,qs) € §*}.
Definition = A k-tape EMG is a k-EMG Gx = (MN,...,Ny,Z U {é} Iz, S) such that
$ ¢ ¥ and each matrix rule in Il is of the form (1) 7s : [S — A;--- Ak, (2) 7v : [A —
uiB1y.. ., Ap = wBy], or (3) 7r: [A; — w8, ..., Ax — ui$], where A,,B € N;, u; € I~

We show the relation between k-tape automata and k-tape EMGs in the followmg propo-
sition without the formal proof
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Proposiﬁon 8.1 Let Ty be a subset of £*%. There ezists a k-tape automaton My over ©
such that T, = T(M,) if and only if there ezists a k-tape EMG Gy such that L(Gk) =
{w1$ s $wk$ I (wl, cee ,wk) € Tk}

We note that the time complexity of constructing M} from G} is bounded by a polynomial
of p and ¢, where p is the number of matrix rules of Gy and ¢ is the maximum size of the
matrix rules of Gi.

Now we apply the learning methods for k-EMGs to the problem of learning k-tape au-
tomata. We define two subclasses of k-tape automata according to the subclasses of k- EMLs
introduced in the above. A k-tape automaton M, is said to be t-even if and only if there ex-
ists a t-even k-tape EMG G}y, such that L(G;) = {w;$-- - $wi$ | (wy,...,wi) € T(My,)}. A
k-tape automaton My, is said to be structured if and only if there exists a structured k-tape
EMG Gk, such that L(Gk,) = {w:$- - Swi$ | (wy, ..., wi) € T(Mi,)}. Then the problem of
learning t-even k-tape automata is reduced to the problem of learning regular sets. Given
a learner for regular sets whose time complexity is bounded by a polynomial, one can con-
struct learners for t-even k-tape automata and structured k-tape automata which take time
polynomial. Moreover, for any k-tape automaton M}, there exists a k-tape automaton M|
such that T(M;) = T(M}) and M;, is learnable from positive structural examples.
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