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Abstract

Equal matrix grammars are one of paralel rewriting systems. This type of paral-
lel rewriting systems has been investigated in several areas such as L-systems and the
syntactic pattern recognition. In this paper, we introduce two types of structural infor-
mation and show that if these are available and there is a method of learning regular sets
in polynomial time, then for any positive integer $k$ the class of equal matrix grammars of
order $k$ is learnable in polynomial time. We also show that for any equal matrix language
there exists an equal matrix grammar learnable efficiently only from positive structural
examples. These results are applied to the problem of learning multitape automata and
the same results are obtained.

1 Introduction
Equal matrix grammars introduced by Siromoney [7] are one of parallel rewriting systems.
This type of parallel rewriting systems has been investigated in several areas such as L-
systems (n-parallel right linear grammars [11]) and the syntactic pattern recognition [6].
Also, they are one of general extensions of regular grammars and closely related to multitape
automata, which are one of generalizations of finite automata. These observations lead us
to the study of learning method for equal matrix grammars and languages.

At first, we consider a relation between the learning problem for equal matrix languages
and the problem for regular sets. Then, we introduce two types of structural information
on equal matrix grammars and define two subclasses of the granrnars for each order $k$

( $k$ is a positive integer). It is shown that if there is a method of learning regular sets in
polynomial time, then for each order $k$ these subclasses are learnable in polynomial time
with the method. This implies that if the structural information on grammars is available
then the class of equal matrix grammars of order $k$ is learnable efficiently. We also show that
for any equal matrix language there exists an equal matrix grammar learnable efficiently
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only from positive structural examples. These results are applied to the problem of learning
multitape automata and the same results are obtained.

2 Preliminaries
Let $\Sigma$ denote an alphabet and $\Sigma^{*}$ denote the set of all strings over $\Sigma$ including the null string
$\lambda$ . $lg(w)$ denotes the length of a string $w$ . A language over $\Sigma$ is a subset of $\Sigma^{*}$ .

A finite automaton over $\Sigma$ is defined as usual and denoted by a 5-tuple $M=(K, \Sigma, \delta,q_{0}, F)$ ,
where $K$ is a set of states, $\delta$ is a transition function, $q_{0}$ is the initial state, and $F$ is the set of
final states. We abbreviate a deterministic and nondeterministic finite automaton as $DFA$

and $NFA$ respectively. A regular set $R$ is a subset of $\Sigma^{*}$ accepted by an $NFA$ .
Let $k$ be a positive integer. An equal matrix grammar of order $k$ , abbreviated k-EMG, is

a $(k+3)$-tuple $G=(N_{1}, \ldots, N_{k}, \Sigma,\Pi,S)$ . $N_{1},$ $\ldots,N_{k}$ are finite nonempty pairwise disjoint
sets of nonterminals. $S$ is not in $N_{1}\cup\cdots\cup N_{k}\cup\Sigma$ and is called the start symbol. $\Pi$ is
a finite nonempty set of the following three types of mat$r\dot{v}x$ rules: $[Sarrow u_{1}A_{1}\cdots u_{k}A_{k}]$ ,
$[A_{1}arrow u_{1}B_{1}, \ldots, A_{k}arrow u_{k}B_{k}]$ , and $[A_{1}arrow u_{1}, \ldots, A_{k}arrow u_{k}]$ , where for each $i(1\leq i\leq k)$ ,
$A;,$ $B$; are in $N$; and $u;\in\Sigma$“. Especially, a k-EMG $G^{0}$ is said to be minimal if and only if
for any $i,$ $N$: is a singleton, i.e., $N_{1}=\{S_{i}\}$ .

In what follows, we denote any matrix rule with its unique label $\pi$ . The size of a matrix
rule $\pi$ , denoted size$(\pi)$ , is defined as follows: If $\pi$ is of the form $[Sarrow x]$ then size$(\pi)=lg(x)$ .
If $\pi$ is of the form $[A_{1}arrow x_{1}, \ldots, A_{k}arrow x_{k}]$ then size$( \pi)=\max(lg(x_{1}), \ldots, lg(x_{k}))$ .

Let $G=(N_{1}, \ldots, N_{k}, \Sigma,\Pi, S)$ be a k-EMG. We denote $N_{1}\cup\cdots\cup N_{k}\cup\Sigma\cup\{S\}$ by $V$ .
For any $x,$ $y\in V^{*},$ $x\Rightarrow^{G\pi}y$ if and only if either $x=S$ and $\pi$ : $[Sarrow y]$ is in $\Pi$ or there
exist $u_{1},$ $\ldots,$ $u_{k},$ $v_{1},$ $\ldots,$

$v_{k}$ in $\Sigma^{*},$ $z_{1},$ $\ldots,$
$z_{k}$ each $z$; in $(N_{1}\cup\Sigma)^{*}$ , and $A_{1},$

$\ldots,$
$A_{k}$ each $A$; in

$N_{1}$ such that $x=u_{1}A_{1}v_{1}\cdots u_{k}A_{k}v_{k},$ $y=u_{1}z_{1}v_{1}\cdots u_{k}z_{k}v_{k}$, and $\pi$ : $[A_{1}arrow z_{1}, \ldots , A_{k}arrow z_{k}]$ is
in $\Pi$ . We write $x\Rightarrow^{\alpha}yG$ if and only if either $x=y$ and $\alpha=\lambda$ , or there exist $x_{0},$ $\ldots,$

$x_{n}\in V$
“

such that $x=x_{0},$ $y=x.$ , and $x;\Rightarrow_{G}x;_{+1}\pi$
: for each $i$ and $\alpha=\pi_{1}\cdots\pi_{n}$ . $x\Rightarrow^{\alpha}yG$ is called a

derivation from $x$ to $y$ with an associate word $\alpha$ in $G$ . A k-EMG $G$ is said to be unambiguous
if and only if for any string $w\in\Sigma^{*},$ $S\Rightarrow^{\alpha}wG$ and $S\Rightarrow^{\alpha}wG’$ imply $\alpha=\alpha’$ .

The language generated by $G$ , denoted $L(G)$ , is the set $L(G)=\{w\in\Sigma^{*}|S\Rightarrow^{\alpha}w\}c$ and
is called the equal mat$7\dot{Y}X$ language of degree $k$ (abbreviated k-EML) generated by $G$ .

Clearly, any l-EML is a regular set and it is easy to show that any 2-EML is a linear
language. For any positive integer $k\geq 3$ , the class of k-EMLs contains some context-sensitive
languages. For example, the context-sensitive language $\{a^{n}b^{n}c^{n}|n\geq 1\}$ is a 3-EML. Also,
there exists a context-free language which is not a k-EML for any positive integer $k[4]$ . For
example, the context-free language $\{a^{n}b^{n}|n\geq 1\}^{*}$ is not a k-EML for any $k$ . The class of
k-EMLs forms a hierarchy of languages in the family of equal matrix languages [4].

3 Representation Theorem
In this section, we show a representation theorem for k-EMLs. The theorem claims that
any k-EML is generated by a minimal k-EMG with a regular control set. This suggests a
relation between the problem of learning k-EMLs and the problem of learning regular sets.
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Definition Let $G=(N_{1}, \ldots, N_{k}, \Sigma,\Pi, S)$ be a k-EMG and $A(G)=\{\alpha|S\Rightarrow^{G\alpha}w,$ $w\in$

$L(G)\}$ . Then, a subset $C$ of $A(G)$ is called a control set for $G$ and $L_{C}(G)=\{w\in\Sigma^{*}|S\Rightarrow^{G\alpha}$

$w,$
$\alpha\in C$ } is called the language generated by $G$ with the control set $C$ .

We denote by $\pi^{0}$ : $R(\pi, S_{1}, \ldots, S_{k})$ the matrix rule such that all occurrences of nontermi-
nals of $N_{:}$ in $\pi$ are replaced by $S_{i}$ for every $i(1\leq i\leq k)$ .

Let $G=(N_{1}, \ldots, N_{k}, \Sigma, \Pi, S)$ be a k-EMG and $G^{0}=(\{S_{1}\}, \ldots, \{S_{k}\}, \Sigma, \Pi^{0}, S)$ be a
minimal k-EMG such that $\Pi^{0}\supseteq\{\pi^{0} : R(\pi, S_{1}, \ldots, S_{k})|\pi\in\Pi\}$ . Then we define a homo-
morphism $h$ from $\Pi^{*}$ to $\Pi^{0^{*}}$ such that $h(\pi)=\pi^{0}$ if and only if $\pi^{0}$ : $R(\pi, S_{1}, \ldots , S_{k})$ . Also,
we define the $NFAM=(\{S, q_{j}\}\cup(N_{1}\cross\cdots\cross N_{k}), \Pi^{0}, \delta, S, \{q_{f}\})$ corresponding to $G$ , where
$q_{f}\not\in N_{1}\cup\cdots\cup N_{k}$ and $\delta$ is defined as follow$s$ : (where $u_{i}\in\Sigma^{*}$ for each i)

$\delta(S,\pi^{0})$ $=$ { $(A_{1},$
$\ldots,$

$A_{k})|\pi\in h^{-1}(\pi^{0})$ and $\pi$ : $[Sarrow u_{1}A_{1}\cdots u_{k}A_{k}]$ },
$\delta((A_{1}, \ldots, A_{k}), \pi^{0})$ $=$ { $(B_{1},$

$\ldots$ , $B_{k})|\pi\in h^{-1}(\pi^{0})$ and $\pi$ : $[A_{1}arrow u_{1}B_{1},$
$\ldots$ , $A_{k}arrow u_{k}B_{k}]$ },

$\delta((A_{1}, \ldots, A_{k}), \pi^{0})$ $=$ $\{q_{f}\}$ if $\pi\in h^{-1}(\pi^{0})$ and $\pi$ : $[A_{1}, arrow u_{1}, \ldots , A_{k}arrow u_{k}]$ .

The following lemma can be proved by an induction on the length of associate words.

Lemma 3.1 For any $w\in\Sigma^{*},$ $(A_{1}, \ldots, A_{k})\in N_{1}\cross\cdots\cross N_{k}$ , and $\alpha\in A(G)_{J}A_{1}\cdots A_{k}\Rightarrow^{\alpha}wG$

if and only if $s_{1}\cdots s_{k}^{h(}4_{w}^{\alpha_{0}}G$ and $q_{f}\in\delta((A_{1}, \ldots, A_{k}), h(\alpha))$ .

From definitions, $S\Rightarrow^{\pi}u_{1}A_{1}\cdots u_{k}A_{k}G$ if and only if $S=_{G^{\pi_{0}}}h(4_{u_{1}S_{1}\cdots u_{k}S_{k}}$ and $(A_{1}, \ldots, A_{k})\in$

$\delta(S, h(\pi))$ . Therefore, by Lemma 3.1, for any $w\in\Sigma^{*},$ $S\Rightarrow^{\alpha}wG$ if and only if $S=_{0}h(\alpha 4_{w}G$ and
$q_{f}\in\delta(S, h(\alpha))$ . Hence, we have the following:

Lemma 3.2 For any k-EML $L$ , there exist a minimal k-EMG $G^{0}$ and a regular control set
$C$ for $G^{0}$ such that $L=L_{C}(G^{0})$ holds.

Lemma 3.3 Let $G^{0}$ be a minimal k-EMG and $C$ be a regular control set for $G^{0}$ . Then
$L=L_{C}(G^{0})$ is a k-EML.

Proof. Let $G^{0}=(\{S_{1}\}, \ldots, \{S_{k}\}, \Sigma, \Pi^{0}, S)$ be a minimal k-EMG and $M=(N, \Pi^{0}, \delta, S, F)$

be a $DFA$ which accepts $C$ . We define a k-EMG $G=(\{S_{1}\}, \ldots, \{S_{k-1}\}, N, \Sigma, \Pi, S)$ and a
homomorphism $h$ from $\Pi^{*}$ to $\Pi^{0^{*}}$ as follows: (1) if $\delta(S, \pi^{0})=A$ and $\pi^{0}$ : $[Sarrow u_{1}S_{1}\cdots u_{k}S_{k}]$ ,
then $\pi$ : $[Sarrow u_{1}S_{1}\cdots u_{k}A]$ is in $\Pi$ and $h(\pi)=\pi^{0},$ (2) if $\delta(A, \pi^{0})=B$ and $\pi^{0}$ : $[S_{1}arrow$

$u_{1}S_{1},$
$\ldots,$

$S_{k}arrow u_{k}S_{k}$ ], then $\pi$ : $[S_{1}arrow u_{1}S_{1}, \ldots, Aarrow u_{k}B]$ is in $\Pi$ and $h(\pi)=\pi^{0},$ (3) if
$\delta(A, \pi^{0})\in F$ and $\pi^{0}$ : $[S_{1}arrow w_{1}, \ldots , S_{k}arrow w_{k}]$ where each $w_{i}$ is in $\Sigma^{*}$ , then $\pi$ : $[S_{1}arrow$

$w_{1},$ $\ldots,$
$Aarrow w_{k}$ ] is in $\Pi$ and $h(\pi)=\pi^{0}$ . By the similar argument in the proof of Lemma 3.2,

it is easy to prove that for any $w\in\Sigma^{*},$ $S\Rightarrow^{G^{0}\alpha_{0}}w$ and $\delta(S, \alpha^{0})\in F$ if and only if $S\Rightarrow^{G\alpha}w$

where $\alpha\in h^{-1}(\alpha^{0})$ . Therefore, $L=L_{C}(G^{0})=L(G)$ is a k-EML. $\square$

We summarize Lemmas 3.2 and 3.3 in the following theorem:

Theorem 3.4 For any language $L,$ $L$ is a k-EML if and only if there exist a minimal k-EMG
$G^{0}$ and a regular control set $C$ for $G^{0}$ such that $L=L_{C}(G^{0})$ holds.
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From this, we definea k-EML in terms ofaminimal k-EMG anda regular control set for it.

Definition Let $L$ be a k-EML. A primitive k-EMG of $L$ is a minimal k-EMG $G^{0}$ such
that there exists a regular control set $C$ for $G^{0}$ with which $G^{0}$ generates $L$ .

4 Learning Method Based on Control Sets
We assume that a leamer is a procedure which (1) gets strings as examples, (2) outputs
strings for queries, and (3) outputs grammars as conjectures. Although various learning
methods for formal languages have been proposed up to now (see [3], for example), this
assumption seems to be general enough to include any known learning protocol. Therefore,
without loss of generality, we may assume that a learner for regular sets gets strings, outputs
strings, and outputs DFAs, and a learner for k-EMLs gets strings, outputs strings, and
outputs k-EMGs.

Theorem 3.4 implies that an unknown k-EML $L$ can be identified by identifying a primitive
k-EMG $G^{0}$ and a regular control set $C$ for $G^{0}$ . From this, we divide tasks of a learner for
k-EMLs into the following two main tasks: (1) identifying $G^{0}$ of $L$ and (2) identifying $C$ for
$G^{0}$ . In order to construct a learner for k-EMLs which carries out the above two main tasks,
the following three auxiliary tasks may be needed: (a) converting a string to associate words
by parsing in $G^{0},$ $(b)$ converting an associate word to a string by generating in $G^{0}$ , and (c)
constructing a k-EMG from a $DFA$ . While for the first auxiliary task a method to convert a
string to an associate word and its efficiency seem to depend on primitive k-EMGs, for the
other two auxiliary tasks, there are general methods, which the reader finds in [10]. Their
time complexities are bounded by polynomials of $p,$ $q$ , and the length of associate words or
the number of states of a $DFA$, where $p$ is the cardinality of the set of matrix rules of $G^{0}$

andq is the maximum size of the matrix rules of Go.
For any alphabet $\Sigma$ there exists a minimal k-EMG $G^{u}$ fixed for $\Sigma$ which is a primitive k-

$EMG$ of any k-EML over $\Sigma[10]$ . This implies that a k-EML can be identified by identifying
a regular control $s$et for $G^{u}$ . However, for each k-EML $L$ , there exist more than one regular
control sets for $G^{u}$ and it seems to be impossible to fix a regular control set for $G^{u}$ effectively.
Furthermore, more than non-polynomial number of associate words can be converted from
an inout string $w$ by parsing in $G^{u}$ .

Finally, we show a condition on minimal k-EMGs so that there exists a unique regular
control set.

Lemma 4.1 Let $L$ be a k-EML and $G^{0}$ be a primitive k-EMG of L. If $G^{0}$ is unambiguous,
then a control set $C$ with which $G^{0}$ generates $L$ is regular and unique. Moreover, $C=\{\alpha\in$

$\Pi^{0^{*}}|S\Rightarrow_{0}w,$ $w\in L$ }$c^{\alpha}$

Proof. Assume that $C’$ is another control set such that $L=L_{C’}(G^{0})$ . Since $G^{0}$ is unam-
biguous, for any string $w\in L$ there exists a unique associate word $\alpha$ such that $S\Rightarrow^{G^{\alpha_{0}}}w$ .
Since $C$ and $C$‘ are subsets of $A(G^{0}),$ $w\in L$ if and only if $\alpha\in C$ if and only if $\alpha\in C’$ .
Therefore, $C=C’$ .

Let $G$ be a k-EMG such that $L=L(G)$ and $\Pi^{0}\supseteq\{\pi^{0} : R(\pi, S_{1}, \ldots, S_{k})|\pi\in\Pi\}$ where $\Pi$

and $\Pi^{0}$ are sets of matrix rules of $G$ and $G^{0}$ respectively. By the assumption and Theorem 3.4,
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such a k-EMG exists. Let $C^{n}$ be a regular control set which the $NFA$ corresponding to $G$

accepts. Since a control set for $G^{0}$ is unique, $C=C^{n}$ , hence $C$ is regular. $\square$

Therefore, for an unknown k\sim EML L, if an unambiguous primitive k-EMG G ofL is found,
the learner has only to identify a unique regular control set $C$ . In this case, for any string
$w\in\Sigma^{*}$ , if $S\Rightarrow_{0}wG^{\alpha}$ then $w\in L$ exactly means $\alpha\in C$ and $w\not\in L$ means $\alpha\not\in C$ . If there is

no $\alpha$ such that $S\Rightarrow_{0}^{\alpha}wG$ then $w\not\in L$ . This implies the following proposition:

Proposition 4.2 The problem of identifying a regular control set for an unambiguous $\min-$

imal k-EMG is reduced to the problem of identifying a regular set.

5 Learning t-Even Equal Matrix Grammars
In this section, we introduce the structural information called t-evenness and define a sub-
class of k-EMGs, called t-even k-EMGs. It is shown that the learning problem for the
class of languages generated by t-even k-EMGs is reduced to the problem for regular sets in
polynomial time.

Definition Let $t$ denote a k-tuple $(t_{1}, \ldots, t_{k})$ such that each $t_{i}$ is a positive integer. A
t-even k-EMG $G_{t}=(N_{1}, \ldots, N_{k}, \Sigma,\Pi_{t}, S)$ is a k-EMG such that each matrix rule in $\Pi_{t}$

is of the form (1) $\pi_{S}$ : $[Sarrow A_{1}\cdots A_{k}],$ (2) $\pi_{N}$ : $[A_{1}arrow u_{1}B_{1}, \ldots, A_{k}arrow u_{k}B_{k}]$, or (3)
$\pi_{T}$ : $[A_{1}arrow u_{1}, \ldots, A_{k}arrow u_{k}]$ , and for each $\pi\in\Pi_{t}$ of the form $\pi_{N}$ or $\pi_{T}$ , there exists a
positive integer $n$ such that $lg(u:)=nt_{i}$ for each $i$ , where $A;,$ $B;\in N_{1},$ $u_{i}\in\Sigma^{*}$ for each $i$ .
A t-even k-EML is a language generated by a t-even k-EMG. We note that from the defini-
tion, for any t-even k-EML $L_{\ell}$ , for any element $w$ in $L_{t},$ $w$ can be partitioned into $k$ number
of substrings $w_{1},$ $\ldots,w_{k}$ such that there exists a positive integer $n$ and $lg(w;)=nt$; for each
$i$ .

Clearly, any t-even l-EML is a regular set. The clas$s$ of t-even 2-EMLs is included in the
class of k-linear languages described in [1]. For a positive integer $k>2$ , the class of t-even
k-EMLs contains some context-sensitive languages.

At first, we show a normal form of t-even k-EMGs without the proof.

Lemma 5.1 Let $t=(t_{1}, \ldots,t_{k})$ . For any t-even k-EML $L_{t}$ , there exists a t-even k-EMG
$G_{t}=(N_{1}, \ldots,N_{k}, \Sigma,\Pi,S)$ such that $L_{t}=L(G_{t})$ and each matnx rule is of the form (1) $\pi_{S}$ :
$[Sarrow A_{1}\cdots A_{k}]_{J}(2)\pi_{N}$ : $[A_{1}arrow u_{1}B_{1}, \ldots , A_{k}arrow u_{k}B_{k}]$ , or (3) $\pi_{T}$ : $[A_{1}arrow u_{1}, \ldots, A_{k}arrow u_{k}]$,
where for each $i,$ $A_{i},$ $B_{i}\in N;,$ $u_{i}\in\Sigma^{*}$ , and $lg(u_{i})=t_{i}$ .

Given an alphabet $\Sigma$ and $t=(t_{1}, \ldots, t_{k})$ , we define the universal t-even k-EMG $G^{T}=$

$(\{S_{1}\}, \ldots, \{S_{k}\}, \Sigma, \Pi^{T}, S)$ , where $\Pi^{T}$ consists of the following matrix rules:
$\Pi^{T}=$ $\{\pi_{S}^{T} : [Sarrow S_{1}\cdots S_{k}]\}$

$\cup$ { $\pi_{N}^{T}$ : $[S_{1}arrow u_{1}S_{1},$
$\ldots,$

$S_{k}arrow u_{k}S_{k}]|u_{i}\in\Sigma^{*}$ and $lg(u_{i})=t_{i}$ }
$\cup$ { $\pi_{T}^{T}$ : $[S_{1}arrow u_{1},$

$\ldots,$
$S_{k}arrow u_{k}]|u_{i}\in\Sigma^{*}$ and $lg(u_{i})=t_{i}$ }.

It is easy to verify that $G^{T}$ is unambiguous and generates any string $w$ over $\Sigma$ such that $w$

can be partitioned into $k$ numbers of substrings $w_{1},$ $\ldots,$ $w_{k}$ so that there exists a positive
integer $n$ and $lg(w_{i})=nt_{i}$ for each $i$ . Also, note that $G^{T}$ has 2 $\Pi_{:=1}^{k}m^{t;}+1$ number of matrix
rules, where $m$ is the cardinality of an alphabet $\Sigma$ .
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$\blacksquare$ $=b$
$s$

$=w$

Figure 1: The scheme of encoding the figure $0$ ’ into a string

Theorem 5.2 For any language $L_{t}$ over $\Sigma,$ $L_{t}$ is a t-even k-EML if and only if there exists
a regular control set $C$ for the universal t-even k-EMG $G^{T}$ such that $L_{t}=L_{C}(G^{T})$ holds.

Proof. By Lemma 5.1, we may assume that any t-even k-EML is generated by a t-even
k-EMG $G_{t}$ of the form described in Lemma 5.1. To prove this theorem, we have only to note
that $G^{T}$ is a primitive t-even k-EMG of $G_{t}$ and a homomorphism $h$ and the corresponding
$NFA$ to $G_{t}$ can be defined in the $s$ame way as in the proof of Theorem 3.4. $\square$

Since the universal t-even k-EMG $G^{T}$ is unambiguous, by Lemma 4.1, for any t-even
k-EML $L_{\ell}$ over $\Sigma$ , a control set $C$ for $G^{T}$ such that $L_{t}=L_{C}(G^{T})$ is regular and unique.
Moreover, $C=\{\alpha|S\Rightarrow_{T}^{\alpha}wGw\in L_{t}\}$ . Therefore, since $G^{T}$ is fixed for $\Sigma$ , a learner for t-even
k-EMLs has only to identify $C$ . To construct the learner, we have only to prepare a front-end
processing algorithm and add it to a learner for regular sets. The algorithm performs three
auxiliary tasks described in the section 4. Note that the time complexity of parsing an input
string $w$ in $G^{T}$ is bounded by a polynomial of $n$ and $m[10]$ , where $n=lg(w)$ and $m$ is
the cardinality of the alphabet $\Sigma$ . Therefore, the front-end processing algorithm reduce$s$ the
problem of identifying an unknown t-even k-EML to the problem of identifying an unknown
regular control set for a universal t-even k-EMG $G^{T}$ in polynomial time of sizes of strings,
as$so$ciate words, and DFAs. Hence, we have the following theorem.

Theorem 5.3 The problem of leaming t-even k-EMLs is reduced to the problem of leaming
regular sets. Moreover, if the time complexity of a learner for regular sets is bounded by a
polynomial, then that of a learner for t-even k-EMLs with using the leamer for regular sets
is also bounded by a polynomial.

Example Equal matrix languages can be considered as digital picture languages intro-
duced in [6]. Figure 1 illustrates how to encode the figure $0$ ’ represented on $7\cross 5$ matrix of
rectangular arrays into strings. The figure $0$ ’ is encoded into the string $wb^{3}w(bw^{3}b)^{5}wb^{3}w$ .
Figure 2 shows all figures represented on matrices and their encoded strings. In this case,
the set of the figures and finite sequences of them is encoded in (1, 1, 1, 1, 1, 1, 1)-even 7-EMG
and from the results described in this section, we can construct a pattern recognition system
which can learn this type of digital pictures.

6 Structured Equal Matrix Grammars
A structured k-EMG is a k-EMG which displays derivations in corresponding strings. This
implies that a learner may use supplemental information on derivations of the k-EMG.
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$wb^{3_{W}}(bw^{3}b)^{5}wb^{3}w$ wbwbbw (wbw) $4_{bbb}$ $wb^{3_{W}}bwt_{w^{4}bw}t_{W}$ $wb^{3_{wb_{W}}*}w^{4}bwwbbw$ wwbww $(wbw^{3})^{2}$

$wwbwwwbw^{3}b^{5}$ $w^{4}bbw^{3}bwb^{3}w$ (bwwbw) $2_{b}5_{W}3_{bw}$

$b(bw)w^{\triangleleft}bbwbwb^{3}w5_{3}42$ $w_{1^{b^{3_{wbw_{2}}*_{w^{bw^{4}}}}}bw^{3}b)b^{3}w^{b^{4}w}}$
$bwwbww1w^{4*_{2}}bwa_{w}q_{wbw_{3_{)}}}w$ $wb^{3}w(bwb)wb^{3}w(w^{32^{32}}$ $w_{4^{*tbw^{3}b_{3^{2}}wb^{4}}}w^{b}bbw^{3}bwb^{)}w$

. $=w$ $\blacksquare=b$

Figure 2: The encoded figures

Definition Let $\#$ be a special symbol not in an alphabet $\Sigma$ . For a k-EMG $G=$
$(N_{1}, \ldots, N_{k}, \Sigma,\Pi, S)$ , the structured k-EMG $ofG$ is a k-EMG $G_{s}=(N_{1}, \ldots, N_{k}, \Sigma\cup\{\#\}, \Pi_{s}, S)$

such that (1) $\pi_{S}$ : $[Sarrow u_{1}A_{1}\neq\cdots u_{k}A_{k}\#]\in\Pi_{s}$ if $\pi_{S}’$ : $[Sarrow u_{1}A_{1}\cdots u_{k}A_{k}]\in\Pi,$ $(2)$

$\pi_{N}$ : $[A_{1}arrow\# u_{1}B_{1}, \ldots, A_{k}arrow\neq u_{k}B_{k}]\in\Pi_{s}$ if $\pi_{N}’$ : $[A_{1}arrow u_{1}B_{1}, \ldots , A_{k}arrow u_{k}B_{k}]\in\Pi$, or
(3) $\pi_{T}$ : $[A_{1}arrow\neq u_{1}, \ldots, A_{k}arrow\# u_{k}]\in\Pi_{s}$ if $\pi_{T}’$ : $[A_{1}arrow u_{1}, \ldots, A_{k}arrow u_{k}]$ , where for each $i$

$(1\leq i\leq k),$ $A;,$ $B$; are in $N_{:}$ and $u$ ; is in $\Sigma^{*}$ .

A structured k-EMG is a structured k-EMG of some k-EMG. A structured k-EML is a
language generated by a structured k-EMG. Note that from the definition, for any structured
k-EML $L_{s}$ , any element $w$ in $L_{s}$ contains $kc$ number of $\neq s$ , where $c$ is a positive integer.

The following lemma can be proved by an induction on the length of strings.

Lemma 6.1 Any $st$ructured minimal k-EMG is unambiguous.

Note that the time complexity of parsing an input string $w$ in a structured minimal k-EMG
$G_{s}^{0}$ is bounded by a polynomial of $n,$ $p$, and $q[10]$ , where $n=lg(w),$ $p$ is the number of
matrix rules of $G_{s}^{0}$ , and $q$ is the maximum size of the matrix rules of $G_{s}^{0}$ .

Let $L_{s}$ be a structured k-EML. Since any structured minimal k-EMG is unambiguous,
by Lemma 4.1, for any primitive k-EMG $G_{s}^{0}$ of $L_{s}$ , a control set $C=\{\alpha|S\Rightarrow_{s}wG^{\alpha_{0}}w\in L_{s}\}$

for $G_{s}^{0}$ is regular and unique. From this, a learner identifies a structured k-EML $L_{s}$ by
identifying a primitive k-EMG $G_{s}^{0}$ of $L_{s}$ and a unique regular control $s$et $C$ for $G_{s}^{0}$ . We next
show that $G_{s}^{0}$ can be identified efficiently from the given examples.

Let $G_{s}$ be a structured k-EMG. A string $w$ is said to exercise a matrix rule $\pi$ of $G_{s}$ if
and only if there exists a derivation $S\Rightarrow_{*}XG^{\alpha}\Rightarrow_{*}y=^{\beta}wG^{\pi}G_{s}$

’ A matrix rule $\pi$ of $G_{s}$ is said to
be live if and only if there exists a string $w$ in $L(G,)$ which exercises $\pi$ .
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Algorithm $CRA$

Dividing $w$ into $k$ number of substrings $w_{1},$ $\ldots,w_{k}$

such that $w=w_{1}\#\cdots w_{k}\#$ and each $w$; has the same number of $\# s$ ;
For each $i$ , divide $w$; into $u_{i1},$ $\ldots,u_{in}$ such that $w;=u;_{1}\#\cdots\# u_{in}$ and $u_{ij}\in\Sigma^{*}$ ;
$\Pi_{s};=$ $\{\pi_{S} : [Sarrow u_{11}S_{1}\#\cdots u_{k1}S_{k}\#]\}$

$\cup\{\pi_{N} ; [S_{1}arrow\# u_{1j}S_{1}, \ldots,S_{1}arrow\# u_{kj}S_{k}]|2\leq j\leq n-1\}$

$\cup\{\pi_{T} ; [S_{1}arrow\# u_{1n},\ldots,S_{k}arrow\# u_{kn}]\}$ ;
output $\Pi_{*}$ and halt;

Figure 3: An algorithm generating matrix rules

Definition A finite $s$ubset $RS(L_{s})$ of a structured k-EML $L_{s}$ is $s$aid to be a representative
sample of $L_{s}$ if and only if there exists a structured k-EMG $G_{s}$ such that $L_{s}=L(G_{s})$ and
for every live matrix rule $\pi$ of $G_{s}$ , there exists an element in $RS(L_{s})$ which exercises $\pi$ .

Let $RS$ be a finite subset of a structured k-EML $L_{s}$ . Given a string $w$ of $L_{s}$ , Algorithm
$CRA$ illustrated in Figure 3 outputs a set of matrix rules. Let $\Pi_{s}^{0}$ be the union of the output
sets of $CRA$ for $RS$ . Then from the definition of representative $s$amples we have:

Lemma 6.2 If$RS$ is a representative sample of $L_{s}$ , then $G_{s}^{0}=(\{S_{1}\}, \ldots, \{S_{k}\}, \Sigma\cup\{\#\}, \Pi_{s}^{0}, S)$

is a primitive k-EMG of $L_{s}$ .
Note that it is obvious from the construction that given a string $w$ such that $n=lg(w)$ , the
cardinality of the output of Algorithm $CRA$ is bounded by a polynomial of $n$ and also note
that the time complexity of $CRA$ is bounded by a polynomial of $n$ .

A learner is said to identify a k-EMG $G$ from structuml examples if and only if it iden-
tifies the structured k-EMG of $G$ from examples. Since any structured minimal k-EMG is
unambiguous, it follows from Proposition 4.2 that for any unknown structured k-EML $L_{s}$ ,
if a primitive k-EMG $G_{s}^{0}$ of $L_{s}$ is found, then the problem of identifying $L_{s}$ is reduced to the
problem of identifying a regular set. Therefore, after constructing $G_{s}^{0}$ with Algorithm $CRA$ ,
the learner has only to identify a regular control set with using a learner for regular sets.
Note that the number of matrix rules of $G_{*}^{0}$ is bounded by the number of examples given
to Algorithm $CRA$ and the maximum length of any given example, and that the maximum
size of the matrix rules of $G_{s}^{0}$ is also bounded by the maximum length of any given example.
Hence, we have:

Theorem 6.3 Given a learner for regular sets such that its time complexity is bounded by a
polynomial, one can construct a leamer which identifies any k-EMG from structural examples
in polynomial time.

Example Again, we show an example for digital picture languages. Figure 4 illustrates
an encoding of the correspondence between tables and their histograms into equal matrix
languages. In this case, the histogram shows its structure with coloring. This $co$rrespondence
can be encoded in a structured 6-EMG and from the results described in this section, we can
construct a pattern recognition system which can learn this type of digital picture processing.

7 Learning from Positive Examples
Angluin [2] has introduced zero-reversible finite automata and shown that the class of zero-
reversible finite automata is learnable from positive examples. A $DFAM=(K, \Sigma, \delta,q_{0}, F)$

8



69

$A_{1}$ 4 $\# 5\# 3\#$

$l_{2}$ $2*3*2*$

$A_{3}$ $4\# 2\# 3\#$

$*$

$s$ $\Rightarrow$ $\Rightarrow$

$A\triangleleft$
$b^{4}\# g^{5}\#w^{3}\#$

$A_{5}$ $b^{2}\# g^{3}\#w^{2}\#$

$1_{6}$ $b^{4}*g^{2}*w^{3_{*}}$

$\blacksquare=b$ $H_{=====:}^{::::}:_{====}^{:===}:^{====}=g$ $\square =w$

Figure 4: A table and a histogram

is said to be reset-free if and only if for no two distinct states $q_{1}$ and $q_{2}$ do there exist $a\in\Sigma$

and $q_{3}\in K$ such that $\delta(q_{1}, a)=q_{3}=\delta(q_{2}, a)$ . A zero-reversible finite automata is a $DFA$

such that it has at most one final state and is reset-free.
A k-EMG $G$ is said to be deterministic if and only if there are no two distinct matrix

rules $\pi_{S1}$ : $[Sarrow u_{1}A_{1}\cdots u_{k}A_{k}]$ and $\pi_{S2}$ : $[Sarrow u_{1}B_{1}\cdots u_{k}B_{k}]$ and there are no two distinct
matrix rules $\pi_{N1}$ : $[A_{1}arrow u_{1}B_{1}, \ldots, A_{k}arrow u_{k}B_{k}]$ and $\pi_{N2}$ : $[A_{1}arrow u_{1}C_{1}, \ldots,A_{k}arrow u_{k}C_{k}]$ .
A k-EMG $G$ is said to be reset-free if and only if there are no two distinct matrix rules
$\pi_{1}$ : $[B_{1}arrow x_{1}, \ldots, B_{k}arrow x_{k}]$ and $\pi_{2}$ : $[C_{1}arrow x_{1}, \ldots , C_{k}arrow x_{k}]$ .

Definition A k-EMG $G$ is said to be in reversible form if and only if $G$ is deterministic
and reset-free.

Proposition 7.1 For any k-EML $L_{j}$ there exists a k-EMG $G$ in the reversible form which
generates $L$ .

Proof. Let $G’$ be a k-EMG which generates $L$ . Without loss of generality, we may assume
that $G’$ has no matrix rule of the form $\pi$ : $[A_{1}arrow B_{1}, \ldots, A_{k}arrow B_{k}]$ . At first, we introduce
new nonterminals $C_{1},$

$\ldots,$
$C_{k}$ and a new matrix rule $\pi_{\lambda}$ : $[C_{1}arrow\lambda, \ldots, C_{k}arrow\lambda]$ into $G’$ .

Also, we replace each matrix rule of the form $\pi_{T}$ : $[A_{1}arrow u_{1}, \ldots, A_{k}arrow u_{k}]$ by $\pi_{T}$ : $[A_{1}arrow$

$u_{1}C_{1},$
$\ldots,$

$A_{k}arrow u_{k}C_{k}$ ] where each $u;\in\Sigma^{*}$ . Then we construct an $NFA$ corresponding to $G’$ ,
convert the $NFA$ into the $DFA$ , and again construct a k-EMG from the $DFA$ . Let $G$“ be the
modified k-EMG. It follows from Theorem 3.4 that $G”$ is deterministic.

Let $\pi_{1}$ : $[B_{1_{1}}arrow u_{1}A_{1}, \ldots, B_{1_{k}}arrow u_{k}A_{k}],$ $\ldots,\pi_{j}$ : $[B_{j_{1}}arrow u_{1}A_{1}, \ldots, B_{j_{k}}arrow u_{k}A_{k}]$ be all $j$

number of distinct matrix rules of $G^{u}$ which violate the reset-free condition for $(A_{1}, \ldots , A_{k})$ .
Then we introduce $(j-1)k$ number of new nonterminals $C_{1_{1}},$

$\ldots,$
$C_{1_{k}},$

$\ldots,$
$C_{(j-1)_{1}},$

$\ldots,$
$C_{(j-1)_{k}}$

into $G”$ and replace $\pi_{1},$ $\ldots,\pi_{j}$ by new matrix rules $\pi_{1}’$ : $[B_{1_{1}}arrow u_{1}A_{1}, \ldots, B_{1_{k}}arrow u_{k}A_{k}],$ $\pi_{2}’$ :
$[B_{2_{1}}arrow u_{1}C_{1_{1}}, \ldots, B_{2_{k}}arrow u_{k}C_{1_{k}}],$

$\ldots$ , $\pi_{j}’$ : $[B_{j_{1}}arrow u_{1}C_{(j-1)_{1}}, \ldots , B_{j_{k}}arrow u_{k}C_{(j-1)_{k}}]$ and
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$\pi_{1}^{u}$ : $[C_{1_{1}}arrow A_{1}, \ldots, C_{1_{k}}arrow A_{k}],$ $\pi_{2}’’$ : $[C_{2_{1}}arrow C_{1_{1}}, \ldots, C_{2_{k}}arrow C_{2_{k}}],$ $\ldots,\pi_{j}’’$ : $[C_{(j-1)_{1}}arrow$

$C_{(j-2)_{1}},$
$\ldots,$ $C_{(j-1)_{k}}arrow C_{(j-2)_{k}}$ ]. It is easy to verify that by a finite number of repetitions

of this modification the modified $G”$ is reset-free and generates $L$ . Let $G$ be the modified
k-EMG. Also, if $G^{u}$ is deterministic before the modification, then $G$ is still deterministic
because at each step of repetitions of the modification, we introduce new nonterminals. $\square$

Since it is obvious from Theorem 3.4 that the corresponding $DFA$ to a k-EMG in reversible
form is a zero-reversible automaton, we have the following theorem:

Theorem 7.2 For any k-EML $L$ , there exist a minimal k-EMG $G^{0}$ and a zero-reversible
automaton $M$ such that $L=L_{T(M)}(G^{0})$ holds.

We consider the problem of learning k-EMLs from positive structural examples. As we
have noted in Section 6, for any unknown structured k-EML $L_{s}$ , if a primitive k-EMG $G_{s}^{0}$

of $L_{s}$ is found, then the problem of identifying $L_{s}$ is reduced to the problem of identifying
a regular set. Also, since a representative sample consists of only positive examples, $G_{s}^{0}$ can
be found only from positive example$s$ . These observations imply the following theorem:

Theorem 7.3 For any k-EML, there exist a k-EMG $G$ learnable only from positive struc-
tural examples.

Note that since the time complexity of Angluin’s learner is bounded by a polynomial, there
exists a learner which learns a k-EMG in reversible form from the given positive structural
examples in polynomial time.

8 Application to Learning Multitape Automata
k-EMGs are closely related to k-tape automata. In this section, we apply the learning
methods for k-EMGs described in the above to the problem of learning k-tape automata.

For a positive integer $k$ , we denote a k-tape (nondeterministic) automaton $M_{k}$ (over an
alphabet $\Sigma$ ) by a 5-tuple $(K, \Sigma,\delta, Q, F)$ where $K$ is a finite set of states, $\delta$ is a finite subset
of $(k+2)$-tuples $K\cross\Sigma^{*k}\cross K,$ $Q\subseteq K$ is the set of initial states, and $F\subseteq K$ is the set of
final states. We extend $\delta$ in a natural way to $\delta^{*}$ in the following way: $(q,w_{1}, \ldots,w_{k}, q’)\in\delta^{0}$

if and only if $q=q’$ and $w_{1}=\cdots=w_{k}=\lambda,$ $(q, w_{1}, \ldots, w_{k}, q’)\in\delta^{(n+1)}$ if and only if
there exist $q”,$ $u_{1},$ $\ldots,$ $u_{k},$ $v_{1},$ $\ldots,$

$v_{k}$ such that $w;=u_{i}v_{i}$ for each $i,$ $(q,u_{1}, \ldots, u_{k}, q’’)\in\delta^{n}$ ,
and $(q^{n}, v_{1}, \ldots, v_{k}, q’)\in\delta$ . $\delta^{*}=\bigcup_{n\geq 0}\delta^{n}$ . The set of all k-tuples accepted by $M_{k}$ , denoted
$T(M_{k})$ , is the set

$T(M_{k})=$ { $(w_{1},$
$\ldots,$

$w_{k})|$ there exist $q_{0}\in Q$ and $q_{f}\in F$ such that $(q_{0},$ $w_{1},$ $\ldots,$ $w_{k},$ $q_{f})\in\delta^{*}$ }.

Definition A k-tape $EMG$ is a k-EMG $G_{k}=(N_{1}, \ldots, N_{k}, \Sigma\cup\{\’\}, \Pi_{k}, S)$ such that
$not\in\Sigma$ and each matrix rule in $\Pi_{k}$ is of the form (1) $\pi_{S}$ : $[Sarrow A_{1}\cdots A_{k}],$ (2) $\pi_{N}$ : $[A_{1}arrow$

$u_{1}B_{1},$
$\ldots,$

$A_{k}arrow u_{k}B_{k}$ ], or (3) $\pi_{T}$ : $[A_{1}arrow u_{1}\, \ldots , A_{k}arrow u_{k}$ , where $A;,$ $B_{i}\in N;,$ $u;\in\Sigma^{*}$ .

We show the relation between k-tape automata and k-tape EMGs in the following propo-
sition without the formal proof:
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Proposition 8.1 Let $T_{k}$ be a subset of $\Sigma^{*k}$ . There exists a k-tape automaton $M_{k}$ over $\Sigma$

such that $T_{k}=T(M_{k})$ if and only if there exists a k-tape $EMGG_{k}$ such that $L(G_{k})=$

$\{w_{1}cdots w_{k}\|(w_{1}, \ldots,w_{k})\in T_{k}\}$ .

We note that the time complexity of constructing $M_{k}$ from $G_{k}$ is bounded by a polynomial
of $p$ and $q$ , where $p$ is the number of matrix rules of $G_{k}$ and $q$ is the maximum size of the
matrix rules of $G_{k}$ .

Now we apply the learning methods for k-EMGs to the problem of learning k-tape au-
tomata. We define two subclasses of k-tape automata according to the subclasses of k-EMLs
introduced in the above. A k-tape automaton $M_{kt}$ is said to be t-even if and only if there ex-
ists a t-even k-tape $EMGG_{kt}$ such that $L(G_{kt})=\{w_{1} \cdots w_{k}\|(w_{1}, \ldots, w_{k})\in T(M_{kt})\}$ . A
k-tape automaton $M_{ks}$ is said to be structured if and only if there exists a structured k-tape
$EMGG_{ks}$ such that $L(G_{ks})=\{w_{1}cdots w_{k}\|(w_{1}, \ldots, w_{k})\in T(M_{ks})\}$ . Then the problem of
learning t-even k-tape automata is reduced to the problem of learning regular sets. Given
a learner for regular sets whose time complexity is bounded by a polynomial, one can con-
struct leamers for t-even k-tape automata and structured k-tape automata which take time
polynomial. Moreover, for any k-tape automaton $M_{k}$ , there exists a k-tape automaton $M_{k}’$

such that $T(M_{k})=T(M_{k}’)$ and $M_{k}’$ is learnable from positive structural examples.
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