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Abstract
Lexical-functional grammars (LFGs) have been widely used to formally specify the syntax
of natural languages. In this paper, we show the followings : (1) the emptiness problem
for LFGs is undecidable, and (2) the membership problem for LFGs with at least one
$\epsilon$-production is $EXPTIM$E-haxd.

1 Lexical-Functional Grammars
In this section, we describe the overview of LFG necessary for understanding the material
in this paper. For details, see [3]. We first illustrate the LFG machinery by a linguistic
example, then describe the formal definition of LFG.

In a sentence description of LFG, there are two types of componets, a constituent struc-
ture (c-structure) and a functional structure (f-structure). Using these two structures,
a LFG system specify a set of grammatical sentences. A c-structure is a standard parsing
tree of a context-free grammar, which represents the superficial arrangements of words and
phrases in the sentence. While an f-structure is a hierarchical structure constructed by the
pairs of names of grammatical functions and their unique values. The f-structure mainly
represents the configuration of the surface grammatical functions.

An LFG system is specified by a set of annotated phrase structure rules. An annotated
phrase structure rule is a context-free rule associated with functional equations. Fig. 1
illustrates a simple example of LFG. We deal with this LFG throughout the examples
in this paper. A c-structure is generated using annotated phrase structure rules ignoring
the functional equations appearing in them. Fig. 2 illustrates an example of a c-structue
genarated by the LFG in Fig. 1 (The meaning of variables $x;,$ $1\leq i\leq 12$ in Fig. 2 will
be explained later.).

Each node in a c-structure is assumed to have an associated f-structure. The metavari-
$able\downarrow attached$ to the node $n$ in a c-structure represents the f-structure associated to $n$ .
While the metavariable $\uparrow$ attached to $n$ represents the f-structure associated to the parent
of $n$ . Therefore a defining equation of the form $\uparrow=\downarrow attached$ to $n$ represents that the
f-structure associated to $n$ is equal to the f-structure associated to the parent of $n$ . Fur-
thermore a defining equation of the form $(\uparrow OBJ)=\downarrow$ attached to $n$ represents that the
f-structure associated to $n$ is equal to the value of the OBJ of the f-structure associated to
the parent of $n$ .

Given a c-structure $t$ , the f-structure corresponding to $t$ is determined by the following
procedure:
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SE – NP $VP$ the: DET, ( $\uparrow$ SPEC) $=THB$

( $\uparrow$ SUBJ) $=$ } $\uparrow=|$

boy: $N$ , ( $\uparrow$ NUM) $=SG$

$NParrow$ DET $N$ ( $\uparrow$ PRED) $=BOY’$
$\uparrow=|$ $\uparrow=\mathfrak{l}$

handed: V, ( $\uparrow$ TENSE) $=PAST$

$Vp-$ V NP NP ( $\uparrow$ PRED) $=^{t}HA_{1\dagger D<(}^{\backslash }\uparrow SUBJ$ ) $(\uparrow OBJ)$( $\uparrow$ OBJ2) $>’$

$\uparrow=|$ ( $\uparrow$ OBJ) $=\downarrow$ ( $\uparrow$ OBJ2) $=$ }
$gir1$ : $N$ , ( $\uparrow$ NUM) $=SG$

( $\uparrow$ PRED) $=GIRL^{\cdot}$

a: DET, ( $\uparrow$ SPEC} $=A$

( $\uparrow$ NUM) $=SG$

candy: $N$ , ( $\uparrow$ NUM) $=SG$

( $\uparrow$ PRED) $=$ CANDY’

Figure 1: An example of LFG.

Figure 2: A c-structure genarated by the LFG in Fig. 1.
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( $x_{1}$ SUBJ) $=x_{2}$ ,
$x_{1}=x_{5}$ ,
$x=x$ ,
$x_{2}=xg$ ,
(x3 SPE $C$ ) $=THE$ ,
(x4 NUM) $=SG$ ,
( x4 PRED) $=BOY’$,
$x_{5}=x_{6}$ .
(x50BJ) $=x_{7}$ ,
(x5 OBJ2) $=x_{10}$ ,
$tx_{6}$ TENSE) $=PAST$,
( $x_{6}$ PRED) $=HAND<$ ( $\uparrow$ SUBJ)( $\uparrow$ OBJ )( $\uparrow$ OBJ2) $>’$ ,

$x_{7}=x_{8,}$

$x_{7}=x_{9}$ ,
( $x_{8}$ SPEC) $=THE$ ,
(x9 NUM) $=SG$ ,
(x9 PRED) $=$ GIRL’,
$x_{10}=x_{11}$ , (b)
$x_{10}=x_{12}$ ,
( $x_{11}$ SPEC) $=A$ ,
( $x\iota\iota$ NUM) $=SG$ ,
( $x_{12}$ NUM) $=SG$ , (a)( $x_{12}$ PRED) $=$ CANDY’

Figure 3: (a) An f-description and (b) an f-structure corresponding to the c-structure in
Fig. 2.

1. Assign a unique variable to each internal node of $t$ which represents the f-structure
associated to the node.

2. Using the variables of (a), instantiate (i.e. have the appropriate variables filled in
for the arrows) all the equations associated to the nodes in $t$ . The set of equations
thus produced is called the f-description of $t$ . (The f-description produced from the
c-structure in Fig. 2 is shown in Fig. 3 $(a)$ . )

3. Solve the f-description of (b) algebraically to obtaine the value in the f-description’s
unique minimal solution of the $\downarrow$-variable of the $SE$ node. (This value is called the
f-srtucture assigned to the string. The obtained value for $x_{1}$ of the f-description in
Fig. 3 (a) is the f-structure shown in Fig. 3 (b). This f-structure is the one assigned
to the string the boy handed the girl a candy. ) For details of this solution algorithm,
see [3].

As shown in Fig. 3 (b), an f-structure is a hierarchical structure constructed by the
ordered pairs each of which consists of a function name and its unique value. The f-
description solution algorithm in [3] constructs one solution (f-structure) for a properly
instantiated f-description if it is possible.

Grammatical functions whose values can serve as arguments to semantic predicates are
called governable grammatical functions. The well-formedness conditions on f-structures
are defined as follows:

Well-formedness conditions on f-structures
1. (uniqueness) In a given f-structure, each function name may have at most one value.
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2. (completeness) An f-structure is locally complete ffl it contains all the goveranable
grammatical functions that serve as arguments to its predicate. An f-structure is
complete iff it and its subsidiary f-structure are locally complete.

3. (coherency) An f-structure is locally coherent iff all governable grammatical functions
that it contains serve as arguments to a local predicate. An f-structure is coherent iff
it and all its subsidiary f-structures are locally coherent.

A string is grammatical only if it has a valid c-structure and it is assigned a well-formed
f-structure. A language generated by $LFGG$, denoted by $L(G)$ , is a set of grammatical
strings of $G$ . The class of languages generated by lexical functional grammars is denoted
by $\mathcal{L}_{LFG}$ . From the definition of LFG, it is obvious that the class of languages generated
by LFGs includes the class of context-free languages.

In this paper, we deal with a subclass of LFGs which is called restricted LFGs. We now
describe a formal definition of restricted LFGs. The following definition is based on the
one of Pinker [4].

Definition 1 A restricted lexical functional grammar (RLFG for short) is a 7-tuple
$G=(\Sigma, \Gamma, S, FN, FV, PR, AR)$ consists of 1-7 as follows :

1. $\Sigma$ is a finite terminal alphabet.

2. $\Gamma$ is a finite nonterminal alphabet.

3. $S$ is a start symbol.

4. $FN$ is a finite set of function names.

5. $FV$ is a finite set of function values.

6. $PR$ is a finite set of predicates.

7. $AR$ is a finite set of annotated phrase structure rules. An annotated phrase structure
rule is of the form

$Aarrow(B_{1}, E_{1})(B_{2}, E_{2})\ldots(B_{m}, E_{m})$ ,

where $A\in\Gamma,$ $B_{1},$ $B_{2},$
$\ldots,$

$B_{m}\in\Sigma\cup\Gamma$ and $E_{i}$ is a functional equation set, with the
constraint that for all $i,j$ such that $i\neq j,$ $(B_{i}, E_{i})\neq(B_{j}, E_{j})$ . A functional equation
set is a set of statements of the form

$M_{1}F_{1}F_{2}=M_{2}F_{3}F_{4}$ ,

where $M_{1},$ $M_{2}\in\{\uparrow, \downarrow\}$ ( $\uparrow and\downarrow are$ called metavariables), and $p_{:}\in FN\cup FV$ for
each $i,$ $1\leq i\leq 4$ . In the above equation, any symbol except $=may$ be null, but the
left-hand side of the equation must be one of the following forms : $M_{1}F_{1}F_{2},$ $M_{1}F_{1}$ ,
$M_{1}$ or $F_{1}$ , and this is the same for the right-hand side of the equation. An annotated
phrase structure rule of the form $Aarrow(B_{1}, E_{1})$ , where $B_{1}\in\Sigma$ and $E_{1}$ is a functional
equation set, is especially called a lexical insertion rule or a lexical entry.

口

4



77

Example 1 The LFG in Fig. 1 is indeed an RLFG defined as follows:
$G=$ ( $\Sigma,$ $\Gamma,$ SE, $FN,$ $FV,$ $PR,$ $AR$), where

$\Sigma=$ {the, boy, handed, girl, $a$ , candy},
$\Gamma=\{SE, NP, VP, DET, N, V\})$

$FN=$ {SUBJ, $OBJ$, OBJ2, SPEC, $NUM$, PRED, TENCE},
$FV=$ { $A$ , THE, $SG$, PAST}
$PR=$ {’BOY’, ’GIRL’, ’CANDY’, ’HAND $<(\uparrow SUBJ)(\uparrow OBJ)(\uparrow\backslash OBJ2)>’$ }

and $AR$ contains the following rules :
$SEarrow$ ($NP,$ $\{(\uparrow$ SUBJ) $=\downarrow\}$ ) $(VP, \{\uparrow=\downarrow\})$ ,
$NParrow(DET, \{\uparrow=\downarrow\})(N, \{\uparrow=\downarrow\})$ ,
$VParrow(V, \{\uparrow=\downarrow\})(NP, \{(\uparrow OBJ)=\downarrow\})$ ( $NP,$ $\{(\uparrow$ OBJ2) $=\downarrow\}$ ),
$DFTarrow$ (the, $\{(\uparrow$ SPEC) $=THE\}$ ),
$Narrow$ (boy, $\{(\uparrow NUM)=SG,$ $(\uparrow$ PRED) $=’$ BOY’}), etc.

Remarks.

(1) Let $A\in NV,$ $X\in TV$ and $E$ be a functional equation set. As shown in
Fig. 1, a lexical insertion rule $Aarrow(X, E)$ is usually written as

$X$ : $A,$ $E$ .

(2) As can be seen from the definition, no more than two function names may
appear on either side of functional equation. This constraint is identical to the
following functional locality constraint of Kaplan and Bresnan [3] : no rule in
the grammar may refer to symbols separated by more than a single level of
embedding in an f-structure.
(3) As mentioned in [4], entries for predicates taking a number of arguments
can be broken down into a set of equations, each one specifying the gramatical
function assigned to one argument of the predicate. For example, the lexical
entry for the word handed in Fig. 1 would be translated into the following
annotated phrase structure rule:

$V$ $arrow$ handed
$(\uparrow TENSE)=PAST$

( $\uparrow$ PRED) $=’HAND’$

( $\uparrow$ ARGI) $=$ ( $\uparrow$ SUBJ)

( $\uparrow$ ARG2) $=(\uparrow OBJ)$

$(\uparrow ARG3)=$ ( $\uparrow$ OBJ2)

So, without loosing generality, we can assume that functional equations are of
the form described in the above definition. But, for the simplicity sake, we
write the lexical entries as in Fig. 1.
(4) Metavariables are left-associative, i.e. $M_{1}F_{1}F_{2}=((M_{1}F_{1})F_{2})$ . In order
to improve the readability, we often write $((M_{1}F_{1})F_{2})$ rather than $M_{1}F_{1}F_{2}$ .
(5) In the general LFG machinery, there are two types of metavariables. They
are (a) immediate domination metavariables (i.e. $\uparrow and\downarrow$ ) and (b) bounded
domination metavariables (i.e. $\Uparrow and\Downarrow$ ). We have already seen immedi-
ate domination metavariables in the above example. The bounded domination
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metavariables fr $and\Downarrow are$ used to represent long distance binding used for
handling $wh$ movement in examples such as Which boy did the girl kiss.

Theorem 1 $CFL\not\subset \mathcal{L}_{RLFG}$

Proof Since any CFG generates c-structures with no functional equations, the class CFL
is obviously contained in $\mathcal{L}_{RLFG}$ . In order to show that this containment is proper, it is
suffice to see that the following RLFG $G$ generates the language $\{a^{n}b^{n}c^{n}|n\geq 1\}$ which is
a famous example of the language that is known not to be a context-free language. This
LFG is originally given in [3].

$G=(\Sigma, \Gamma, S, FN, FV, PR, AR)$ , where
$\Sigma=\{a, b, c, \},$ $\Gamma=\{S, A, B, C\},$ $FN=\{N\},$ $FV=\{0\},$ $PR=\emptyset$ and $AR$ contains the

following rules :
$Sarrow(A, \{\uparrow=\downarrow\})(B, \{\uparrow=\downarrow\})(C, \{\uparrow=\downarrow\})$ ,
$Aarrow(a, \emptyset)(A, \{(\uparrow N)=\downarrow\})$ ,
$Barrow(b, \phi)(A, \{(\uparrow N)=\downarrow\})$ ,
$Carrow(c, \emptyset)(A, \{(\uparrow N)=\downarrow\})$ ,
$Aarrow(a, \{(\uparrow N)=0\})$ ,
$Barrow(b, \{(\uparrow N)=0\})$ ,
$Carrow(c, \{(\uparrow N)=0\})$ . 口

We denote the class of context-sensitive languages by $CSL$ . The following theorem is
known.

Theorem 2 [3] $\mathcal{L}_{LFG}\subseteq CSL$ $\square$

Corollary 3 $\mathcal{L}_{RLFG}\subseteq CSL$ $\square$

2 The Emptiness Problem for LFGs
The emptiness problem for LFGs is as follows: given an LFG $G$ , decide whether $L(G)=\emptyset$ .
In this section, we first show that the emptiness problem for LFGs is undecidable. We
reduce Post’s Corresponding Problem to the emptiness problem. An instance of Post’s
Corresponding Problem ( $PCP$ for short) consists of two lists, $A=(x_{1}, x_{2}, \ldots, x_{k})$ and
$B=(y_{1}, y_{2}, \ldots, y_{k})$ of strings over some alphabet $\Sigma$ . An instance of PCP is said to have a
solution if there exists a sequence of integers $i_{1},$ $i_{2},$

$\ldots,$
$i_{m}(m\geq 1)$ such that

$x;_{1}x$ ; ... $x_{i_{m}}=y;_{1}y_{i_{2}}$ ... $y;_{m}$ .
In this case, the sequence $i_{1},$ $i_{2},$

$\ldots,$
$i_{m}$ is called a solution to this instance of PCP, and the

strings $x_{i_{1}}x_{1_{2}}\ldots x_{i_{m}}(=y;_{1}y;_{2}\ldots y_{i_{m}})$ is called a value of this instance. The following
theorem is well known (see for example [2]).

Theorem 4 PCP is undecidable. $\square$

Example 2 Let $\Sigma=\{0,1\},$ $A=(01,11)$ and $B=(1011,1)$ . This instance of PCP has a
solution $i_{1}=2,$ $i_{2}=1$ and $i_{3}=2(m=3)$ . Then $x_{2}x_{1}x_{2}=y_{2}y_{1}y_{2}=110111$ .
Theorem 5 The emptiness problem for RLFGs is undecidable.

Proof Sketch. We reduce PCP to the emptiness problem. Let $\Sigma=\{0,1\}$ . Then let $A=$
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$(x_{1}, x_{2}, \ldots, x_{k})$ and $B=(y_{1}, y_{2}, \ldots, y_{k})$ be an instance of PCP, where for each $i(1\leq i\leq k)$ ,
$x_{i}=a_{1}a_{2}\ldots a_{m(i)}$ with $a_{j}\in\Sigma$ for each $j,$ $1\leq j\leq m(i)$ , and $y_{i}=b_{1}b_{2}\ldots b_{n(i)}$ with
$b_{j}\in\Sigma$ for each $j,$ $1\leq j\leq n(i)$ . From the lists $A$ and $B$ , we construct the following RLFG
$G(A, B)=(\Sigma, \Gamma, S, FN, FV, PR, AR)$ :

$\Gamma=\{S, I, A, B\}\cup\{A_{j}^{i}|1\leq i\leq k, 1\leq j\leq m(i)\}\cup$

$\{B_{j^{1}}|1\leq i\leq k, 1\leq j\leq n(i)\}$ ,
$FN=$ {TAPE, LIST, REST, $H,$ $T,$ $L$ },
$FV=\{0,1,2, \ldots, k, }$ , $PR=\emptyset$ and

$AR$ contains the following annotated phrase structure rules:

1. $Sarrow(I, E_{1})(A, E_{2})(B, E_{3})$ , where
$E_{1}=\{(\uparrow TAPE)=\downarrow\}$ and
$E_{2}=E_{3}=$ { $(\downarrow$ TAPE) $=(\uparrow$ TAPE), $(\uparrow$ LIST) $=(\downarrow$ LIST), $(\downarrow$ L)=$}.

2. $Iarrow(I, E_{1})(0, E_{2}),$ $Iarrow(I, E_{3})(1, E_{4})$ , where
$E_{1}=E_{3}=\{((\uparrow TAPE)T)=\downarrow\}$ ,
$E_{2}=\{((\uparrow TAPE)H)=0\}$ and
$E_{4}=\{((\uparrow TAPE)H)=1\}$ .

3. $Iarrow(O, E_{1}),$ $Iarrow(1, E_{2})$ , where
$E_{1}=$ { $((\uparrow$ TAPE) $H)=0,$ $((\uparrow$ TAPE) T)=$} and
$E_{2}=$ { $((\uparrow$ TAPE) $H)=1,$ $((\uparrow$ TAPE) T)=$}.

4. $Aarrow(A, E_{1})(A^{i}, E_{2}),$ $Barrow(B, E_{3})(B_{i^{1}}, E_{4})(1\leq i\leq k)$ , where
$E_{1}=E_{3}=$ { $(\downarrow$ TAPE) $=(\uparrow$ REST), $((\downarrow L)H)=i,$ $((\downarrow L)T)=(\uparrow L)$ } and
$E_{2}=E_{4}=$ { $(\downarrow$ TAPE) $=(\uparrow$ TAPE), $(\uparrow$ REST) $=(\downarrow$ REST)}.

5. $A_{i}^{j}arrow(A_{i}^{j+1}, E_{1})(a_{j}, E_{2}),$ $B^{l}\cdotarrow(B^{l+1}, E_{3})(b_{l}, E_{4})$

$(1\leq i\leq k, 1\leq j\leq m(i)-1$ , $1\leq l\leq n(i)-1)$ , where
$E_{1}=E_{3}=$ { $(\downarrow TAPE)=((\uparrow$ TAPE) $T),$ $(\uparrow$ REST) $=(\downarrow$ REST)},
$E_{2}=\{((\uparrow TAPE)H)=a_{j}\}$ and
$E_{4}=\{((\uparrow TAPE)H)=b_{l}\}$ .

6. $A_{i}^{m(1)}arrow(a_{m(i)}, E_{1}),$ $B_{j}^{n(i)}arrow(b_{n(i)}, E_{2})(1\leq i\leq k)$ , where
$E_{1}=$ { $((\uparrow TAPE)H)=a_{m(i)},$ $(\uparrow$ REST) $=((\uparrow$ TAPE) $T)$ } and
$E_{2}=$ { $((\uparrow TAPE)H)=b_{n(:)},$ $(\uparrow$ REST) $=((\uparrow$ TAPE) $T)$ }.

7. $Aarrow(A^{i}, E_{1}))Barrow(B!, E_{2})(1\leq i\leq k)$ , where
$E_{1}=E_{2}=\{$ ( $\downarrow$ TAPE) $=$ ( $\uparrow$ TAPE), $((\downarrow L)H)=i$ ,
$((\downarrow L)T)=(\uparrow L),$ ( $\uparrow$ LIST) $=(\downarrow L),$ ( $\downarrow$ REST)=$}.

From the construction, it is easy to see that an instance $(A, B)$ of PCP has a value $y$

(i.e. has a solution) iff $(y^{R})^{3}\in L(G(A, B))$ iff $L(G(A, B))\neq\emptyset$ , where $y^{R}$ denotes the
reverse of $y$ . $\square$

Corollary 6 The emptiness problem for LFGs is undecidable. $\square$
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3 Lower Bounds on the Membership Problem
In this section, we show that the membership problem for LFGs which have at least one
e-production is $EX$PTIME-hard. We first briefly describe the basic concepts in compu-
tational complexity. For details, see $[1, 2]$ .

Definition 2 A one-tape alternating Turing machine (ATM for short) is a 6-tuple
$M=(Q, \Sigma, \Gamma, \delta, q_{0}, F, U)$ where :

1. $Q$ is the finite set of states.

2. $\Sigma$ is the finite input alphabet.

3. $\Gamma$ is the finite tape alphabet.

4. $\delta$ is the next move relation mapping an element of $Q\cross\Sigma$ to a subset of $Q\cross\Sigma\cross D$ ,
where $D=\{L, R\}$ .

5. $q_{0}\in Q$ is the initial state.

6. $F\subseteq Q$ is the set of accepting states.

7. $U\subseteq Q$ is the set of universal states. $Q-U$ is called the set of existential states.

A machine move is represented as follows. Let $\delta(q, x)$ be of the following form.

$\delta(q, x)=\{(q_{1}, y_{1}, d_{1}), (q_{2_{-}},y_{2}, d_{2}), \ldots, (q_{m}, y_{m}, d_{m})\}$ ,

where $q,$ $q_{1},$
$\ldots,$

$q_{m}\in Q,$ $d_{1},$ $d_{2},$
$\ldots,$

$d_{m}\in D$ and $x,$ $y_{1},$
$\ldots,$

$y_{m}\in\Sigma$ . In state $q$ , scanning symbol
$x,$ $M$ takes the following action ACT(i) for some $i,$ $1\leq i\leq m$ if $q$ is an existential state,
and takes ACT(i) for all $i,$ $1\leq i\leq m$ if $q$ is a universal state.

ACT(i) : Rewrite $x$ as $y_{i}$ , move the tape head one position in the derection of $d_{i}$ , and
change the state to $q_{i}$ .

A configuration of $M$ consists of the state, head position, and contents of the tapw. Let
$C$ be a configuration of $M$ . We denote the set of possible configurations after one move of
$M$ by Next $(C)$ . A configuration is existential (resp. universal, initial, accepting) if the
state of $M$ in that configuration is an existential (resp. universal, initial, accepting) state.
A value $v(C)$ of $C$ is either true or false defined by the following procedure.

Procedure EVAL ( $C$ : a configuration of an ATM);
begin

if $C$ is an accepting configuration
then $v(C):=true$
else if $C$ is an existential configuration

then if there is $C’\in Next(C)$ such that $v(C’)=true$
then $v(C):=true$
else $v(C):=false$

else % $C$ is a universal configuration. %

8
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if for every configuration $C’\in Next(C),$ $v(C’)=true$
then $v(C):=true$
else $v(C):=false$

end

An ATM accepts an input string $x$ iff $v(C_{0})=true$ , where $C_{0}$ is the initial configuration
for $x$ .

Let $n$ be $t$he length of an input to a Turing machine. DTIME(T(n)) is the class
of languages accepted by deterministic Turing machines within $T(n)$ time. We define
$EX$PTIME $= \bigcup_{\{\geq 0}DTIME(2^{n^{i}})$ . ASPACE(S(n)) is the class of languages accepted by
ATMs within space $S(n)$ . The following theorem states that the time complexity of the
recognition problem for linear space-bounded ATMs is exponential in terms of deterministic
Turing machine.

Theorem 7[1] $EX$PTIME $= \bigcup_{\{\geq 0}ASPACE(n^{i})$ $\square$

Theorem 8 The membership problem for RLFGs which have at least one e-production
is $EX$PTIME-hard.

Proof Sketch. Let $M=(Q, \Sigma, \Gamma, \delta, q_{0}, F, U)$ be a one-tape linear space ATM. We assume
that the length of the tape is exactly $n$ , where $n$ is the length of the input string. Let
$w=x_{1}x_{2}\ldots x_{n}$ be an input for $M$ , where $x_{i}\in\Gamma$ for all $i,$ $1\leq i\leq n$ . We will construct an
RLFG $G(M, w)=(\Sigma, \Gamma, S, FN, FV, PR, AR)$ such that $M$ accepts $w$ iff $w\in L(D(M, w))$ .
Without loosing generality, we assume that $\Sigma=\{a, b\}$ . $G(M, w)$ is constructed as follows.

$\Gamma=\{[q]|q\in Q\}\cup\{S, A_{1)}A_{2}, \ldots, A_{n-1}, B_{1}, B_{2}, \ldots, B_{n}\}$ ,
$FN=\{L, R, H, T, X, ACC\}$ ,
$FV=$ $\{\, 0,1\}\cup\Sigma$ ,
$PR=\emptyset$ and
$AR$ is constructed based on $\delta$ as follows:

1. Let
$\delta(q, x)=\{(q_{1}, y_{1}, d_{1}), (q_{2}, y_{2}, d_{2}), \ldots, (q_{m}, y_{m}, d_{m})\}$ .

If $q\in Q$ then add the following rule to $R$ :

$[q]arrow([q_{1}], E_{1})([q_{2}], E_{2})\ldots([q_{m}], E_{m})$ ,

else $(q\in Q-U)$ add the following rules to $R$ :

$[q]arrow([q_{1}], E_{1}),$ $[q]arrow([q_{2}], E_{2}))$ , $[q]arrow([q_{m}], E_{m})$ .
For each $i(1\leq i\leq m),$ $E_{1}$ is constructed as follows : if $d_{i}=R$ then $E_{i}$ contains the
following rules:

(a) $(\uparrow C)=x$

(b) $((\downarrow L)H)=y_{i}$

(c) $((\downarrow L)T)=(\uparrow L)$

(d) $(\downarrow C)=((\uparrow R)H)$

(e) $(\downarrow R)=((\uparrow R)T)$
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(f) $(\downarrow ACC)=1$

(g) $(\uparrow ACC)=1$

else $(d;=L)$ then $E_{i}$ contains the following rules:

(a) $(\uparrow C)=x$

(b) $(\downarrow L)=((\uparrow L)T)$

(c) $(\downarrow C)=((\uparrow L)H)$

(d) $((\downarrow R)H)=y$ ;

(e) $((\downarrow R)T)=(\uparrow R)$

(f) $(\downarrow ACC)=1$

(g) $(\uparrow ACC)=1$

2. For $q\in F$ , add the following rule to $R$ :

$[q]arrow(\epsilon, \{(\uparrow ACC)=1\})$ .

3. Add the following rules to $R$ :

(a) $Sarrow(A, \{\uparrow=\downarrow\})([q_{0}], \{\uparrow=\downarrow\})$

(b) $A_{n-1}arrow$ ( $B_{n},$ $\{((\uparrow R)H)=(\downarrow X),$ $((\uparrow R)$ T)=$})
$(B_{n-1}, \{(\uparrow C)=(\downarrow X), (\uparrow L)=})$

(c) $A_{k}arrow(A_{k+1}, \{((\uparrow R)H)=(\downarrow C), ((\uparrow R)T)=(\downarrow R)\})$

( $B_{k},$ $\{(\uparrow C)=(\downarrow X)$ , (\uparrow L)=$}) for all $1\leq k\leq n-2$

(d) $B_{k}arrow(x_{k}, \{(\uparrow X)=x_{k}\})$ for all $1\leq k\leq n$

口

Corollary 9 The membership problem for LFGs which have at least one e-production is
EXPTIME-hard. $\square$

4 Conclusion
We summarize the results in this paper in the following table.

Remarks $*In$ the case when the LFG has at least one e-production.
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