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Abstract

Recently, Valiant introduced a computational model of learning, and gave a precice
definition of learnabihty. Since then, much effort has been devoted to characterize
learnable classes of concepts on this model. In this paper, we give, based on the uni-
form distribution model, a polynomial time algorithm that learns k-term MDNF, the
class of monotone disjunctive normal formulae with at most $k$ terms. This algorithm
uses only positive examples and output hypothesis with one-sided-error. This result
should be contrasted with the fact that the same class is not learnable in the dis-
tribution free setting. Based on the uniform distribution model, learning algorithms
for k-term MDNF were given in [GM,KMP]. But these algorithms use both positive
and negative examples. Consequently error of these algorithms is two-sided. Fur-
thermore, the algonithm proposed in this paper is easily modified to learn the same
class in the presence of errors in the examples.

1 Introduction

Recently, Valiant introduced a computational model of learning, and gave a precice def-
inition of learnability based on the model [V84]. A class of Boolean formulae is said to
be learnable if there exists a polynomial time algorithm to learn any formula in the class:
With access to oracles that give some partial information about an unknown target for-
mula in the class, the learning algorithm outputs a Boolean formula that is, with high
likelihood, a reasonably accurate approximation to the target. Since Valiant has proposed
this learnability model, much effort has been devoted to characterize learnable classes.

In particular, several algorithms to learn classes of Boolean formulae from examples have
been studied (see $[KLPV87a,H]$ for example). Among these, the problem of learning the
class of disjunctive normal forms (DNF) seems to be important. But whether DNF is
learnable from examples is open in the distribution free model. The same problem remains
open even if we restrict ourselves to the distribution specific model, where positive or
negative examples of $f$ are generated according to the uniform probability distributions.
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In this paper we give, based on the uniform distribution model, a polynolnial time
algorithm to learn k-term MDNF, the class of monotone disjunctive normal formulae with

at most $k$ terms, from positive examples. This result should be contrasted with the fact
that the same class is not learnable in the distribution free setting [PV].

Based on the uniform distribution model, learning algorithms for k-term MDNF have
been proposed in literature. In [GM] a learning algorithm for k-term MDNF is given. A
more natural algorithm was proposed in [KMP]. But the crucial part of the algorithm,
hence the probabihty analysis to show its correctness, was not given in the paper.

The idea of the learning algorithm, given in this paper, for k-term MDNF is based on one
of the learning algorithm given in [KMP], although one of the key ideas of restricting the
domain where a target function is identified was not mentioned explicitly in [KMP]. Using
the idea of restrictions carefully, we can construct the learning algorithm that is assumed
to use only positive examples, whereas the algorithms given previously in literature were
assumed to use both positive and negative examples. Consequently, the type of error for
the algorithm of this paper is one-sided, while that for the previous algorithms is two-sided.
We give the whole algorithm explicitly together with the proof of its correctness.

Furthermore, the algorithm proposed in this paper is easily modified to learn the same
class in the presence of errors in the examples.

2 Preliminaries

We first describe the Valiant’s model for learning that we shall use briefly. For more
complete discussion and justification of the model, see [PV], [V84] and $[KLPV87b]$ .

Let $F_{n}$ be a set of formulae with variables $\{x_{1}, \ldots, x_{n}\}$ , and let $F=\cup F_{n}$ . Let $f$ be a
formula in $F_{n}$ . For convenience, we regard $f$ in $F_{n}$ as the corresponding Boolean function
with domain $\{0,1\}^{n}$ , and sometimes as the set of vectors such that $\{v|f(v)=1\}$ . A vector
$v\in\{0,1\}^{n}$ is called a positive example (resp. negative example) of $f$ iff $f(v)=1$ (resp.
$f(v)=0)$ . $D_{f}^{+}$ (resp. $D_{f}^{-}$ ) is a probability distribution uniform over all positive (resp.
negative) examples of $f$ . $D_{f}^{+}(D_{f}^{-})$ is simply written as $D^{+}(D^{-})$ when no confusion arises.

In this paper a learning algorithm is assumed to call an oracle $POS(f)$ , which produces
positive examples of $f$ independently according to the probability distribution $D_{f}^{+}$ . $POS(f)$

is simply written as POS when no confusion arises. In more general setting, the learning
algorithm is also allowed to call another type of oracles (e.g. $NEG(f)$ , which produces
negative examples). We adopt the distribution specific model where the probability that
examples are generated is taken to be uniform, whereas in the distribution free model the
probability is taken to be arbitrary. But in fact, the condition that $D^{-}$ is uniform is not
necessary for the algorithm given in this paper: It works as well when $D^{-}$ is taken arbitrary.

Definition. A class of formulae $F$ is called learnable if there exists an algorithm $L_{F}$ , with
access to $POS(f)$ , that satisfies the following conditions:
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$\forall n,$ $\forall f\in F_{n},$ $\forall\delta,$
$\forall\epsilon$ ,

i) $L_{F}$ runs in time polynomial in $n,$ $\frac{1}{\epsilon}$ and $\frac{1}{\delta}$

ii) $L_{F}$ outputs a formula $g$ in $F_{n}$ with probability at least 1 $-\delta$ , that satisfies
$\Sigma_{g(v)=0}D^{+}(v)<\epsilon$ and $\Sigma_{g(v)=1}D^{-}(v)=0$ .

$f$ is called a target formula and $g$ is called a hypothesis. $\epsilon$ is called a accuracy parameter
and $\delta$ is called a confidence parameter. According to the definition we simply say $F$ is
learnable instead of saying $F$ is polinomial time learnable from positive examples under
uniform distributions with one-sided-error.

A conjunction of litelals is called a monomial (or a term). For constant $k$ , let k-term
MDNF denote the class of monotone disjunctive normal forms with up to $k$ terms. Let
$Var(t)$ denote the set of variables that appear in monotone term $t$ . Let Term$(f)$ denote the
set of terms of a formula $f$ . Let $v_{i}$ denotes the ith component of $v$ . Likewise, let $v_{A}$ denote
the $i_{1},$ $i_{2},$

$\ldots$ , and $i_{j}$ th components of $v$ , where $A$ is a subset $\{x_{t_{1}}, \ldots, x_{i_{j}}\}$ of $\{x_{1}, \ldots, x_{n}\}$ .
$v_{A}=0$ means that $v_{i_{1}}=\cdots=v_{i_{j}}=0$ .

Next we describe some results useful in probabilistic analysis in this and subsequent
sections. Let LE$(p, m, r)$ denote the probability of at most $r$ successes in $m$ independent
trials with probability of success at least $p$ , and $GE(p, m, r)$ denote the probability of at
least $r$ successes with probability of success at most $p$ .

Let $b$ be such that $0\leq b\leq 1$ in the following facts.

Fact 2.1 $[KLPV87b]$ LE $(p, m, (1-b)pm)\leq e^{-b^{2}mp/2}$ .

Fact 2.2 $[KLPV87b]$ $GE(p, m, (1+b)pm)\leq e^{-b^{2}mp/3}$ .

Proposition 2.3 [V84] LE $(p, m, r)\leq 6$ for $m \geq\frac{2}{p}(r+\ln\frac{1}{\delta})$ .

Procedure EXAMPLES given in Figure 1 produces a sequence of $m$ positive examples
which satisfy the condition $C(v)$ . The condition ‘TRUE’ always holds: It means that there
is no spacific condition. $|S|$ denotes the length of the sequence $S$ . As in the definition of
learnability, 6 is called confidence parameter of EXAMPLES.

Proposition 2.4 Let $0<6<1$ . If $Pr[C(v)]\geq p_{c}$ , then EXAMPLES produces a
sequence $S$ of $m$ positive examples which satisfy the condition $C(v)$ , with probability at
least 1–6. If the condition $C(v)$ is TRUE then the probability is 1.

Proof. Immediate from Proposition 2.3. $\square$

Note that all positive examples in $S$ are independently taken from uniform distribution
over the positive examples satisfying the condition $C(v)$ .

Procedure FREQ given in Figure 2 can be used to estimate the probability of event $E(v)$

from the fraction of its occurrence in a sequence of trials given by $S$ .
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procedure EXAMPLES(m, $C(v),$ $p_{c},$
$6$ )

begin
let $S$ be a empty sequence ;
if $C(v)=TRUE$ then $m’$ $:=m$

else $m’$ $:= \frac{2}{p_{c}}(m+\ln\frac{1}{\delta})$ ;
for $c:=1$ to $m’$ do

begin
$v:=POS$ ;
if $C(v)$ holds then add $v$ to $S$ ;

end
return $S$ ;

end

Figure 1: Procedure EXAMPLES

procedure FREQ $(S, p-\alpha, p, E(v))$

begin
$c$ $:=0$ ;
foreach $v$ in $S$ do if $E(v)$ holds then $c:=c+1$ ;
if $c\geq|S|(p-\alpha/2)$ then return “high”
else return (low’ ;

end

Figure 2: Procedure FREQ

Lemma 2.5 Let $\alpha,$ $p$ be such that $0<p \leq 1,0<\alpha\leq\frac{2}{3}p$ and $0<\delta<1$ . Let $S$

be a sequence of $m$ vectors which are drawn independently according to some distribution
(probability is measured by this distribution). Let $m$ satisfies the following condition (2-1).

$m \geq\max\{\alpha 8\lrcorner_{2}\geq\ln\frac{1}{\delta},$ $\frac{12(p-\alpha)}{\alpha^{2}}\ln\frac{1}{\delta}\}$ (2-1)

Then, if $Pr[E(v)]\leq p-\alpha$ then FREQ returns “high” with probability at most 6, and if
$Pr[E(v)]\geq p$ then FREQ returns (low’ with probability at most 6.

$b= \alpha/2(p-\alpha),itfollowsthatGE(p-\alpha,m,(p-\alpha/2)m\exp-\{\frac{d_{\alpha}u}{2(p-\alpha)}\}^{2}(p-\alpha)\frac{.12(p-\alpha)2with}{\alpha^{2}}Proof.AssumethatPr[E(v)]\leq p-\alpha.Takingm=\frac{12(p-\alpha)}{)\leq^{2}\alpha}\ln\frac{1}{f}ansingFact2$

.

. $\ln\frac{1}{\delta}/3]=\delta$ . Therefore, the probability that $E(v)$ holds at least $(p-\alpha/2)m$ times among
$m$ independent trials is at most 6. Thus FREQ returns $\zeta high$

’ with probability at most 6.
For the second part of the Lemma, assume that $Pr[E(v)]\geq p$ . Taking $m= \not\in 8\alpha\ln\frac{1}{}$ and

using Fact 2.1 with $b=\alpha/2p$ as above, it can be seen that the probability that $E(v)$ holds
at most $(p-\alpha/2)m$ times among $m$ independent trials is at most $\delta$ . Therefore FREQ
returns (low’ with probability at most 6.

Since the upper bounds given in Fact 2.1 and Fact 2.2 are monotone decreacing functinos
on $m$ , the lemma follows. $\square$
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$\delta$ is called confidence parameter of FREQ. In later sections, Lemma 2.5 will be used
to estimate the probabihty of $E(v)$ from the value procedure FREQ returns: With high
confidence the fact that FREQ returns “low” implies that $Pr[E(v)]<p$ , and the fact
that FREQ returns (high’ implies that $Pr[E(v)]>p\neg\alpha$ . This is because both of the
probability of occurrence of (low’ and $Pr[E(v)]\geq p$ , and that of occurrence of “high” and
$Pr[E(v)]\leq p-\alpha$ are at most 6, which will be taken sufficiently snall in the following
argument. To simplify the argument in section 4, we say that “low” implies $Pr[E(v)]<p$
and that “high” implies $Pr[E(v)]>p-\alpha$ . We only take care of the probability 6 at the
end of the argument.

In some cases, we need to estimate the conditional probability of event $E(v)$ under some
condition $C(v)$ . This is done by combining procedure EXAMPLES and FREQ. In this case,
EXAMPLES does not always succeed in producing the desired sequence $S$ , but succeed in
with high probability. In section 4, we omit the phrase “with high probability” and treat
as if EXAMPLES always produces the desired sequence for simplicity. We only take care
of the probability of failure at the end of the argument, as is the case for FREQ.

3 Learning algorithm for k-term MDNF

Before proceeding to describe the learning algorithm $L$ for k-term MDNF in detail, we give
an outline of the $al$gorithm together with an idea behind it.

Let $f=t_{1}\vee t_{2}\vee\cdots\vee t_{k}$ be a target in k-term MDNF. Without loss of generality, assume
that none of the terms of $f$ is redundant in the sense of being implied by the sum of the
others. Fact 3.1 below is the basis of the algorithm: In order to find out a term $t$ which is
not found yet, the algorithm attempts to determine such a set $A$ as in the fact.

Fact 3.1 Let $f$ be a non-redundunt formula in k-term MDNF. For any term $t$ in Term$(f)$ ,
there exists a set $A$ of variables such that $A\cap Var(t)=\emptyset,$ $A\cap Var(t’)\neq\emptyset$ for any term $t’$

in Term$(f)-\{t\}$ , and $|A|\leq k-1$ .

Suppose that algorithm $L$ succeeded in producing the $k-i(>0)$ terms in Term$(f)$ ,
$t_{1},$

$\ldots,$
$t_{k-i}$ , and that it is about to find one of the remaining terms. Let the disjunction

of these $k-i$ terms be denoted $g$ . At this point in order to find a term in Term$(f)$

$-Term(g)$ , first $L$ calls the procedure SUPPRESS-G. The procedure tries to find $x_{j_{1}},$ $\ldots$ ,
$x_{j_{k-i}}$ belonging to $Var(t_{1}),$

$\ldots,$
$Var(t_{k-i})$ , respectively, so that the region consisting of pos-

itive examples $v$ with $v_{\{x_{j_{1}},\ldots,x_{j_{k-}}\}}=0$ is not too small.
When $x_{j_{1}}\in Var(t_{1}),$

$\ldots,$
$x_{Jk-i}\in Var(t_{k-i})$ , we say that the valiables $x_{j_{1}},$ $\ldots$ , $x_{j_{k-i}}$ suppress

the terms $t_{1)}\ldots$ , $t_{k-i}$ . This is because putting $x_{j_{1}}=0,$
$\ldots,$

$x_{j_{k-i}}=0$ makes all of the terms
$t_{1},$

$\ldots,$
$t_{k-i}0$ . Variables in the set $A$ , which was returnd by SUPPRESS-G, suppress all the

terms in Term$(g)$ . In the following steps of $L$ , the region of positive examples is restricted
to the one consisting of positive examples satisfying the condition $v_{A}=0$ .
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While there remain at least two terms each of which covers reasonably large region of
the region obtained by the restriction mentioned above, another variable that suppresses
at least one of such terms is chosen. Then the variable chosen is added to the set $A$ of
variables to restrict the region further by putting them $0$ . This is done until there remains
only one term with associated region not too small (procedure SUPPRESS-F).

Restricting the region of positive examples by putting appopreately chosen variables $0$ is
the key idea behind our algorithm. The restriction reduces the problem of learning k-term
MDNF to that of learning MDNF with less terms and less variables. In general this makes
the problem easy. In fact, in the case where there remains only one term with associated
region not too small, it is easy to identify the term (procedure MAKE-TERM).

The whole algorithm produces the formula that approximates the target after iterate
these steps at most $k$ times.

The learning algorithm $L$ is given in Figure 3. Procedure SUPPRESS-G is given in Figure
4, procedure SUPPRESS-F is in Figure 5, and procedure MAKE-TERM is in Figure 6.
$\zeta A_{1}\cross A_{2}\cross\cdots\cross A_{i}$

‘ denotes the cartesian product set of $i$ sets $A_{1},$ $A_{2},$
$\ldots,$

$A_{i}$ . Let $0$ and 1
denote the Boolean formulae corresponding to the constant Boolean functions. (See Figure
3, Figure 4 and Figure 6.)

begin
$g$ $:=0$ ; $A$ $:=\emptyset$ ; $p_{c}$ $:=1$ ;
for $i:=k$ down-to 1 do

begin
if $i\neq k$ then

begin
$S:=EXAMPLES$( $\frac{32}{\epsilon}\ln\frac{\delta}{4(k-1)}$ , TRUE, , ) ;
if FREQ $(S, \epsilon/2, \epsilon, g(v)=0)=$ (low’ then break$s_{or}\lrcorner oop$

$A:=SUPPRESS_{-}G(g, i, 6/4(k-1))$ ;
$p_{c}$ $:= \frac{1}{2}\cdot\frac{\epsilon}{i2^{|A|+1}}$ ;

end
$(A, j, p_{c}):=SUPPRESS_{-}F(A, i, \delta/4k, p_{c})$ ;
$t:=MAKE_{-}TERM(A, j, 6/4k, p_{c})$ ;
$g$ $:=g\vee t$ ;

end
return $g$ ;

end.

Figure 3: Algorithm $L$ for learning k-term MDNF
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procedure $SUPPRESS_{-}G(g, i, \delta)$

begin
$A:=Var(t_{1})\cross\cdots\cross Var(t_{k-i})$ ;
$S:=EXAMPLES$( $\frac{64i2^{k-:}}{\epsilon}\ln^{\bigcup_{\delta}}$ , TRUE, , ) ;
foreach $A$ in $A$ do

if FREQ $(S, \frac{1}{2}\frac{\epsilon}{12^{|A|+1}}\frac{\epsilon}{i2^{|A|+1}}v_{A}=0)=$ (high’ then return $A$

end

Figure 4: Procedure SUPPRESS-G

procedure $SUPPRESS_{-}F(A, i, \delta, p_{c})$

$j$ $:=i$ ;
while $j>1$ do

begin
$V_{1}$ $:=V_{2}$ $:=\emptyset$ ; $A^{c}$ $:=\{x_{1}, \ldots, x_{n}\}-A$ ;
$S$ $:= EXAMPLES(64j\ln\frac{4(,-1)|A^{c}|}{\delta}, v_{A}=0, p_{c}, 6/4(i-1))$ ;
foreach $x_{l}$ in $A^{c}$ do

if FREQ$(S, \frac{1}{2}\frac{1}{2j}\frac{1}{2j}v_{l}=0)=$ cchigh”
then $V_{1}$ $:=V_{1}\cup\{x_{l}\}$ ;

$S:= EXAMPLES(24j^{2}2^{2j}\ln\frac{4(i-1)|A^{c}|}{\delta}, v_{A}=0, p_{c}, \delta/4(i-1))$

foreach $x_{l}$ in $A^{c}$ do
if FREQ $(S, \frac{1}{2}\frac{1}{2}(1+\frac{1}{2}\cdot\frac{1}{J^{2^{J-1}}}),$ $v_{l}=1$ ) $=\zeta high$

’

then $V_{2}$ $:=V_{2}\cup\{x_{l}\}$ ;
if $V_{1}\cap V_{2}=\emptyset$ then break-whileJoop
else

begin
take one $x_{l}$ from $V_{1}\cap V_{2}$ and let $A:=A\cup\{x_{l}\}$ ;
$p_{c}$ $:=p_{c} \cdot\frac{1}{2}\cdot\frac{1}{2j}$ ;
$j$ $:=j-1$ ;

end
end

return $(A, j, p_{c})$ ;
end

Figure 5: Procedure SUPPRESS-F
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procedure $MAKE_{-}TERM(A, j, \delta, p_{c})$

begin
$t:=1$ ; $A^{c}$ $:=\{x_{1}, \ldots, x_{n}\}-A$ ;
$S:= EXAMPLES(24j^{2}2^{2j}(1+\frac{1}{j2^{j}})\ln\frac{2|A^{c}|}{\delta}, v_{A}=0, p_{c}, 6/2)$ ;
foreach $x_{l}$ in $A^{c}$ do

if FREQ $(S, \frac{1}{2}(1+\frac{1}{2}\cdot\frac{1}{j2J-1}),$ $\frac{1}{2}(1+\frac{1}{j2J-1}),$ $v_{l}=1$ ) $=$ “high”
then $t:=t\wedge x_{l}$ ;

return $t$ ;
end

Figure 6: Procedure MAKE-TERM

4 Correctness of the learning algorithm

Many of the statements in this section are involved with Lemma 2.5. As is shown in the
remark after the lemma, we simply claim that the fact that FREQ returnes “low” implies
$Pr[E(v)]<p$ , and that the fact that FREQ returnes “high” implies $Pr[E(v)]>p-\alpha$

without saying the phrase “with high probability”. Also we simply claim that EXAMPLES
produces the desired sequence, omitting the same phrase.

Fact 4.1 $(1- \frac{\delta}{m})^{m}\geq 1-\delta$ for any $m\geq 1,0\leq 6\leq 1$ .

Lemma 4.2 Let $f$ be a non-redundunt formula in k-term MDNF and $t$ be any term
in Term$(f)$ . Let $v$ be a random positive example of $f$ . For any variable $x$ ; in $Var(t)$ ,
$Pr[v_{i}=1]\geq\frac{1}{2}$ ( $1+ \frac{1}{2^{k-1}}$ . P.r $[t(v)=1]$).
Proof. Let $T$ be the set of terms $t’$ in Term$(f)$ such that $x_{t}\in Var(t’)$ . Let $f’$ be
the disjunction of terms in $T$ and $f”$ be the disjunction of terms in Term$(f)-T$. Then,
$Pr[v_{t}=1]=Pr$ [$f^{u}(v)=1$ and $v_{i}=1$ ] $+Pr$ [$f”(v)=0$ and $f’(v)=1$]

$\geq\frac{1}{2}$ ($Pr[f”(v)=1]+Pr[f”(v)=0$ and $f’(v)=1]+Pr[f^{n}(v)=0$ and $t(v)=1]$ )
$= \frac{1}{2}$ ( $1+Pr[f”(v)=0$ and $t(v)=1]$ ).

From Fact 3.1, there exists a set $A$ such that $|A|\leq k-1,$ $A\cap Var(t)=\emptyset$ and that
$v_{A}=0$ implies $f”(v)=0$ . Therefore, $Pr$ [$f”(v)=0$ and $t(v)=1$] $\geq Pr$ [$v_{A}=0$ and $t(v)=1$]
$= \urcorner^{1}2^{A}\urcorner Pr[t(v)=1]\geq\frac{1}{2^{k-1}}Pr[t(v)=1]$ . $\square$

Proposition 4.3 Let $A$ be the set returnd by the procedure $SUPPRESS_{-}G(g, i, 6)$ .
Then $Pr[v_{A}=0]>\frac{1}{2}\frac{\epsilon}{i2^{|A|+1}}$

Proof. If the procedure SUPPRESS-G is called by the learning algorithm $L$ , it is
guaranteed that $Pr[g(v)=0]>\epsilon/2$ . This fact is easily verified from the remark after
Lemma 2.5.
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From $Pr[g(v)=0]>\epsilon/2$ and the fact that there exist at most $i$ terms in Term$(f)$

$-Term(g)$ , there exists a term $t$ in $Te^{r}rm(f)-Term(g)$ such that $Pr$ [$t(v)=1$ and $g(v)=0$]
$> \frac{1}{i}\frac{\epsilon}{2}$ which implies $Pr[t(v)=1]>\frac{\epsilon}{2i}$ Therefore, from Fact 3.1 there exists a set $A$ in $A$

such that $A\cap Var(t)=\emptyset$ and $Pr$ [$t(v)=1$ and $v_{A}=0$] $> \urcorner^{1}2^{A}\urcorner\frac{\epsilon}{2i}$. Therefore, it follows that

$thereexistsFrom|A|\leq k-i,itiseasytoseethat^{>}\frac{64^{\frac{\epsilon}{l2^{|A|+1}k-l}}t2}{\epsilon}\ln^{\bigcup_{\delta}}anAsuchthatPr[v_{A}=0]$

the length of the sequence $S$ produced
by the procedure EXAMPLES in SUPPRESS-G, satisfies the condition (2-1). Therefore,
from Lemma 2.5, there exists an $A$ such that the procedure FREQ returns (

$hgh’$ . On the
other hand, if $Pr[v_{A}=0]<\frac{1}{2}$ $\frac{\epsilon}{i2^{|A|+1}}$ holds, the procedure FREQ returns $1_{oW}’$

) Thus, it
is concluded that SUPPRESS-G correctly returnes $A$ such that $Pr[v_{A}=0]>\frac{1}{2}\frac{\epsilon}{i2^{|A|+1}}$ $\square$

Note that all terms in Term$(g)$ are suppressed by the valiables in $A$ which was returnd
by SUPPRESS-G.

Proposition 4.4 Let $p_{c}$ and $A$ be as in the procedure SUPPRESS F. For any $A$ during
the procedure SUPPRESS-F, $Pr[v_{A}=0]\geq p_{c}$ .

Proof. From Proposition 4.3, $Pr[v_{A}=0]$ is greater than $p_{c}$ when the procedure SUP-
PRESS-F was called from L.

Now assume that $Pr[v_{A}=0]\geq p_{c}$ at the beginning of the while loop for some iteration
step. Let $x_{l}$ be the variable added to $A$ in this iteration step of SUPPRESS-F.

From Proposition 2.4, the procedure EXAMPLES, which is called first in this itera-
tion, produces a sequence $S$ composed of $64j \ln\frac{4(i-1)|A^{c}|}{\delta}$ positive examples satisfying the
condition $v_{A}=0$ under the assumption. Each vector in $S$ was drawn uniformly from
the positive examples satisfying $v_{A}=0$ . It is easy to see that above length of the se-
quence satisfies the condition (2-1). Thus, from Lemma 2.5, the condition for variables
in $V_{1}$ that FREQ $(S, \frac{1}{2}\frac{1}{2j}\frac{1}{2j}v_{l}=0)$ returns “high” imphes $Pr[v_{l}=0|v_{A}=0]>\frac{1}{2}$ $\frac{1}{2_{J}}$

Therefore we have $Pr[v_{A\cup\{x_{I}\}}=0]=Pr$ [$v_{l}=0$ and $v_{A}=0$ ] $=Pr[v_{l}=0|v_{A}=0]\cdot Pr[v_{A}=0]$

$> \frac{1}{2}\frac{1}{2j}\cdot Pr[v_{A}=0]$ . And $p_{c}$ is set to $p_{c} \cdot\frac{1}{2}\cdot\frac{1}{2_{\dot{J}}}$ whenever $x_{l}$ is added to $A$ . Therefore the
assumption is true for the next iteration step.

Thus, the assumption is true for all iteration step, and the proposition follows. $\square$

From Proposition 4.3 and Proposition 4.4, it follows that $Pr[v_{A}=0]=\Omega(\epsilon)$ during the
whole algorithm L. Also note that Proposition 4.4 implies that there always remains at
least one term in Term$(f)-Term(g)$ that is not suppressed by the valiables in $A$ .

Proposition 4.5 Let $x_{l}$ be the variable added to $A$ in the procedure SUPPRESS-F.
There exists some term in Term$(f)$ that is suppressed by $x_{l}$ but not by the variables in $A$ .

Proof. From Proposition 2.4 and Proposition 4.4, the procedure EXAMPLES, which
is called second in each iteration, produces a sequence $S$ of $24j^{2}2^{2j} \ln\frac{4(i-1)|A^{c}|}{\delta}$ positive ex-
amples satisfying the condition $v_{A}=0$ . The first bound of the condition (2-1) of Lemma
2.5 becomes $16j^{2}2^{2_{\dot{J}}}(1+ \frac{1}{j2^{j}})\ln\frac{4(i-1)|A^{c}|}{\delta}\geq 16j^{2}2^{2_{J}}(1+\frac{1}{2})$ In $\frac{4(;-1)|A^{c}|}{\delta}=24j^{2}2^{2_{J}}\ln\frac{4(\dot{l}-1)|A^{c}|}{\delta}$
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for $j\geq 1$ , and the right most term is equal to the second bound of (2-1). Thus, above
length of the sequence satisfies the condition (2-1). Therefore, from Lemma 2.5, the con-
dition for variables in $V_{2}$ that FREQ$(S, \frac{1}{2}\frac{1}{2}(1+\frac{1}{2}\cdot\frac{1}{j2^{j-1}}),$ $v_{l}=1$ ) returns “high” implies
$Pr[v_{l}=1|v_{A}=0]>1/2$ , the proposition follows. $\square$

Lemma 4.6 Let $f$ be a target formulae. The procedure MAKE-TERM called from the
learning algorithm $L$ returns a term in Term$(f)-Term(g)$ .

Proof. Let $j$ and $A$ be those in the procedure MAKE-TERM.
Assume that $j=1$ . From Proposition 4.5, variables in $A$ suppresses $k-1$ terms in

Term$(f)$ . Therefore, there remains just one term $t$ not suppressed by variables in $A$ .
Therefore, $Pr[v_{l}=1|v_{A}=0]$ is equal to 1 if $x_{l}$ is in $Var(t)$ , and 1/2 otherwise. Thus, as
the following argument shows, the remaining term $t$ is produced correctly in MAKE-TERM.

Now assume that $j>1$ . In this case, the conditions for values returned by FREQ in the
procedure SUPPRESS-F are not satisfied: For any variable $x_{l}$ in $A^{c}=\{x_{1}, \ldots, x_{n}\}-A$ ,
$Pr[v_{l}=0|v_{A}=0]<\frac{1}{2j}$ or $Pr[v_{l}=1|v_{A}=0]<\frac{1}{2}(1+\frac{1}{2}\cdot\frac{1}{j2^{J-1}})$ . Since there remain at
most $j$ terms not suppressed by the variables in $A$ , there exists a term $t$ in Term$(f)$

$-Term(g)$ such that $Pr[t(v)=1|v_{A}=0]>\frac{1}{j}$ Therefore, by Lemma 4.2, $Pr[v_{l}=1|v_{A}=0]$

$> \frac{1}{2}(1+\frac{1}{2^{J-1}}\cdot\frac{1}{\dot{J}})$ for any $x_{l}$ in $Var(t)$ . On the other hand, for any $x_{l}$ in $A^{c}-Var(t)$ , we have
$Pr$ [$v_{l}=0$ and $t(v)=1|v_{A}=0$] $=Pr$ [$v_{l}=0|t(v)=1$ and $v_{A}=0$] $\cdot Pr[t(v)=1|v_{A}=0]$

$> \frac{1}{2}$ $\frac{1}{\dot{J}}$ which implies $Pr[v_{l}=0|v_{A}=0]>\frac{1}{2j}$ Therefore, since the first condition for $x_{l}$

chosen in $SUPPRESS\lrcorner$? is satisfied, the second condition is not satisfied: $Pr[v_{l}=1|v_{A}=0]$

$< \frac{1}{2}(1+\frac{1}{2}\cdot\frac{1}{J^{2^{g-1}}})$ for any $x_{l}$ in $A^{c}-Var(t)$ .
From Proposition 2.4 and Proposition 4.4, the procedure EXAMPLES, which is called

in MAKE-TERM, produces a sequence of $24j^{2}2^{2_{\dot{J}}}(1+ \frac{1}{j2^{j}})\ln\frac{2|A^{c}|}{\delta}$ positive examples satis-
fying the condition $v_{A}=0$ . The first bound of the condition (2-1) of Lemma 2.5 becomes
$16j^{2}2^{2j}(1+ \frac{1}{j2^{y-1}})\ln\frac{4(i-1)|A^{c}|}{\delta}$ , and the second bound becomes $24j^{2}2^{2j}(1+ \frac{1}{j2^{j}})\ln\frac{4(i-1)|A^{c}|}{\delta}$ .
It is easy to see that the second bound is greater than the first one for $j\geq 1$ . Thus,
above length of the sequence satisfies the condition (2-1). Therefore, from Lemma 2.5, it
is concluded that the term $t$ in Term$(f)-Term(g)$ is produced in MAKE-TERM. $\square$

Theorem 4.7 The learning algorithm $L$ for k-term MDNF learns k-term MDNF in time
$\mathcal{O}(\frac{n^{k}}{\epsilon}(\ln n+\ln\frac{1}{\delta}))$ , using $\mathcal{O}(\frac{1}{\epsilon}(\ln n+\ln\frac{1}{\delta}))$ positive examples.

Proof. Correctness of the algorithm is immediate from Lemma 4.6. All that remain is
to estimate the number of examples and the time required, and the confidence parameters.

Procedure $SUPPRESS_{-}G(g, i, \delta)$ calls procedure FREQ at most $|A|$ times. Each FREQ
is called with confidence parameter $6/|A|$ . Thus, from Fact 4.1, $SUPPRESS_{-}G(g, i, \delta)$

achieves 1–6 confidence.
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Procedure $SUPPRESS_{-}F(A, i, \delta, p_{c})$ iterates the steps inside the while loop at most
$i-1$ times. In each iteration, procedure EXAMPLES is called twice with confidence
parameter $\delta/4(i-1)$ , and procedure FREQ is called $2|A^{c}|$ times with confidence param-
eter $6/4(i-1)|A^{c}|$ . Therefore, from Fact 4.1, each iteration has confidence $(1- \frac{\delta}{4(i-1)})^{2}$

. $(1- \frac{\delta}{4(i-1)|A^{c}|})^{2|A^{c}|}\geq(1-\frac{\delta}{2(\cdot-1)})^{2}\geq 1-6/(i-1)$ . Therefore, $SUPPRESS_{-}F(A, i, \delta, p_{c})$

achieves $1-\delta$ confidence.
Procedure $MAKE_{-}TERM(A, j)\delta,$ $p_{c}$) calls EXAMPLES once with confidence parameter

6/2, and calls FREQ I $A^{c}|$ times with confidence parameter $\delta/2|A^{c}|$ . Therefore, the same
argument as above shows that $MAKE_{-}TERM(A, j, \delta, p_{c})$ achieves 1–6 confidence.

Algorithn $L$ itself calls FREQ at most $k-1$ times with confidence parameter $\delta/4(k-1)$ ,
calls SUPPRESS-G at most $k-1$ times with confidence parameter $\delta/4(k-1)$ , calls SUP-
PRESS-F at most $k$ times with confidence parameter $\delta/4k$ , and calls MAKE-TERM at
most $k$ times with confidence parameter $6/4k$ . From Fact 4.1, it is concluded that the
whole algorithm $L$ achieves $1-\delta$ confidence.

Procedure EXAMPLES called by $L$ itself calls POS $\mathcal{O}(\frac{1}{\epsilon}\ln\frac{1}{\delta})$ times. From $1\leq i\leq k$

and $|A|\leq n^{k-1}$ , EXAMPLES called by SUPPRESS-G calls POS $\mathcal{O}(\frac{1}{\epsilon}(\ln n+\ln\frac{1}{\delta}))$ times.
From $|A^{c}|<n,$ $1\leq i_{J}.j\leq k$ and the fact that $p_{c}=\Omega(\epsilon)$ during the whole algorithm $L$ , it is
easy to see that each EXAMPLES called by SUPPRESS-F and MAKE-TERM calls POS
$\mathcal{O}(\frac{1}{e}(\ln n+\ln\frac{1}{\delta}))$ times. Since the numbers of iterations in $L$ and SUPPRESS-F are both
at most $k$ , it is concluded that the total number of examples required is $\mathcal{O}(\frac{1}{\epsilon}(\ln n+\ln\frac{1}{\delta}))$ .

When the procedure $SUPPRESS_{-}G(g, i, \delta)$ is called from $L$ , at most $|A|\leq n^{k-i}$ sets
$A$ must be tested via $\mathcal{O}(\frac{1}{\epsilon}(\ln n+\ln\frac{1}{\delta}))$ positive examples. This part dominates the time
required over the whole algorithm. Therefore, it is easy to see that the total time required
is $\mathcal{O}(\frac{n^{k}}{e}(\ln n+\ln\frac{1}{\delta}))$ .

Completed the whole proof of Theorem 4.7. $\square$

5 Learning k-term MDNF in the presence of errors
In this section, we consider the learnability of k-term MDNF in the presence of noise in the
examples, adopting the malicious error model which is introduced in [V85] and studied in
[KL].

$POS_{\beta}^{M}(f)$ is an oracle with following features: With probability $1-\beta$ , it behaves the
same as $POS(f)$ and, with probability $\beta$ , it produces an arbitrary answer possibly chosen
maliciously by an adversary. $POS_{\beta}^{M}(f)$ is called $POS(f)$ with malicious error rate $\beta$ , and
simply written as $POS_{\beta}^{M}$ when no confusion arises. Without loss of generality, $0\leq\beta<1/2$

is assumed. Since we are concerned with only positive examples, we do not need to consider
$NEG(f)$ with malicious error. By replacing POS with $POS_{\beta}^{M}$ in the definition of learnability
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in section 2, we have the definition of learnability from $POS_{\beta}^{M}$ .
$Pr$ [$E(v)$ : POS] denotes the probalility of an event $E(v)$ where $v$ is given by POS, and

$Pr[E(v):POS_{\beta}^{M}]$ denotes the probahlity of the event $E(v)$ where $v$ is given by $POS_{\beta}^{M}$ .

Fact 5.1 Let $r,$ $s$ be such that $0\leq r,$ $s\leq 1$ . If $Pr$ [$E(v)$ : POS] $\geq r$ then $Pr[E(v)$ : $POS_{\beta}^{M}]$

$\geq(1-\beta)r$ , and if $Pr$ [$E(v)$ : POS] $\leq s$ then $Pr[E(v):POS_{\beta}^{M}]\leq(1-\beta)s+\beta$ .

Following lemma is analogous to Lemma 2.5. It tells that the procedure FREQ can be
used to estimete the probability of an event in the case of occuring errors as well.

Lemma 5.2 Let $p,$ $\alpha,$
$\delta$ be as in the Lemma 2.5. Let $S$ be a sequence of $m$ vectors each

of which is given independently by $POS_{\beta}^{M}$ , and let $m$ be such that $m \geq\neq 4\alpha 8\ln\frac{1}{\delta}$ . Let $\beta,$ $\beta_{0}$

satisfy the following condition (5-2).

$0\leq\beta\leq\beta_{0}\leq\alpha/4$ (5-2)

Let $p’=$ $(1-\beta_{0})p$ and of $=\alpha-(1+\alpha)\beta_{0}$ . If $Pr$ [$E(v)$ : POS] $\leq p-\alpha$ then
FREQ($S,$ $p’$ –of, $p’,$ $\delta$ ) returns “high” with probability at most 6, and if $Pr$ [$E(v)$ : POS]
$\geq p$ then it returns “low” with probabihty at most $\delta$ .

Proof. Using Fact 5.1 and an argument analogous to the proof of Lemma 2.5, the
lemma can be proved. Details are left to the readers. $\square$

When we attempt to estimete the conditional probability $Pr$ [$E(v)|C(v)$ : POS],
the situation is slightly different. Let $S$ be a sequence of vectors produced by
EXAMPLES(m, $C(v),$ $p_{c},$

$\delta$ ), where POS is replaced with $POS_{\beta}^{M}$ in the procedure EX-
AMPLES. Each vectors in $S$ can be seen as a vector that is produced independently by
an oracle which produces positive examples satisfying the condition $C(v)$ uniformly with
malicious error rate $\beta’$ . From the assumption that $Pr$ [$C(v)$ : POS] $\geq p_{c},$ $\beta<1/2$ , and Fact
5.1, it follows that $\beta’=\beta/Pr[C(v):POS_{\beta}^{M}]\leq\beta/(1-\beta)p_{c}<2\beta/p_{c}$ . Therefore, replacing
$\beta$ with $\beta’$ in Lemma 5.2, we have that if $\beta$ and $\beta_{0}$ satisfy the followong condition (5-3),
then Lemma 5.2 can be used to estimete the conditional probability as well.

$0\leq\beta\leq\beta_{0}\leq\alpha p_{c}/8$ (5-3)

Theorem 5.3 There is a constant $0<c_{k}<1$ such that k-term MDNF is learnable from
$POS_{\beta}^{M}$ for $\beta=c_{k}\epsilon$ .

Proof. Applying the modification suggested by Lemma 5.2, it is easy to modify
the learning algorithm $L$ to the learning algorithm $L^{*}$ that learns k-term MDNF in the
presence of errors. And it can be seen that in the modified algorithm, right most terms in
the condition (5-2) and (5-3) are both $\Omega(\epsilon)$ . Thus, Lemma 5.2 and Lemma 4.7 imply the
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theorem. Details are left to the readers. 口
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