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SUMMARY The notion of alternating context-free grammar (ACFG for short) was
introduced by Moriya in 1989. In this paper, we study the relationships between some com-

plexity classes and the classes of languages generated by restricted types of ACFG’s. Two

restricted types of ACFG’s considered are linear ACFG’s and e-free ACFG’s. For an ACFG
$G$ , let $L_{left}(G)$ denote the language of terminal strings generated by leftmost derivations in
$G$ . Let $ACFL_{\epsilon-free}^{left}=$ { $L_{left}(G)$ I $G$ is an $\epsilon$-free ACFG} and $ACFL_{linear}=\{L_{left}(G)|G$ is

a linear ACFG’s}. The main results of the present paper are as follows:

(1) the class of languages that are log-space many-one reducible to languages in $ACFL_{linear}$

is equivalent to $P$ , and

(2) the class of languages that are log-space many-one reducible to languages in $ACFL_{\epsilon}^{le}$

is equivalent to PSPACE.

1 Introduction

Alternating context-free grammars (ACFG for short) were introduced by Moriy$a^{(6)}$ as an

interesting generalization of context-free grammars (CFG for short). Moriya also investigated

some elementary properties of ACFG’s and the relationships among many classes defined by

ACFG’s. In this paper, we investigate the relationships between some complexity classes and

some restricted types of ACFG’s. Two restricted types of ACFG’s are considered in this paper.
They are $\epsilon$-free ACFG’s and linear ACFG’s. Intuitively speaking, e-free ACFG’s (resp., linear

ACFG’s) are an alternating analogue to $\epsilon$-free CFG’s (resp., linear ACFG’s). The formal
definitions of them are given in Section 2.

The relationships between grammars and complexity classes have been well studied by

many researcher$s^{(2),(3),(9),(10)}$ . Especially, Sudborough showed that $NL=LOG(CFL_{linear})^{\langle 10)}$
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and auxPDA(poly) $=LOG(CFL)^{(9)}$ , where NL and auxPDA$(poly)^{(7)}$ are the classes of lan-

guages accepted by nondeterministic Turing machines in logarithmic space and auxliary push-

down automata in polynomial time, respectively, and $LOG(CFL_{linear})$ and LOG(CFL) are

the classes of languages log-space many-one reducible to linear context-free languages and

(unrestricted) context-free languages, respectively. These results $s$how the computational

complexity of recognizing context-free languages and, simultaneousely, they give grammatical

charaterizations for some interesting complexity classes. In this paper, we consider the compu-

tational complexity of recognizing some restricted types of alternating context-free langu$a$ge$s$ .

Of particular interest is to find some grammatical charaterizations for some other complexity

classes. One of our main result $s$ is that $P=LOG(ACFL_{linear})$ , where $P$ is the class of lan-

guages accepted by deterministic Turing machines in polynomial time and LOG$(ACFL_{linear})$

is the class of languages that is log-space many-one reducible to those generated by linear

ACFG’s. Noting that $P=ASPACE(log)^{(1)}$ (the class of languages accepted by alternating

Turing machines in logarithmic space), the result can be viewed as an alternating counterpart

of Sudborough’s fist result. In other words, the notion of alternation in a grammatical $s$ense

works for a similar meaning to the case of Turing machine. We also investigate the relation-

ship between $\epsilon$-free ACFG’s and PSPACE (the class of languages accepted by deterministic

Turing machines in polynomial space). In this paper, derivations in each $\epsilon$-free ACFG are

restricted to be leftmost and the language generat$ed$ by each $\epsilon$-free ACFG is the language of

terminal strings generat$ed$ by leftmost derivations. The reason is that there exists an $\epsilon$-free

ACFG in which some terminal strings are generated in that grammar but are not able to

be generated by any leftmost derivations in that grammar. Hence, the clas $s$ of languages

generat$ed$ by $\epsilon$-free ACFG’s would be different from the class of those generated by leftmo$st$

derivations of $\epsilon$ -free ACFG’s. In this restricted sense, we prove that PSPACE is equiva-

lent to the clas$s$ of languages log-space many-one reducible to languages generated by $\epsilon$-free

ACFG’s. We note that our proof technique does not work for the class of $\epsilon$-free alternating

context-free languages (in a usual sense). It is currently unknown even whether the class of
$\epsilon$ -free alternating context-free languages is computationally equivalent to the class of those

restricted in the above sense. It is an interesting open question.

The present paper is organized as follows. In the next section, we define some notions and

notations. In particular, we define a variation of alternating pushdown automata for the sake

of simplifying the proof. In Section 3, we show the relationship between linear ACFL’s and
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P. In Section 4, we show the relationship between $\epsilon$-free ACFL’s and PSPACE. In the final

section, we exhibit some interesting open questions.

2 Preliminaries

The reader is $as$sumed to be familiar with the basic concepts in formal language and com-

putational complexity theories. Unless stat$ed$ otherwise, basic notations in this paper follow

Hopcroft and Ullman. Below, by $\epsilon,$ $|w|$ , and $\# Q$ , we denote the empty string, the length

of string $w$ , and the cardinality of a finite set $Q$ , respectively.

2.1 Alternating context-free grammars

The following fundamental definition is cited from Moriya’s paper.

[Definition 2.1] An alternating context-free grammar (ACFG for short) is a quintuple

$G=(N, U, \Sigma,P, S)$ , where $(N, \Sigma, P, S)$ is $a$ context-free grammar (CFG for short), called the

underlying CFG of $G$ , and $U$ is a subset of $N$ . Elements of $U$ and $N-U$ ar$e$ called universal

and existential nonterminals, respectively. A production whose lefthand side is an $e$xistential

(universal) nonterminal is called an existential (resp., universal) production.

Let $G=(N, U, \Sigma, P, S)$ be an ACFG and $\alpha$ be in $(N\cup\Sigma)^{*}$ . A finite tree $T$ is called a

leftmost derivation for $G$ from $\alpha$ if the following properties are satisfied:

(a) Each node $\tau$ is labeled with a string in $(N\cup\Sigma)^{*}$ , denoted $\ell(\tau)$ ; in particular, the root

of $T$ is labeled with $\alpha$ .
(b) If $\tau$ is an internal node of $T$ su$ch$ that $\ell(\tau)=xA\beta$ with $x\in\Sigma^{*},$ $A\in N-U$ and $Aarrow\gamma$

is a production in $P$ , then $\tau$ has exactly one son $\tau’$ labeled with $l(\tau’)=x\gamma\beta$ . In this case, $\tau$

is called an existential node.

(c) If $\tau$ is an internal node of $T$ such that $\ell(\tau)=xA\beta$ with $x\in\Sigma^{*},$ $A\in U$ and $Aarrow\gamma_{1}|$

$\gamma_{2}$
. . . $|\gamma_{k}$ are the A-productions (i.e. productions whose lefthand side is $A$) in $P$ , then $\tau$ has

exactly $k$ sons $\tau_{1’},$ $\tau_{2}’,$
$\cdots,$

$\tau_{k}’$ with $\ell(\tau_{i’})=x\gamma_{i}\beta,$ $1\leq i\leq k$ . In this case, $\tau$ is called a universal

node.

For each node $\tau$ of a leftmost derivation $T$ , the value of $\tau,$ $val(\tau)$ , is inductively defined as
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follows.

$val(\tau)=\{p(\tau)wval(\rho)undefinedotherw^{auniversa1nodeand_{\rho of\tau^{is}}}i^{f\tau isa_{ise^{al(\rho)foreachson^{and\rho}}}}i_{f\tau is_{=v^{1e.afofT}’}}i_{f\tau}w^{isanexistentia1node}$

,

its son,

The value of a leflmost derivation $T$, denoted value$(T)$ , is defined to be the value of its root.

Notice that the value of a leftmost derivation may be undefined. For a leftmost derivation $T$ , if

its value is defined, then it is $s$aid to be valid, and then it is $s$aid to generate value$(T)$ from the

label of the root. Note that all the leaves of a valid leftmost derivation $T$ have the same label,

value $(T)$ . The label of a node of a leftmost derivation whose root is labeled with the start

symbol is called a sentential form. A terminating leflmost derivation is a leftmo$st$ derivation

whose leaves each have a label in $\Sigma^{*}$ . An acceptable leflmost derivation is a terminating valid

leftmost derivation whose root is labeled with the start symbol. The language generated by

$G$ is defined to be the set

$L_{left}(G)=$ {$value(T)|T$ is an acce$p$table leftmost derivation in $G$ }

A language $L$ is an alternating context-free language (ACFL for short) if $L=L_{left}(G)$ for

some ACFG $G$ .
ACFG’s can be classified according to the form of their productions. In this paper, we con-

sider two restricted types of ACFG’s which will be defined as follows. Let $G=(N, U, \Sigma, P, S)$

be an ACFG.

[Definition 2.2] $G$ is linear if every production is of the form $Aarrow xBy$ or $Aarrow x$ for

some $x,$ $y\in\Sigma^{*}$ and $B\in N$ . An ACFL is linear if it can be generated by some linear ACFG.

[Definition 2.3] A production is called an e-production if it is of the form $Aarrow\epsilon$ for

some $A\in N$ . We $s$ay that $G$ is $\epsilon$-free if it has no e-productions. An ACFL is said to be
$\epsilon$-free if it can be generated by some $\epsilon$-free ACFG.

Notice that all derivations in any linear ACFG are obviously leftmost. Hence, our result

in Section 3 $h$as no restriction while the result in Section 4 has a restriction.

2.2 Complexity classes and notations

The main goal of this $p$aper is to find the relation$s$ between ACFL’s and complexity classes.

As usu$a1^{(4)}$ , we denote by PSPACE and $P$ the classes of languages accepted by deterministic
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Turing machines in polynomial space and in $p$olynomi$a1$ time, respectively. We denote by

ATIME(poly) and ASPACE(log) the classes of languages accepted by alternating Turing

machines in $p$olynomial time and in logarithmic space, respectively. A language $L’$ is log-

space many-one reducible to a language $L$ ( $L’$ is $\leq_{m}^{log}$-reducible to $L$ ) if there exists a log-space

computable function $f$ such that for $e$very $x,$ $x\in L’$ iff $f(x)\in L$ . We write $L’\leq_{m}^{log}L$ if $L’$

is $\leq_{m}^{log}$-reducible to $L$ . For a class $C$ of languages, we say that $a$ language L. is C-complete

if $L\in C$ and every language in $C$ is $\leq_{m}^{log}$-reducible to $L$ . We say that a class $C$ is closed

under $\leq_{m}^{log}$ -reducibility if $L’\leq_{m}^{log}L$ and $L\in C$ implies $L’\in C$ for all languages $L’$ and $L$ . For

a language $L$ , we define $LOG(L)=\{L‘ |L’\leq_{m}^{log}L\}$ . Furthermore, for a class $C$ of languages,

we define LOG(C) $= \bigcup_{L\in C}LOG(L)$ .
We denote by $ACFL_{\epsilon-free}^{left}$ and $ACFL_{linear}$ the $c1$asses of ACFL’s, e-free ACFL’s, and

linear ACFL’s, $resp$ectively.

2.3 State-free alternating pushdown automata

In this section, we introduce a variation of alternating pushdown automata for the sake of

simplifying the proofs of our main results.

[Definition 2.4] A state-free alternating pushdown automaton (SF-APDA for short) $M$

is a five-tuple $M=(\Sigma,\Gamma, \Pi, \delta, Z_{0})$ , where $\Sigma$ is a finite input alphabet, $\Gamma$ is a finite alphabet of

pushdown stack symbols, $\Pi$ is a subset of $\Gamma,$ $Z_{0}\in\Gamma$ is a particular pushdown st$ack$ symbol

that appears initially on the pushdown stack, and $\delta$ is $a$ transition function from $(\Sigma\cup\{e\})\cross\Gamma$

to the finite subset $s$ of $\Gamma^{*}$ . Each element in F–II (res$p.,$ $\Pi$ ) is called a existential (resp.,

universal? pushdown stack symbol.

An instantaneous description(ID) of $M$ has the form $(w,\gamma)$ , where

(1) $w$ represents the unused portion of the input. At this point, the input head reads the

leftmo$st$ symbol of $w$ .
(2) $\gamma$ represents the content of the pushdown stack. The leftmost symbol of $\gamma$ is the topmost

pushdown symbol. If $\gamma=e$ , then pushdown stack is assumed to be empty.

The initial $ID$ of $M$ on input $w$ is $(w, Z_{0})$ ; The accepting $ID$ is $(\epsilon, \epsilon)$ . A computation $tree$

of $M$ on input $w$ is $a$ finite rooted tree defined as follows:

(a) Each node $\tau$ is labeled with an $ID$ of $M$ , denoted $\ell(\tau)$ ; in particular, the root is

labeled with the initial $ID$ of $M$ on input $w$ .
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(b) If $\tau$ is an internal node $such$ that $\ell(\tau)=(ax, Z\alpha)$ with $a\in\Sigma\cup\{\epsilon\}$ and $Z\in\Gamma-\Pi$

and if $\beta\in\delta(a, Z)\cup\delta(\epsilon, Z)$ , then $\tau h$as exactly one son $\tau’$ such that $\ell(\tau’)=(x, \beta\alpha)$ if

$\beta\in\delta(a, Z)$ and $P(\tau’)=(ax, \beta\alpha)$ if $\beta\in\delta(\epsilon, Z)$ .

(c) If $\tau$ is an intern$a1$ node su$ch$ that $P(\tau)=(ax, Z\alpha)$ with $a\in\Sigma\cup\{\epsilon\}$ and $Z\in\Pi$ and

if $\delta(a, Z)\cup\delta(\epsilon, Z)=\{\beta_{1}|1\leq i\leq k\}$ , then $\tau$ has exactly $k$ sons $\tau_{1},$ $\tau_{2},$ $\cdots,$ $\tau_{k}$ such that

for $1\leq i\leq k,$ $\ell(\tau_{i})=(x, \beta_{i}\alpha)$ if $\beta_{i}\in\delta(a, Z)$ and $l(\tau_{i})=(ax, \beta_{i}\alpha)$ if $\beta_{i}\in\delta(\epsilon, Z)$ .

An accepting computation tree of $M$ on input $w$ is $a$ computation tree of $M$ on input $w$ ,

whose leaves each are labeled with the accepting $ID$ . We say that $M$ accepts $w$ if there is an

accepting computation tree of $M$ on input $w$ . The language of input strings $ac$cepted by $M$

is denoted by $L(M)$ .

We $s$ay that a move from $(u, Z\alpha)$ to $(v, \beta)$ is a e-pop-move if $v=u$ and $\beta=\alpha$ (i.e. in this

move, the machine pops up the top symbol of the pushdown store without moving the input

head).

3 A characterization of PSPACE in terms of $\epsilon$-free ACFG’s

In this section, we characterize PSPACE in terms of e-free ACFL’s. We first show that

all languages in $ACFL_{\epsilon}^{le}$ are in PSPACE, and then show that a PSPACE-complete

language is $\leq_{m}^{log}$-reducible to a languag$e$ in $ACFL_{\epsilon-free}^{left}$ .
[Lemma 3.1] $ACFL_{\epsilon-free}^{left}\subseteq PSPACE$ .
(Proof) Let $L=L_{left}(G)$ , where $G=(N, U, \Sigma, P, S)$ is an $\epsilon$-free ACFG. It has been shown

that ATIME(poly) $=PSPACE^{(1)}$ . So we prove this lemma by constructing an alternating

Turing machine $M$ which accepts $L$ in polynomi$a1$ time.
$M$ simply simulates leftmost derivations for $G$ from $S$ by remembering a sentential form on

its work tape. More precisely, given an input $w$ with length $n,$ $M$ starts its computation with

writing the start symbol $S$ on its worktape. At some time, suppose $M$ has a string $xB\beta$ on

its work tape, where $x\in\Sigma^{*},$ $B\in N$ , and $\beta\in N^{*}$ . Then, if $B\in N-U$ , then $M$ existentially

chooses a B-production and replaces $B$ by its righthand side. If $B\in U$ , then $M$ universally

chooses a B-production and replaces $B$ by its righthand side. $M$ operates along this way until

the string on the work tape becomes a string $u\in\Sigma^{*}$ . At the last time, if $u=w$ , then $M$

enters an accepting state; otherwise, $M$ enter$s$ a rejecting state. Furthermore, at any moment

of its computation, if the length of the string on the work tape exceeds $n$ , then $M$ enters a
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rejecting state immediately.

It is easy to see that $M$ accept$sL_{left}(G)$ . To $see$ that $M$ is polynomial time bounded, we

note that at least $\neq P$ application $s$ of productions must increase the length of the sentential

form by at least 1 or increase the number of terminals in the sentential form by at least 1. We
$a1$so note that only the number of terminals can be increased once the $s$entential form changes

to another one with length $|w|$ . From these, we know that at most 2 $\cdot\neq P\cdot|w|$ applications of

productions is enough to generate $w$ . Thus $M$ is polynomial time bounded. $\square$

In order to show $PSPACE\subseteq LOG(ACFL_{\epsilon-free}^{left})$, we use $a$ restricted type of SF APDA’s

as a tool. An SF-APDA is $\epsilon$ -pop-free if it does no $\epsilon$-pop-move$s$ on any input. We denote by

$SF_{-}APDA_{\epsilon-pop}$ the class of languages accepted by $\epsilon$-pop-free SF-APDA’s.

The following lemma will be used in the proof of th$e$ main result of this section.

[Lemma 3.2] $SF_{-}APDA_{\epsilon-pop-free}\subseteq ACFL_{\mathcal{E}-free}^{left}$ .

Let $3QBF$ denote the set of true quantified Boolean formulas

$F=(q_{1}x_{1})(q_{2}x_{2})\cdots(q_{n}x_{n})E$

where $q_{i}\in\{\forall, \exists\}$ and $E$ is a conjunction of 3-1iteral disjunctive clauses.

[Proposition 3.3] $3QBF$ is $\leq_{m}^{log}$-complete for PSPACE.

[Theorem 3.4] $LOG(ACFL_{\epsilon-free}^{\iota_{e}ft})=PSPACE$ .
(Proof) $(\subseteq)$ This follows from Lemma 3.1 and the fact that PSPACE is closed under

$\leq_{m}^{log}$ .
$(\supseteq)$ From Lemma 3.2 and Proposition 3.3, it suffices to $s$how that $3QBF$ is $\leq_{m}^{log}$-reducible

to a language accepted by an $\epsilon$-pop-free SF-APDA. Let $F=(q_{1}x_{1})(q_{2}x_{2})\cdots(q_{n}x_{n})C_{1}C_{2}\cdots C_{n}$

be $a$ quantified boolean formula, where $C_{j}=(l_{1}^{(j)}+l_{2}^{(j)}+l_{3}^{(j)})$ and each $l_{i}^{(j)}$ is either a variable

(i.e. a $p$ositive liter$a1$ ) or a negation of a variable (i.e. a negative liter$a1$). We first encode $F$

into $a$ string $\tilde{F}$ in $\{t, \exists, \forall, a, (, ), b, +, }^{+}$ as follows:

$\tilde{F}=q_{1}a^{1}q_{2}a^{2}\cdots q_{m}a^{m}\tilde{C}_{1}\tilde{C}_{2}\cdots\tilde{C}_{n}\phi^{m^{2}}$ $,

where

(1) $q_{i}\in\{\exists,\forall\}$ ,

(2) $\tilde{C}_{j}=b^{m^{2}}(l_{1}^{(j)}\wedge+l_{2}^{(j)}\sim+l_{3}^{(j)})\sim$ , and

(3) $l_{i}^{\langle j)}\sim=a^{k}1$ if $l_{i}^{\langle j)}$ is a positive literal $x_{k}$ , and $l_{i}^{(j)}\wedge=a^{k}0$ if $l_{i}^{\langle j)}$ is $a$ negative literal
$\overline{x}_{k}$ .

7



233

We construct an $\epsilon- p$ op-free SF-APDA $M$ working on an input string from $\{t,$ $\exists,\forall,$ $a$ , $(, )$ , $b,$ $+$ ,

Intuitively speaking, $M$ operates as follows. At the beginning of its computation, it univer-

$s$ally chooses one of two actions. One action is to check whether the current input is in the

set $E$ defined by $a$ regular expression

$(\{\exists,\forall\}\{a\}^{+})^{+}(\{b\}^{+}\{(\}\{a\}^{+}\{0,1\}\{+\}\{a\}^{+}\{0,1\}\{+\}\{a\}^{+}\{0,1\}\{)\})^{+}\{\phi\}^{+}\{}.$

Notice that $\tilde{F}$ above is in $E$ . If the input is in $E$ , then $M$ accepts the input; otherwise, it

rejects the input. The other action is to check whether the current input is (an encoding

string of) a true quantified boolean formula. This check is done in the following manner. $M$

first chooses an assignment to each variable either existentially or universally according to

the quantifier bounding this variable and it keeps these assignments with variable name$s$ by

the pushdown stack. After that, it universally choo$s$es one of clauses and checks whether the

clause is true on the guessed assignment. In order to do this check, $M$ existentially chooses

one of variable names with associated assignment from the pushdown store and further, it

existentially chooses one of literals in the cluase. After that, $M$ compares both with each

other. If both agree with each other (i.e. the cluase is true), then $M$ accepts the input;

otherwise, it rejects.

We notice that $M$ has to move the input head when poping up $a$ pushdown symbol. Below,

the symbols $b^{m^{2}}$ in $\tilde{F}$ above will be used for guessing one of variable names on the pushdown

store. Furthermore, the symbols $t^{m^{2}}$ $ will be used for making pushdown store $emp$ty. $\square$

4 A charaterization of $P$ in terms of linear ACFG’s

In this section, we charaterize $P$ in terms of linear ACFG’s. We first show that all languages

in $ACFL_{linear}$ are in $P$ and then show that a P-complete language is $\leq_{m}^{log}$-reducible to a

language in $ACFL_{linear}$ .
[Lemma 4.1] $ACFL_{linear}\subseteq P$ .

(Proof) Let $L=L_{left}(G)$ , where $G=(N, U, \Sigma, P, S)$ is a linear ACFG. Since it $h$as been

shown in [1] that ASPACE(log) $=P$ , we prove this lemma by constructing an alternating

Turing machine $M$ which accepts $L$ in logarithmic space.
$M$ simply simulates leftmost derivations for $G$ from $S$ by remembering a nonterminal and

two positions $p_{1},$ $p_{2}$ on the current input. Given an input $w$ with length $n,$ $M$ starts its

computation with writing the start symbol $S$ on the work tape and setting $p_{1}=1$ a.nd $p_{2}=n$ .
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At some time, suppose that $M$ has a nonterminal $B$ on the work tape, If $B\in N-U$

$(B\in U)$ , then $M$ existentially (resp., universally) chooses a B-production, say $Barrow xAy$ for

$A\in N$ , and replace $B$ by $A$ . Furthermore, $M$ check$s$ the following conditions: (1) the part

of $w$ from the $p_{1}’ th$ symbol to the $p_{1}+|x|-1$ th symbol is $x,$ (2) the $p$art of $w$ from the

$p_{2}-|y|+1’ th$ symbol to the $p_{2}’ th$ symbol is $y$ . If $M$ does not succeed in this checking, then it

enters a rejecting state immediately; otherwise, it increases $p_{1}$ by $|x|$ and decreases $p_{2}$ by $|y|$ .

$M$ operates along this manner until it chooses $a$ production $Aarrow x$ for some $x\in\Sigma^{*}$ is chosen.

At the last time, $M$ checks whether the part of $w$ from the $p_{1}$ ‘th symbol to the $p_{2}’ th$ symbol

is $x$ . If so, $M$ enters an accepting state; otherwise, $M$ enters a rejecting state. Furthermore,

at any moment of its computation, if the value of $p_{1}$ becomes larger than that of $p_{2}$ , then $M$

enters a rejecting state immediately.

It is easy to see that $M$ accepts $L_{left}(G)$ and is $\log$ space bounded. $\square$

In order to show that $P\subseteq LOG(ACFL_{linear})$ , we use another restricted type of SF-APDA’s

as a technical tool.

[Definition 4.1] An SF-APDA is l-tum if, in each move, it operates deterministically,

pops up $a$ pushdown symbol, and moves its input head after the time that it $p$ ops up a symbol

from the pushdown stack. We denote by $SF_{-}APDA_{1}$ the class of languages accepted by

l-turn SF-APDA’s.
[Lemma 4.2] $SF_{-}APDA_{1-turn}\subseteq ACFL_{linear}$ .

In order to prove our next theorem, some more definitions are necessary.

An n-node acyclic $and/or$ graph is a pair $G=(f,g)$ , where

(1) $f$ is $a$ function from $\{1, 2, \cdots,n\}$ to $\{\vee, \wedge\}$ ,

(2) $g$ is a function from $\{1, 2, \cdots,n\}$ to $2^{\{1,2,\cdots,n\}}$ , and

(3) for every $i\in\{1,2, \cdots,n\},$ $\# g(i)=2$ or $0,$ $j>i$ if $j\in g(i)$ , and for every $j>i$ ,

$g(j)=0$ if $g(i)=0$ .

Let $G$ be a n-node acyclic $and/or$ graph. For each $i\in\{1,2, \cdots , n\}$ , its value $\sigma(i)$ is defined

inductively as follows.

$\sigma(i)=\{\begin{array}{l}trueifg(i)=\emptyset andf(i)=\vee falseifg(i)=\emptyset andf(i)=\wedge\sigma(i)f(i)\sigma(k)ifg(i)=\{j,k\}\end{array}$

We define the value of $G$ to be $\sigma(1)$ . Let
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AGAP$=$ { $G|G$ is a n-node acyclic $and/or$ graph whose value is true}.

[Proposition 4.3] AGAP is $\leq_{m}^{log}$-complete for $P^{(5)}$ .
[Theorem 4.4] $LOG(ACFL_{linear})=P$ .
(Proof) $(\subseteq)$ This follow$s$ from Lemma 4.1 and the fact that $P$ is closed under $\leq_{m}^{log}$ .

$(\supseteq)$ From Lemma 4.2 and Proposition 4.3, it suffices to show that AGAP is $\leq_{m}^{log}$ -reducible

to a language accepted by a l-turn SF-APDA.

Let $G=(f,g)$ be a n-node $a$cyclic $and/or$ graph and $m$ is the number of nodes $i$ in $G$

satisfying $g(i)\neq\emptyset$ . We first encode $G$ into a string $\tilde{G}$ in $\{\wedge, V, a, b, \#, t}^{+}$ as follows.

$\tilde{G}=\neq w_{1}\neq w_{2}\neq\cdots\# w_{m}overline{w}_{m}\cdots\overline{w}_{2}\overline{w}_{1}$

where

(1) $\overline{w}_{i}=ba^{i}ba^{i}$ for $1\leq i\leq m$ ,

(2) if $g(i)=\{j, k\}$ , then $w_{i}=a^{i}f(i)u_{j}\phi u_{k}$ for $1\leq i\leq m$ , and

(3) for $1\leq i\leq n$ ,

$u;=\{\begin{array}{l}a^{i}bif\neq g(i)=2bif\neq g(j)=0andf(i)=\vee bbif\neq g(i)=0andf(i)=\wedge\end{array}$

Below, for convenience, let $w_{i}$ be called the information block of node $i$ and let $\overline{w}_{i}$ be called

the match block of node $i(1\leq i\leq m)$ .
We construct $a$ l-trun SF-APDA $M$ working on an input string from $\{\wedge, \vee, a, b, \neq, \phi, }$ ’.

Intuitively speaking, $M$ operates as follows. At the beginning of its computation, it universally

choo$s$es one of two actions. One action is to check whether the current input is in the set $E$

defined by $a$ regul$ar$ expre$ss$ ion

$(\{\#\}\{a\}^{+}\{\vee, \wedge\}\{a\}^{*}\{b\}\{\epsilon, b\}\{t\}\{a\}^{*}\{b\}\{\epsilon, b\})^{+}\{}(\{b\}\{a\}^{+})^{+}\{}.$

Notice that $\tilde{G}$ above is in $E$ . If the input is in $E$ , then $M$ accepts the input; otherwise, it

rejects the input. The other action is to check whether the current input is (an encoding

string of) a n-node acyclic $and/or$ graph whose value is true. $M$ starts this checking by

deterministically pushing the first node 1 onto its pushdown stack (hereafter, when we say
“ push $a$ node $i$ onto the pushdown stack”, it means that “ push the name $a^{i}b$ of node $i$ onto the

pushdown stack”). To check whether the value of node 1 is true, $M$ first finds the two sons

10
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of node 1 from the information block of node 1 and then computes their values. $M$ finds the

position of the information block of node 1 in $\tilde{G}$ existentially shifting the input head to some

information block, say the information block of node $l_{1}$ ( $p_{1}$ is desired to be 1). If $f(P_{1})=\vee$

$(\wedge)$ , then $M$ existentially (resp., universally) choos$es$ one son, say $j_{1}$ to see whether its value

is true. If $g(j_{1})\neq\emptyset$ , then $M$ first puts $\ell_{1}j_{1}$ onto its pushdown stack and then begins to check

whether the value of node $j_{1}$ is true. This checking is simil$ar$ to that for node 1. $M$ operat$es$

along this way until $s$ome node $j_{k}$ with $g(j_{k})=\emptyset$ is chosen. If $f(j_{k})=\wedge$ , then $M$ rejects. If

$f(j_{k})=\vee$ , then $M$ first puts $p_{k}$ onto its pushdown stack and then begins to check whether the

current chosen nodes remembered on the pushdown stack consist of a real path in $G$ . We next

explain how to do this checking. Suppose that the list of (names of) nodes on the pushdown

stack is
$ba^{l_{k}}ba^{j_{k-1}}ba^{\ell_{k-1}}\cdots ba^{j_{2}}ba^{\ell_{2}}ba^{j_{1}}ba^{\ell_{1}}ba^{1}$ . $(*)$

Information blocks insure that each $j_{i}$ is really $\ell_{i}s$ son. What remains to check is whether

$1=\ell_{1}$ and $j_{i}=\ell_{i+1}(1\leq i\leq k-1)$ . This check is done by using match blocks in $\tilde{G}$ . We notice

that $Mh$as to be l-turn. To this end, we construct $M$ so that it remembers the following

instead of $(*)$ above

$ba\ell_{k}\neq*ba^{j_{k-1}}\#^{*}ba^{\ell_{k-1}}\#^{*}\cdots ba^{j_{2}}\#^{*}ba^{t_{2}}\#^{*}ba^{j_{1}}\#^{*}ba^{\ell_{1}}\#^{*}ba^{1}$.

The length of each $\#^{*}$ is existentially chosen by $M$ and is desired to be the distance between

the match block of $\ell_{i}$ and the block of $\ell_{i-1}(2\leq i\leq k)$ in G. $M$ deterministically skips useless

match blocks in $\tilde{G}$ by popping $\#^{*}s$ . $\square$

5 Concluding remarks

In summary, we have shown that $LOG(ACFL_{\epsilon-free}^{left})=PSPACE$ and $LOG(ACFL_{linear})=$

$P$ , given new characterizations of PSPACE and P. Since it is possible that some derivation

in some ACFG does not have a leftmost version, we have restricted to consider only leftmost

derivations in the case of e-free ACFG’s. However, it is still possible that for every ACFG $G$ ,

there is another ACFG $G’$ such that every derivation in $G’$ has a leftmost version. We have

not been able to settle this question. We believe that a solution for this question will make

the notion of ACFG more interesting.
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