
274

全称制約および存在制約を含む集合制約質問の処理法について

Processing Set Constraint Queries Including
Universal and Existential Constraints

岩井原瑞穂 (九大工)

上林弥彦 (九大工)

1 Introduction

-Recently in the database field, deductive databases and object oriented databases are two

major areas which have attracted many researchers. For deductive databases, several logical

query languages, such as LDLI [1] and ELPS [7] were proposed. They can handle complex

objects by introducing set-valued variables in logic programming.

On the other hand, the nested algebra [6], which has been a representative and basic complex

object language, turns out to have less expressive power, since it cannot express the transitive

closure [9]. To incorporate such fundamental operations for deduction, the power-set algebta

was introduced [2], which is an extension of the nested algebra obtained by adding the power-set

operator.

However, these approaches cause difficulties in processing queries. Those languages are in a

sense too expressive, and queries often appear that require too much time to process. Actually,

by increasing the nesting level of sets, the processing time becomes exponential time, double

exponential time, in the size of databases [4]. It is therefore important to investigate classes of

queries that can be computed in polynomial time in set-valued logical/algebraic query languages.

Set constraint queries produce set-valued solutions, which are subsets of given base relations,

and query conditions are given as “constraints”, which describe the solution sets using first-order

quantified predicates on their member tuples.

In [5], we showed several subclasses of queries which can be computed in polynomial time, and

other subclasses which are NP-time computable. For NP-complete queries, we considered the

use of data dependencies, such as join dependencies (JDs) and functional dependencies (FDs),

which are maintained in the database as semantic constraints. If certain data dependencies

exist, by utilizing these dependencies we can process the queries in polynomial time.

In [5] we discussed a class of constraints called binary constraints. In this paper, we consider

other classes of constraipts, called unary constraints. Unary constraints include conditions such

数理解析研究所講究録
第 731巻 1990年 274-285

275

as each solution must contain at least one tuple that satisfies given conditions (existential con-

straints), and/or all tuples in a solution must satisfy given constraints (universal constraints).

We show a processing method for unary constraints which requires polynomial time if binary

constraints can be computed in polynomial time.

If we combine the method for unary constraints and the method utilizing JDs and FDs,

a problem arises, since JDs and FDs are destroyed while processing unary constraints. For

query constraints, we consider conditions which preserve JDs and FDs in order to apply the two

methods successfully.

For the class of JDs and FDs, it is generally impossible to express all dependencies in a

give relational expression accurately [3]. IIowever, we will mainly be concerned with preserving

dependencies, and will also discuss general relational algebra expressions including set difference

and union operators.

2 Preliminaries
Relational database

For a given attribute set $X=\{A_{1}, A_{2}, \ldots, A_{n}\}$, a relation $R(X)$ on X is a finite set of

mappings τ : $\{A_{1}, A_{2}, \ldots, A_{n}\}\mapsto D_{1}\cross D_{2}\cross\cdots\cross D_{n}$, where each D; is the domain of attribute

A_{i} , and each A_{i} is mapped to an element of D_{i} . Each mapping τ shall be called a tuple of $R(X)$.

X shall be called a relational scheme of $R(X)$. In general, the relational scheme of a relation R

shall be denoted by \underline{R} .

The relation R can be represented as a table which has attributes for rows, and tuples for

columns. In this paper we use the first alphabet letters $A,$ $B,$ $C,$
\ldots for the names of single

attributes, and the last alphabet letters. . . , $X,$ $Y,$ Z for the names of attribute sets. The union

of two attribute sets may be simply denoted by the concatenation of their names.

Relational Algebra

Relational algebra is a procedural query language for relational databases. The six major

operations of relational algebra are described as follows. The value for an attribute set X of a

tuple μ is denoted by $\mu[X]$.
For relations $R_{1}(X)$ and $R_{2}(X)$ of the same scheme $X,$ $R_{1}-R_{2}$ and $R_{1}\cup R_{2}$ are the set

difference and union of tuple sets of R_{1} and R_{2} , respectively.

For a relation $R(X)$ ’and an attribute set $Y(\subseteq X),$ $R[Y]=\{\mu[Y]|\mu\in R\}$ is called the

projection of R onto Y .

2

276

Let θ be one of the comparison operators $=,$ $>,$ $\geq,$ $<,$ $\leq,$ \neq . For θ , a constant c , a relation

$R(X)$ and an attribute $A(\in X),$ $R[A\theta c]=\{\mu|\mu\in R, \mu[A]\theta c\}$ is called the selection of R on
Y .

Let $R_{1}(X_{1})$ and $R_{2}(X_{2})$ be relations. The (natural) join of R_{i} and R_{2} shall be denoted by

$R_{1}NR_{2}=R(X_{1}X_{2})$, where $R(X_{1}X_{2})=$ { μ I $\mu[X_{1}]\in R_{1},$ $\mu[X_{2}]\in R_{2}$ }. The Cartesian product

of R_{1} and R_{2} is denoted by $R_{1}\cross R_{2}$.

Tuple Relationd Calculus (TRC)

Tuple relational calculus (TRC) is a declarative language for relational databases. TRC is

defined as follows.

For a predicate symbol $p,$ $p(\tau)$ is an atomic formula which states that τ is in the relation of

p . $X\theta Y$ is an atomic formula, where each X and Y is either a constant or a value of a tuple

variable, and θ is an arithmetic comparison operator. An atomic formula is a TRC expression.

For the TRC expressions f_{1} and f_{2} , and the tuple variable τ which appears freely in f_{1} and

f_{2} , then $f_{1}\wedge f_{2},$ $f_{1}\vee f_{2},$ $\neg f_{1},$ $(\exists\tau)f_{1},$ $(\forall\tau)f_{1}$ are all TRC expressions.

For the TRC expression f with unique free variable τ , the relation value which f defines is

$F=\{\tau|f(\tau)\}$.

For each ‘safe’ TRC expression, there exists a relational algebra expression which defines the

same relation [10]. If a TRC expression f is not safe, f may define a relation of infinite size\cdot.

Functional Dependencies and Join Dependencies

For a relation $R(X),$ R is said to satisfy the functional dependency $(FD)X_{1}arrow X_{2}(X_{1},$ $X_{2}\subseteq$

$X)$, if for any two tuples μ_{1} and μ_{2} of $R,$ $\mu_{1}[X_{1}]=\mu_{2}[X_{1}]$ implies $\mu_{1}[X_{2}]=\mu_{2}[X_{2}]$.

A relation R is said to satisfy a join dependency $(JD)N[X_{1}, X_{2}, \ldots, X_{n}]$, if $R=R[X_{1}]N$

$R[X_{2}]N\cdots NR[X_{n}]$ holds. Here we call each X_{i} a component of the JD.

3 Set constraint query

Definition 1 : Let R be a relation of the scheme,\underline{R} . The query constraint $C(S)$ is a condition

for relations S that are subsets of R . Three types of query constraints are described as follows:

$Cb(S)$ $=$ $\bigwedge_{i=1}^{h}(\forall\mu\in S)(\forall\nu\in S)b_{i}(\mu, \nu)$ (binary constraints),

$Ca(S)$ $=$ $\bigwedge_{i=1}^{l}(\forall\mu\in S)a_{i}(\mu)$ (universal constraints),

3

271

Ce(S) $=$ $\bigwedge_{i=1}^{k}(\exists\mu\in S)e_{i}(\mu)$ (existential constraints),

where μ and ν are tuple variables on R. R is called a base relation. Each $b_{i}(\mu, \nu)$ is a TRC

expression upon free variables μ and ν . Each $a_{i}(\mu)$ and $e_{i}(\mu)$ is a safe TRC expression upon a

free variable μ . Existential and universal constraints are also called unary constraints.

For query constraints $C(S)=Cb(S)\wedge Ca(S)\wedge Ce(S)$, the following function $Q_{C}(R)$ defined

below is a set constraint query on \underline{R} .

$Q_{C}(R)=\{S|S\subset R\wedge C(S)\}$

Each $S\in Q_{C}(R)$ is called a solution of $Qc(R)$. 口

Note that in the above definition for Cb and Ca , the conjunctions of universaUy quantified

clauses can be transformed into single universally-quantified clauses.

For the predicate $b(\mu, \nu)$ of a binary constraint, since each pair μ and ν of tuples in each

solution S must satisfy $b(\mu, \nu),$ $b(\mu, \nu)$ and $b(\mu, \mu)$, we can assume that $b(\mu, \nu)$ is symmetric

and reflexive without loss of generality. Thus we can define an undirected graph for the binary

predicate $b(\mu, \nu)$ as follows.

Definition 2 : For the predicate $b(\mu, \tau)$ of a binary constraint Cb and a base relation R , let

$B(R, b)$ be an undirected graph, called a tuple graph for R and b , obtained as follows.

The node with label μ corresponds toatuple μ of R, and there is an edge between two nodes

μ and τ in $B(R, b)$ if and only if $b(\tau, \mu)$ holds. \square

For a set constraint query $Q_{Cb}(R)$ consisting a binary constraint Cb , each solution S of

$Q_{Cb}(R)$ corresponds to a clique of the tuple graph $B(R, b)$, since each pair of tuples in S must

satisfy b .

An undirected graph of n nodes may have up to 2^{n} cliques, thus a set constraint query may

have an exponential number of solutions. It is not practical to generate all solutions.

In the following, we consider combinatorial problems which are described by set constraint

queries, where the optimal solutions correspond to maximum cardinality solutions of set con-

straint queries. We call maximum cardinality solutions simply maximum solutions, and we con-

sider algorithms which produce a maximum solution. Note that for a query there are solutions

of the same maximum cardinality, and algorithms will choose one of the maximum solutions.

4

278

There are two types of complexity measures for database queries. For a set constraint query

$Qc(R)$, if $S\in Qc(R)$ can be decided in time (or space) bounded by a function f of the total size

of relations on which C is defined, then $Q_{C}(R)$ is said to have time (or space) data complexity

f . Alternatively, if f is a function of the length of expression C , then $Q_{C}(R)$ has expression

complexity $f[11]$. In this paper, we will consider only the data complexity measure.

Example 1 : Let us consider the following job assignment problem. Let $R_{1}(EJT)$ be a relation

consisting of attribute E for employee names, attribute T for time slots, and attribute J for

types ofjobs. A tuple of R_{1} means that a certain employee can engage in a certain type of job

at a certain time. A job assignment problem is finding a subset S of R_{1} which satisfies some

given constraints. Subset S is optimal if it is an assignment of the greatest possible number of

jobs to employees. Figure 1 shows an instance of $R_{1}(EJT)$.

The constraint is that each employee can engage in only one type of job at the same time

slot. This constraint is described by the following binary constraint:

$Cb_{1}(S)$ $=$ $(\forall\mu\in S)(\forall\nu\in S)(R_{1}(\mu)\wedge R_{1}(\nu)\wedge$

$(\neg(\mu[E]=\nu[E]\wedge\mu[T]=\nu[T])\vee(\mu[J]=\nu[J])))$

口

Figure 1: An instance of $R_{1}(EJT)$

The above binary constraint Cb_{1} is equivalent to an FD $ETarrow J$. Thus we can use FD sets

to describe query constraints.

Definition 3 : A set constraint query whose binary constraints can be expressed as a set of

FDs, is called an FD set constraint query. \square

5

279

4 Processing unary constraints

Example 2 : In addition to the constraints of Example 1, we assume that the assignment

must include at least one female employee. This constraint can be described by the following

existential constraint Ce_{1} :

$Ce_{1}(S)$ $=$ $(\exists\mu\in S)(R_{1}(\mu)\wedge$

$(\exists\nu)(R_{2}(\nu)\wedge\mu[E]=\nu[E]\wedge\nu[M]=\zeta femde’))$,

where $R_{2}(EMA)$ is a relation which contains tuples such that employee E has sex M and age
A . The query for the above condition is described as $Q_{Cb1\wedge Ce1}(R_{1})$. \square

In the following, we show an algorithm which solves a query of the form $Q_{Cb\wedge C\prime u}$ consisting

of the binary constraints Cb and the unary constraints Cu , by first converting it into a set of

queries of the form Q_{Cb} which do not include the unary constraints $C^{1}u$.

Every unary constraint Cu can be described as the conjunction of universal constraint Ca

and existential constraint Ce .
$Cu(S)=Ca(S)\wedge Ce(S)$,

where

$Ca(S)=(\forall\mu\in S)g(\mu)$, Ce$(S)= \bigwedge_{i=1}^{k}(\exists\mu\in S)f_{l}(\mu)$.

Algorithm 1 : Evaluation of set constraint queries including unary constraints

Input: A set constraint query $Q_{Cb\wedge Cu}(R)$, where Cb is a binary constraint and Cu is a unary

constraint, and R is a base relation.

Output: A maximum solution of $Q_{Cb\wedge Cu}(R)$.

Method: We assume that this algorithm can call some Algorithm α that produces one maximum

solution of $Q_{Cb}(R)$.

(1) Evaluate the predicates $f_{1},$
$\ldots,$

f_{k} and g into the finite relations $F_{1},$
$\cdots,$

F_{k} and G , respec-

tively. Note that the tuples which should be tested whether satisfying those predicates can

be limited to the base relation. Therefore the relations $F_{1},$
$\cdots,$

F_{k} and G become finite,

and subsets of the base relation R . Each solution must be a subset of G to satisfy the

universal constraint.

(2) Construct the tuple graph $B(G, b)$ from G and b .

6

280

(3) Find all tuple sets $q_{1},$
$\ldots,$ q_{m} such that for every $q_{j}=\{\mu_{1}, \ldots, \mu_{k}\}(\mu_{i}’ s\cdot need$ not be

distinct), each μ_{i} is taken from F_{i} , and each pair of tuples μ_{i} and ta satisfies $b(\mu_{i}, \mu_{l})$.

Each q_{j} thus corresponds to a clique of $B(G, b)$. Each solution of $Q_{Cb\wedge Cu}(R)$ must contain

q_{i} for some i to satisfy the existential constraints Ce .

(4) For each clique $q;,$ $i=1,$ $\ldots,$
m , let W_{i} be the relation obtained by removing all tuples τ

such that there exists a tuple μ in q; for which $b(\tau, \mu)$ does not hold.

(5) For each $W_{i},$ $i=1,$ $\ldots,$
m , find a maximum solution S_{i} of $Q_{Cb}(W_{i})$ by applying Algorithm

α for Q_{Cb} . Report one of the maximum $S_{i}’ s$. \square

Theorem 1 : For a set constraint query on \underline{R} consisting of a binary constraint Cb , if a maxi-

mum solution of $Q_{Cb}(R)$ can be computed in polynomial time for any base relation R, the query

$Q_{Cb\wedge Cu}(R)$ consisting of Cb and an arbitrary unary constraint Cu can also be computed in

polynomial time.

Proof: It is easily seen that the maximum S_{i} in Step 5 of Algorithm 1 satisfies all constraints

$Cb,$ Ca and Cu , and maximum in the solutions of $Q_{Cb\wedge Cu}(R)$.
We now show that the computation may be performed in polynomial time. Let n be the

number of tuples in the base relation R , denoted by $|R|$.

Since every relational algebra expression can be evaluated in polynomial time [11], and since

$|F_{1}|\leq n,$ $\cdots,$ $|F_{k}|\leq n$, and $|G|\leq n$, the relations $F_{1},$
$\ldots,$

F_{k} , and G may all be computed in

polynomial time.

Step 2 can be computed in polynomial time, because the binary predicate $b(\tau, \mu)$ defines a

relation which is a subset of $G\cross G$ corresponding to the edge set of $B(G, b)$. In Step 3, since each

chque q_{i} corresponds to an element of the Cartesian product $F_{1}\cross\cdots\cross F_{k}$, the number of cliques,

m , is no more than n^{k} . $|G|\leq n$ implies that $|W_{i}|\leq n$ for $1\leq i\leq m$. From the hypothesis,

a maximum solution of $Q_{Cb}(W_{i})$ can be computed in polynomial time, that is, $O(n^{p})$ time for

some positive constant p . Then Step 5 can be computed in $O(n^{p}m)$ time, hence $O(n^{p+k})$ time.

Here k , the number of predicates in the existential constraint, is independent of n . \square

Note that in Step 3 of Algorithm 1, if no clique q_{i} is generated, then there is no solution for

$Q_{Cb\wedge Cu}(R)$. In this case, we can abort the computation of solutions befoIe evaluating Q_{Cb} in

Step 5. On the other hand, if there exists a non-empty q_{i} , it is a solution for $Q_{Cb\wedge Cu}(R)$.

7

281

5 Processing queries utilizing database dependencies

In FD set constraint queries, FDs are used as the query constraints. However, FDs have

been used to express semantic constraints and are often maintained in database management

systems. Since query conditions and data dependencies can be compared of the same level, we

can take advantage of these data dependencies for query processing. In this section, we give an

example showing that an NP-complete query for arbitrary input base relations can be processed

in polynomial time if certain dependencies such as FDs and JDs exist in the base relation. More

detailed query processing methods utilizing data dependencies are discussed in [5].

Example 3 : In the job assignment problem of the previous examples, let us suppose that

each employee is assigned only one type of job, and each type of job requires only one time slot

and only one employee. This constraint is equivalent to computing a one-to-one correspondence

between the values of $E,$ T and J . This correspondence is denoted by the FD binary constraint:

$C_{b2}=\{Earrow J, Jarrow T,Tarrow_{Z}E\}$ ロ

Proposition 1 : The problem of deciding whether $Q_{Cb_{2}}(R_{1})$ has a solution of n tuples is NP-

complete.

Proof:(sketch) By a reduction of the $3D$-MATCHING problem [8] to $Q_{Cb_{2}}(R_{1})$. \square

If the base relation $R_{1}(ETJ)$ satisfies certain data dependencies, Proposition 1 fails if $P\neq NP$.
For example, if all employees care only about the types of jobs and don’t care about the time

slots, R_{1} satisfies $N[EJ, JT]$, and can be decomposed into $R_{1}[EJ]$ and $R_{1}[JT]$. In this case,

we can compute a maximum solution of $Q_{Cb_{2}}(R_{1})$ by constructing a network from $R_{1}[EJ]$ and

$R_{1}[JT]$, and then applying the maximum network flow algorithm to this network [5].

6 Changes of data dependencies in the presence of unary con-
straint s

In the previous section, we observed that if certain dependencies exist, there is considerable

reduction in the computational complexity of queries. However, by adding unary constraints to

queries, the required data dependencies of base relations may be destroyed.

Example 4 : In addition to the constraint Cb_{2} in Example 3, consider the following constraint.

Let us suppose that the employees younger than 20 must not work in the midnight time slot

8

282

$D’$. This condition is denoted by the following universal constraint Ca_{2} :

$Ca_{2}(S)=(\forall\mu\in S)g_{1}(\mu)$,

where

$g_{1}(\mu)=(R_{1}(\mu)$ \wedge $\neg((\exists\nu)(R_{2}(\nu)$

$\wedge\mu[E]=\nu[E]\wedge\mu[T]=D’\wedge\nu[A]<20)))$.

The relation of the TRC expression g_{1} , namely $G_{1}=\{\mu|g_{1}(\mu)\}$, is transformed into the

following relational algebra expression:

$G_{1}=R_{1}-(R_{1}[T=D’]NR_{2}[A<20])[ETJ]$.

The above expression contains a set difference. The relation G_{1} does not satisfy $N[EJ, JT]$

while R_{1} does. Consider the instances provided in Figure 2. Figure 2-(a) shows an instance of

R_{1} that satisfies $N[EJ, JT]$. Figure 2-(b) shows an instance of $R_{2}(EMA)$. Figure $2-(c)$ shows

the relation G_{1} produced by the above relational expression. Since G_{1} does not contain the

tuple (Tom, kitchen, D), G_{1} does not satisfy $N[EJ, JT]$. 口

(b) $R_{2}(EMA)$

(a) $R_{1}(EJT)$

(c) $G_{1}(EJT)$

Figure 2: Destruction of ajoin dependency

In the case where the data dependencies used by some algorithm α to satisfy binary con-

straints are destroyed while processing unary constraints, as Steps 1-4 of Algorithm 1, we

cannot use Algorithm α at Step 5 anymore. Furthermore, there are cases where a query which

9

283

is polynomial-time computable when certain dependencies exist, becomes NP-complete when

unary constraints are added.

Suppose that a base relation satisfies a set D of data dependencies, and that a query Q_{Cb} of

a binary constraint Cb can be processed by an algorithm α which presupposes the existence of

D . If each W_{i} in Step 4 satisfies D , then we can use Algorithm α at Step 5 without changing

Algorithm 1. Therefore, we must specify conditions for binary and unary constraints which

preserve data dependencies in the steps of Algorithm 1.

7 Query constraint s preserving dependency sets

In this section, we discuss sufficient conditions for binary and unary constraints which guar-

antee that unary constraints may be processed in polynomial time, by showing that a set D of

JDs and FDs is preserved during the execution of Algorithm 1.

7.1 FD sets

Lemma 1 : If a relation $R(Z)$ satisfies an $FDXarrow Y,$ $(X, Y\subset Z)$, then any $S\subset R$ satisfies
$Xarrow Y$.

Proof: Suppose that S does not satisfy $Xarrow Y$. Then there exist tuples $\mu,$ $\nu\in S$ such

that $\mu[X]=\nu[X]$ and $\mu[Y]\neq\nu[Y]$. Since $\mu,$ $\nu\in R,$ R does not satisfy $Xarrow Y$, which is a

contradiction. \square

Each W_{i} in Algorithm 1 is a subset of the base relation R . By Lemma 1, each W_{i} satisfies

all FDs which R satisfies.

7.2 JD sets

For a TRC expression $f(\mu)$ on \underline{R} that has μ as a free variable, let $att(f)(\subseteq\underline{R})$ be the union

of the attributes of μ appearing in formulas of the form $X\theta Y$ in f . For instance, for g_{1} of

Exanple 4, $att(g_{l})=ET$.

Lemma 2 : Suppose that a relation R satisfies a $JDj=N[X_{1}, \ldots, X_{m}]$. For a safe TRC

expression $f(\mu)$ on \underline{R} , if there exists a component X_{h} of j such that $att(f)\subseteq X_{h}$, then for
$F=\{\mu|f(\mu)\}$,

$F=F[X_{h}]NR[\cup X]$.

Proof: Suppose that $\mu\in F$. Then $\mu[X_{h}]\in F[X_{h}]$. Since $F\subseteq R$, we have $F[X_{h}]\subseteq R[X_{h}]$, and

$\mu\in\{\mu[X_{h}]\}NR[\cup X]\subseteq F[X_{h}]NR[\cup X]$.

10

284

Suppose that $\mu\in F[X_{h}]NR[\bigcup_{i\neq h}X_{i}]$. Since j implies $N[X_{h}, \bigcup_{i\neq h}X_{i}]$, we have $\mu\in R$. The

attributes of μ that appear in $f(\mu)$ are included in X_{h} , and $\mu[X_{h}]\in F[X_{h}]$, hence the values of

μ satisfy f . Therefore $\mu\in F$. \square

Lemma 3 : For a safe TRC expression $f(\mu)$ on \underline{R} , suppose that $f(\mu)=f_{1}(\mu)\wedge\cdots$ A $f_{k}(\mu)$.

Also suppose that a relation R satisfies $j=N[X_{1}, \ldots, X_{m}]$. For 1 $\leq i\leq k$, if there exists a

component $X_{p(i)}(1\leq p(i)\leq m)ofj$ such that $att(f_{i})\subseteq X_{p(i)}$, then $F=\{\mu|f(\mu)\}$ satisfies j .

Proof: Let $F_{i}=\{\mu|f_{i}(\mu)\}$, then $F_{i}\subseteq R$ and $F=n_{i}F_{i}$. If F does not satisfy j , we can assume

that there exist m (not necessarily distinct) tuples $\nu_{1},$
$\ldots,$

ν_{m} in F , and that there does not

exist a tuple ν in F such that $\nu[X_{1}]=\nu_{1}[X_{1}],$
$\ldots,$

$\nu[X_{m}]=\nu_{m}[X_{m}]$. Then for some $h,$ $\nu\not\in F_{h}$

and $\nu[X_{p(h)}]=\nu_{p(h)}[X_{p(h)}]\in F_{h}[X_{p(h)}]$. By Lemma 2, $F_{h}=F_{h}[X_{p(h)}]NR[\cup X]$, hence

$\nu\in\{\nu[X_{p(h)}]\}NR[\bigcup_{i\neq p(h)]}\subseteq F_{h}$. Thus $\nu\in F_{h}$, a contradiction. \square

Henceforth, we will say that a TRC expression $f(\mu)$ is consistent with j if it satisfies the

condition of Lemma 3.

7.3 Sufficient conditions for preserving dependency sets

Theorem 2 : Suppose that for a set constraint query Q_{Cb} on \underline{R} consisting of a binary constraint

Cb , and that a maximum solution of $Q_{Cb}(R)$ can be computed in polynomial time if R satisfies
a set D of JDs and FDs . Then, for an arbitrary universal constraint Ca whose TRC expression

on \underline{R} is consistent with each JD of D , a maximum solution of the query $Q_{Cb\wedge Ca}$ can be computed

in polynomial time.

Proof: The maximum solution of the query $Q_{Cb\wedge Ca}(R)$ can be computed by Algorithm 1, since

by Lemma 1 and Lemma 3, the relation G in Step 1 satisfies all the dependencies of D. \square

Theorem 3 : For $Q_{Cb}(R)$ and D defined in Theorem 2, consider the predicate $b(\mu, c)$ obtained

by substituting a variable ν of the binary predicate $b(\mu, \nu)$ of Cb by a constant tuple c . If $b(\mu, c)$ is

consistent with each JD of D , then for an arbitrary existential constraint Ce $on\underline{R}$, a maximum

solution of the query $Q_{Cb\wedge Ce}(R)$ can be computed in polynomial time.

Proof: By Theorem 1, it is sufficient to show that each W_{i} in Step 4 of Algorithm 1 satisfies

D . By Lemma 1, W; satisfies each FD in D . For each W_{i} , let $q_{i}=\{c_{1}, \ldots, c_{k}\}$, where the $c_{j}’ s$

are constant tuples, not necessarily distinct. Then, W_{i} can be written

$W;=\{\mu|b(\mu, c_{1})\wedge\cdots\wedge b(\mu, c_{k})\}$.

11

285

Note that $b(\mu, \nu)$ is reflexive and symmetric. The above expression is consistent with each JD of

D by Lemma 3 and the hypothesis of the theorem. Therefore W_{i} satisfies each JD of D. \square

Theorem 4 : For $Q_{Cb}(R)$ and D of Theorem 2, suppose that the binary constraint Cb is equiv-

alent to a set F of FDs , For each $Xarrow Y$ in F and each JDj in D , if $X\cup Y$ is contained in a

component of j , then for an arbitrary existential constraint Ce on \underline{R} , a maximum solution of
the query $Q_{Cb\wedge Ce}(R)$ can be computed in polynomial time.

Proof: Since the binaiy predicate of Cb can be denoted as a conjunction of clauses correspond-

ing to FDs of $F,$ Cb satisfies the condition of Theorem 3. \square

References
[1] Beeri, C., Naqvi, S., Ramakrishnan, R., Shmueli, O. and $Tsuj$; S., “Sets and Negation in

a Logic Database Language (LDLI)“, ACM PODS 1987, pp. 21-37.

[2] Gyssens, M. and Gucht, D. V., ζ The Power Set Algebra as a Result of Adding Program-
ming Constructs to the Nested Relational Algebra”, ACM SIGMOD 1988, pp. 225-232.

[3] $Hull$ R., “Finitely Specifiable Implicational Dependency Families”, JACM Vol. 31, No. 2,
pp. 210-226, 1984.

[4] $Hull$, R., Su, J., “On the Expressive Power of Database Queries with Intermediate Types’)

ACM PODS 1988, pp. 39-51.

[5] Iwaihara M. and Kambayashi, Y., “Processing Set Constraint Quexies utilizing Data De-
pendencies”, IPSJ Tech. Rep. 89-AL-I2-39, pp. 269-276, 1989.

[6] Jaeschke, G. and Schek, H-J., “Remarks on the Algebra of Non-First-Normal-Form Rela-
tions”, ACM PODS 1982, pp. 124-138.

[7] Kuper, G. M., “Logic Programming with Sets”, ACM PODS 1987, pp. 11-20.

[8] Papadimitriou, C. H. and Steiglitz, K., “Combinational optimization”, Prentice-Hall,
1982.

[9] Paredaens, J., (Possibilities and Limitations of Using Flat Operators in Nested Algebra
Expressions”, ACM PODS 1988, pp. 29-38.

[10] Ullman, J. D., “ Principles of Database and Knowledge-Base Systems,“ Volume I, Con-
puter Science Press, 1988.

[11] Vardi, M. Y., “The Complexity of Relational Query Languages”, ACM STOC 1982, pp.
137-146.

12

