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The initial value problem for the equations of motion of

general fluids with general slip boundary condition

Atusi TANI (& &)

Department of Mathematics, Keio University

§1. Introduction and Main Theorem

In this communication we are concerned with the initial-boundary
value problem for compressible viscous isotropic Newtonian fluids (say,
general fluids) which happen to slip on the solid boundary.

The motion of general fluids filled in a bounded domain QCR?®

is governed by the so-called compressible Navier-Stokes equations:

Do
e Ve v,
Dt LoV
(1) o 2U _ wp + o7 X€Q, >0,
Dt
DS , ,
péﬁﬁz = V(e VO) + £ (Vev) + 2uD(v):D(v).

Here p=p(x,t) 1is the density, v=v(x,¢t)=(vi,02,v3) 18
the velocity vector field, 6 =60 (x,t) 1is the absolute teﬁperature,
f=f(x, t) 1is a vector field of external forces, P=(— p+ |

+i” Vev)la+2uD(v) is the stress temsor, D(v) is the velocity

deformation tensor with the elements

Dis = 1 ( aU£+ 61;,~

9 ax]' ax{ )7 D(U):D(U) = Dflc Dik;

_1‘_
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p=p(po,0) 1is a pressure, S=S(p,0) 1is an entropy, u,u ,K
are, respectively, coefficient of viscosity, second coefficient of vis-
cosity, coefficient of heat conductivity, which are all assumed to be
constants satisfying u>0, 2 +34 20, 50, D/D ¢t =8/t +v-V
and I; 1s an identity matrix of degree 3.

Here and in what follows we use the well-known notation of vector
analysis and the summation convention. And we should refer to [7,8]
for the notation not stated here explicitely.

We have already studied the initial-boundary value problem for
(1) in the perfect slip case K:=0 and «x.:1 or x.<1 1in [10].
Here we consider the general slip boundary condition, which is

formulated as follows:
ven=0,b v*T=KPn+7,
or equivalently,
(2 ven=0, v=K{Pn-(Pn*n)nl,

where 7 and T are a unit inward normal and a unit tangential
vector, respectively, such that xnX7=1 and K 1s assumed to be a
positive function defined on [r=/"'X[0,7"] (I" is a boundary of @,
7 1is any, but fixed, positive number). Dividing both sides of (2) by
1+ K and using the same letter K in place of 1/(1+u K), we
deduce from (2)

1 . )
ven=0, —‘ll'*(l-”K) " Pn-(Pnen)n|-Kv=0, 1>K20.

Similarly, the boundary condition for @
- K Vg'n‘:ﬁe(ge’"g)*g’ Kezo

implies that, using the same letters x, and ¢ 1in place of

Kel(Kk+k.) and ¢ /(K+kK.), respectively,
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(l_ﬁe) V@'n"’ﬂe<9_’9e):gy 1)0‘52%0.

The aim of this paper is to establish the unique solvability,
local in time, of the initial-boundary value problem (1) with the

initial condition
(3) (psU9 9)1t=07’(001 v()r 60)(.1:),
and the boundary conditions

1 . .
ven-=0, 72—(1“1() (Pn-(Pn n)nl-Kuv-=0,
(4)

(1-ke) VO n-£k.(0-0.)=g,

where (K, Kk,)=(K,Kk.)(x,t), 12K, k.20.

The following is our main theorem:

Theorem. Let 7' be an arbitrary positive number and @ be a

bounded domain in R® with boundary I~ of class C2*%  ¢(0, 1).

Furthermore, we assume that

(i) Cooy Vo, 80)EC T (EIXC?**(IXC***(R), po 0 (x)I$007,
00 500(x)00” (po”, 00", 84" and 6,7 are positive constanis);

(”) (Ky ’CE):<K7 ICE)(—Xy t)EC;:‘-:' (1+é)/2([‘T)7 OS-Ky I'Ce§l;
(i) (Be, 9)=(0e, g)(x, t)ECLTF *®/2(IL), noreover,

(0, gIECET T2 (1) TiU{x€l | ke(x, t)=1;08 £ T} ;

() f=F(x, t)ECT ¥2(Q=0x[0, T1);

~(v) u, u” and kK are constants satisfying the relations 2u+3u" =
=0, >0, £>0 and (2, S)=(p, S)(p, 6)¢

€EC2*([B o s B po”XLB O, B7160,7]) for some positive

—_ 3
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constant A<l such that S,(:05/80 )>0;
() the compatibility conditions between the system (1) and the in-
itial and the boundary conditions (3),(4) are valid.

Then there exists a unique solution (p,v,0) of (1),(3),(4),
which belongs to [ B'**(Q,.)MB s <o (x, t)SB™ P} X
KCEHE (@ K CLr e (G, 008 00750 (x, £)$B7 0,7} ]

for some T7¢(0,7T].

§2. Outline of the Proof of Theorem

First of all, we introduce the characteristic transformation //*:

xE=X0;x,t), where X(T;x,t) (0£7<t,x€0) 1is the solution

of the system of equations
(5) e X{(tix,t)=v(X(T;x,¢t), 1), X(t;,x,t)x.

If ¢ 1s suitably smooth, then (5) has a unique solution curve by
virtue of the basic theorem of ordinary differential equations. It

gives us the relation between x and £ :

7

() x!—x<t;z,o>~z+g'u(f;r)dfzxu(s, £,

where w (&, t)=v(X(¢t;£,0), t).

According to the boundary condition p+2=0 on ["f, it is clear that
m; is ian one-to-one mapping from Q, onto G—QT.

In a similar way to that in [10], we use this transformatioin
only for the first equation in (1), whence the unique solution of (i)!

is given by
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~t

) o(x, t)=0* p (¥) exp[-’x Voou(E, 0)d 1]

o]

provided that w€C2**'**/2(Q.) is given,

Here /7: is the inverse mapping of 7%, V.-GV, G=(g,,)=

0 04 __‘C?___)
8f, 9F., 9Fs

< (0Xu/3E), Y (
Hence the problem (1), (3),(4) can be reduced to the following initial-
boundary value problems with respect to w=v-v, and with respect to

0:9—90:

~g%4~A(x,.t,zu;V)w+¢(x, t,w, o) in @rn
(8) Wit =6=0 on £,

B(x, t ;Vw—-B(x, t; Vv, on I'r

ao ' .

--é»v;:/l’(x, t,w,o0)Ao+¥(x, t, w, 0) in @n
(9) 0 |t =00 on £,

(1K) VO 11 KeU0=9-KeOe(1-Ke) VBo*n+K.6s on It

where the principal parts A and A", the lower order terms ¢ and

¥, the boundary operator B=(B;¢);, x=1,2,s are given by the formulae:

mrie M g oK
Y A A A BT
G = -———Vp+f{(v-Vv-Avo,
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1 - : .
W:;é—s—'—l_u (Veu) + 2uD(w):D(v)+p?0S,Vev](veV)O-
8

_A_K
0 INY)

- AB, with o and (v, 0) replaced by (7) and
(w+v,, 0+0,), respectively,
7k (7=1,k=1,23),

Bit =3 (I-K)(neSjot 171181 ¢-2njanent) Vi ~

. 1{51'-1 k (J:'Z’ 3; ktl: 2’ 3)!

(5 ;+ 1is Kronecker's delta).

2.1 Linearized problem of (8) and (9)

First of all, we consider the following linearized problem of (8):

J . . , .
6%)—"A(x, t,w ; Vw+d(x, t,w',0") in @n

(10) ) Wle=0=0 on R,

B{x, t; Vw-=—-B(x, t;Vve on It

" Here (w’,c’) is a given function belonging to the class

(2)

Lra{(w, 0)eC2r 2 (Q ) (w, 0) =020, Iw, o)y < M,
T

S IDNw, 01,7 < M},

is|= “r

where /f, 1is an arbitrary positive number, /f, 1is a positive number

. : (m) _ ' . (0) L0y
determined later, lwlly ="  1D;D%uly , lwully =
T 2r+!s}=0 x T Q’I‘



= sup{lu(x, t)1;(x, £)€Q,} and |ul.") =suwiliulx, t)-
T

~u(x, ) x-x 175 (x, ), (x7, £)EQ L, x#x’ ).

Then the following fact holds.

129

Lemma 1. The system of differential equations (10) is uniformly

parabolic in the sense of Petrowsky with modulo of parabolicity &

if we take 7T in such a way that
M T<E,", 0<M35(ﬁfl+u Vg i} ;—Sv))T/U‘(/ux *" Ve lt %))TJ<M0; Ms T<1,

where /Af, 1is a positive root of the equation 1-3x-6x2-6x3=0.

Proof. Since

£ £1?

detlACx, t,w ;i E)- Al l=(A+—)(A+——) (ai=a.=p/L,
a1 as
as=0/2u+x1")), and the estimates
Lo g My, 3 I DSu |l SMa,
T |$ =1 T
an ¢ = DS w1y M (14Ms)?,
;s 1= T
M +AMa+6Ms
! cr . K:<: : :CI/M,,‘ 4."':»72)
P9k jk ! 1“3M3"6/W§—5ﬂ4§ (M, T) (7, k=1 3)

follow from (6) for u =Miw’, (w’, 0’)e¥,, it is sufficient to

take & 1in such a way that
S=upo” 'exp[-3(1-3C )T Ms]

by virtue of (7). []
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The following complementing condition in the case of 9=RS,

I'={x€R®| x5=0} is essential throughout our investigation.

" Lemma 2. There exists a positive constant ¢~ smaller than ¢

such that for any £°=(&,, £.)ER® and VEC' satisfying

(12) Re v2-8"£72, E’*+|y |0,

the row vectors of the matrix B(x, t;: ‘g’)z‘i(x, t,w ;i E,v)

((x, t )eEr'r, fixed) are linearly independent modulo
M=TT 2 (§,-8;9°(E7, v)), where Alx, t,w ;i E,v) is an
adjugate matrix of A(x, t,w ;7 &)-vIs and E}“”s are the

roots in £5 of det{A(x, ¢t,w ;i )-vIs|=0 with positive imagin-

ary parts.

Proof. Let Zsil a® 7" be the remainder term when we divide

B(x, t:iE)A(x, t,w ;i E,v) by M Then after some lengthy

calculations we have

3)

(13) det @ ®’=-a:" aa’ Ji Jar (B3 +E5° ) a ’g’”” £3°0)x

3) +(1) +(3)

(£s

+ (1)

)-K(a fs

+ (1)

NA-K) i £5C KI(-K) i 2 +E3 )],

where a=as/a:=1t/Qu+u’), Jpe=Es " -E5s "

Since Im £3 750 (7=1,2,3) follows from the assumption (12),

(3)

it is obvious that |det a =~ [>0. [

Moreover, we can extend the domain of definition (12) of det a®’

o {((L=E"+in", ¢)EC*XC'|E"*+[q1*>0, Re q¢2-B8"|Im ¢/,
(77 1<B”(E"*+{ q1?)''?} for some positive constants B° and B~
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3)

so that there det a° is estimated from below

(14) |det a ©’|(L", q-6"¢"7)2

4 2 N, P .’_7‘2
2C, (8 g D) [K+(-K)(E "+ g 17T,

. o . . F- k)
hence we have the estimates of the inverse matrix (o, Diket.2.5

(3)
of «a :

sy la," 1, q-67 )¢

[ ! (7=1,23; k=1),
3

-_<-C3(§'4+iQI2) l n
(K+Q-K)CE  +q 1) T (j=1,23; k=2,3).

From these estimates, we can construct the Poisson kernel 7,

and the Green matrix Hoe in the half space R::

H(y,v)=Qu i)\ Alx, t,w iy, iE,,v)a,(y, £, v)X
?, 3

+

xe /My, L, V) E,,

£+

", (y, T):*z'(Z?I)—sSRz e F )d.?’g e H(§,y,v)dv

() .
&—~7 @

(e> 6" D),

H(y, v, v )=Z(y-E,t-7,;x, t;w,0 )

—Sr dt’ XRzHl(y—n’, T-t")B(x, £, V)"

1]

Zn-E, -t 5x, tsw, 070, L, dn.

3 =0
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where 7, is a contour enclosing all £, (7=1,2,3) and Z, is
the fundamental solution of the system of equations
ow

———=A(x, t,w; V)W.
3t (x w V)

Then, tracing the proof of Lemma 3.14 in [7], we obtain

Lemma 3

J KK T E
1 (7-1,23; k=1),

177k

S L —(2r+1 S| +4)/2 - Iljrz
iDlDy (EI ) |<C_‘_ T expl - d _..%.M-_

1 (751,2,3;£-2,3),

g D (274l S1+3)/2 - ly-E1|2,
DD, H,1<C, (T-T,) expi-d = 1.
- 1}

In the present problem just unlike the previous one [10], it is
necessary to introduce two systems of covering {w;(¢)) and
{R:(t)y of @ depending on the time variable ¢.

Let A Dbe an arbitrary small positive number. We construct
{wi(t)y and {(Q,(t)) as follows (cf. [7]):

() @ (£)CR ()T, U,wp(t)=U, 2c(£)=0;

(i) for any x€Q, there exists w;(¢t) such that x€w,(?) and
dist(x,Q-w«(t))2B, 1 for some A, >0;

(ii) for any A >0, there exists a number AN, independent of A such

that
N0+1

N Q(t)=¢;

k=1

(v=1) if Q.,(t)NTI=¢ (in this case, we shall denote f=4"), then
we-(t) and Q.- (t) are the cubes with the same center and
with the length of their edges, in a parallel direction with axes,

equal to A/2 and A, respectively (indeed, Q,-(?¢) and

— 10.“
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we- (t) do not depend on ¢)

(#-2) if wi(t)NI'#¢, then we construct w,(¢) and Q,(t) by
means of the local rectangular coordinate system {y} with the
origin at some point §£,€], . e, we take the inner normal to [’
at £ 67" as the y;-axis and place the y,-, y,-axis in the
tangential plane at §,. Let ¢ (¢t)={x€I'|K(x,t)=1).

For &.€I'-v (t) (in this case, let us denote £=%"), we define

by the local rectangular coordinate system ({y}

we ()= {ly, |§—é B,A(7=1,2), 0y, ~F(y ;& ,-)<B, A},
(16)
Q- ()= ly,1sB,A(5=L2), 05y, ~F(y ; E,)<28, A},

where the equation y;=F(y ;&) (y'=(y:,y.)) represent the
boundary [ in the neighborhood of the point §;~ and B, 1is a
positive constant independent of A . If o (¢) is covered by .
Uk,.(wk»( t)NI), then it is clear that  1is covered by
{we(t)) and {Q,(t)) coﬁstructed above.

Otherwise (in this case, we shall denote f=4k""), we define
wr~(t) and Q;~(t) by the same way as (16) with anoter positive
constant AB;(<8,) also independent of A so that
y (t )—Uk.,(wk~( t)nN [‘)Quk,,(!zkw( tINC)Cy (t).

Now we introduce two families of smooth functions {&«(x)}

and {7«(x)} associated with the coverings {w«(2#)}, {Q:(t)}:

1 if xew, (t),
C,(x)= 0s L4 (x)<l,
0 if xeQ-Q . (t),

1DLC, (o sC, 270 7, (020, (2)/5, ()7
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Then similarly to [7,8], the regularizer R of the problenm

ow

—aftﬂ:/l(x, t,w' ;s Vw+d  in @, ., =2X(T, T+h),
(10)1:. T+h u)lt =I:0 on Q’

B(x, t; Vw=9 on I', .. Ix(t,T+h)

(Y720, KXY <T-T) can be constructed and has the following prop-

erties.

Lemma 4. Assume that 7'6C2%2** and hA=x A% (x(0) and A

are sufficiently small). Then de5E&ift"’”“’2(Q”” =Q XLT, T+hl)

T, T+h

provided PEC™ a2 (Q =0X| T, r+h:i)7 Furthermore the following

T, T+h’

estimates hold:

lDr DsR qjiSC( t_z_)(z—zr—!sl +a)/2i%®u (_a) (ZT‘FE s l§2),
t x k 6
T, T+h
I DIDIR, &1<C lx-x "] 27+ si=2),
7. T+h
N, DyDIR,®I<Cyle-27 | 7T g 2 (0<ar s [sD),
7, T+h

where

t
,QS:STd’c'SQ Zy(x-X, t-T; £, T W, 00X

k

R

k

X_(k'(-:x-s T)Qp(f, T’)df’

. 1 2 —_—
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L)

df’g Hy (y,t:z, 7)), (2)0(z,t")dz,

t o e .
kagzs:& a7\ Btz T (282, ) d 7,

(£, (2)-m.0,~(x), &(z,7)-0,06(x,7T), K,=M,92,.-
K=MQ~, 455 9(x, t)=g(x, t)-g(x’, t7), & =,

t

t xet’ . N .
A by 279,510, z,7y, F(y HE )

H" " and H,® ’ are the Green matrix for A= ACE - T, w"; V)

0

and A-/1, ACE .~ T, w ; V) with V, replaced by V, in (10), ..,

respectively.

Lemma 5. Under the same assumptions as those in Lemma 4, R .@¢
T K

o T30 o k)
-2 4as 1l vaf2 : - f+a, (1+a)/2 ~ - ;‘ B i
&(’z,t (Qr’ z-bh) if qo(:cz't ([ z.z+h"(pﬂgk”)x‘—’c’ If’h’J)
and satisfies the estimates
‘1(1-#4}

(2~2r - 581 +a)/2i‘

(27*+| S |<‘2)r

|
Uik )y e, 1an

|D;D,R.oisC,(t-T)

(1+a)

: x’ g S » ! . PRENL S 1 . —
8, DD R .isClx-x" U@l yny, o, 27l s(=2),

(2~2r-1 8l +a)72 (1 +a)

b, DD.R.@IsC,lt-t"] 1@l o 0<27+] s 122),



where
Ry-@=M.R;-0, K,=0(Q .0I),

do\ 0tz 7 ) (FR(E T)AE,

T VK

G (nta) . . n+a, (n+ad/2 ,,(Ic") -
I*l k=) ++n means the norm of the space C, , (L)

and H* ' is the Poisson kernel for /41]7:/1(Ek",‘t,zu’; V,) and

1;;17:1;(5},, T; V) with V,  replaced by V, in U0, op-

The similar assertions to those in Lemma 5 are true in the case k=k".

Lemma 6. Under the same assumptions as those in Lemma 4, 1?;m¢>E

T «™

E(:i:f;x. 1 +a/2(Q1’ ,+h) lt goecijta, (2+a);‘2([\z' z+h—(1‘ﬂ9k‘»))([f, '[‘1‘/2“}[)

"and satisfies the estiimates

@)
i

(2~-2r~1 8! +a)/2il
(kYT 4R

DD, R .¢1sC,(t-T) (2 7+ s 152),

, a g (2 +a) P ; \
X% 1P oy e cen L7+ s 152),

x’ 4 s ’, f )
N, D, DR -9isC,

! (k™) 7, T+h

by DLDLR @ IsC, et 17T e (LT (0l s (e,

where
R.~p=M" R,~p, K,~0,(Q .,
k .
_ ¢ J *™ _ _
1;»¢:§ JT'S JH (z-2, -1, ~(2D)e(2", t)d Z",
[ 4 K2
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N P

n+a (n+a)/z{F(k ) )
Y k™) T, T+h

means the norm of the space C

T, T+h

and H* ’ is the Poisson kernel for A:H:A(Ek-,, T,w’; V) and
B=M,B(§ ~T:V,) with V, replaced by V, in (10)

z T, T+H"*

These lemmas and the same arguments as those in [7,8] yield the

following theorem:

a a2

Theorem 7. Suppose that rec*™, oe (@),

¢:(¢1’§02’(p3)’ ¢1€Ci’+:.1+a/2(["r), (pz’w EC:+: (1+a)/2(1_,T)’

2+a-1+af2 o P 3
q)zy q)SECx‘t (71~)7 7TU0§t$T{lt[‘K<x’ t)_l}.
Then there exists a unique solution w¢ (,2” ‘Mlz(@T) of

(10)o,r which satisfies

(2—27—|Sﬁ+a’)/2{ (a) ,(2+a;

r 5 N
D, Dwis(Cy+C M) " t 1ol e, i

T

(1 +a) ki (2+a)}

(e, #, )ll +||(q02,c0 ) 4 Qr+lsi<),

L r . Ny , & | ;
I DD w s(C+C M) Tx-x "o}, Qr+ls|=2),

(2-2r-lsi+a)/2 {.“}

A

t

s ) Ny i
DD wis(C,+C, M) '|t-t"

A

(0<2 7 +] s 1£2),

where C =C (T, )Y(21) and C =C (T,M ) increase monotoni-

g 9 1 10 10 1
cally in 7 and M,, C,,>0 as T—0 and N =N (T,M,M,)

increases monotonically in 7, M, and M,.
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Returning to the problem (10), it is clear that

p=-B(x, t; Vv, implies that ¢ =0,

n<¢>2,so3>i|;”’, e, 01" < C, ..
T

T

From (6), (7) and (11) it follows that

(1 +a)

ﬁmlq; < C”(T,M,FCW(T,M,)Mz,
hence

}lszs;i;_:’ < C, (T, M)+C (T, MM,
where C ,(>1) and ( , have the same properties as C, and
respectively.

Therefore we obtain

lwi 27 s 1O, (T, M+ C, (T, MM, 1" T ()

T

XLC, +C (T, M) C, (T, M)IM,],
an

AN (T, M M

o DLl € TC (T M)+ C, (T )i, 1 T

XLC, +C (T, M)+C (T, M)M,].

Next let us consider the following linearized problem of (9):

00
57 A tw 040w, t,w07) in Q

(18) { al,_-0 on @,

(I-ke)Voen-k.0=%(x, t) on I',.

- 16_

C

i0
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Here (w’,0” )E,VT.

The similar, but easier, arguments to those for (10) yield

a, af?2

Theorem 8. Suppose that rec’™, wec? "' (Q,), v¢

~2+a 1+a/2

1+a, (l+a)/2(
xs,t

eC, I';) and moreover ¥EeC (ry) (For I',, see

Theorem in §1).

2+a 1+a/2

Then there exists a unique solution ¢¢€(|

(@,) of (18)

which satisfies

(2-2r-1si +a)/2 ( )
Y - a {‘w“ 4 .

er

r : .‘ N,
DD o |<(C ,+C,.M,) "t

+EW/H" Wﬂ‘“"’}B 27+l s 15D,

T T

N fx‘

Y i N, PR ¢
I8 DLDo|s(C  +C M) TTx-x 1 {2}, Qriisl|=2),

’ r S : ~N ' -2r - +a
i, DLDois(C  vC M) Tl et (OO ey
(0<2 7+ s |£2),
where C,  =C, (T,M)(V), C,,=C, (T,M,) and N_,=N,(T,M, ,M,)

have the same properties of C_, C , and N, , respectively.

Therefore we obtain

mn%’ s iC (T, M)+C, (T, MM,

T

N, (T M, 1+a/2)

R eptir

XLC, o+ C (T M) +C, (T, MM, ],
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a9

E&sx:f {DiO' ’z“”_ N [CW(T’ /W1)+Cls(7" Ml)‘M2]

Ny (T My, My
2 Y

K C,o+Cy (T, M)+C, (T, MM, ],

where (',, and (,s have the same properties as (C, and (C;,
respectively.
From the estimates (17) and (19) we conclude that the solutions

w and ¢ of (10) and of (18) belong to jﬂT for some 72)6(0,7‘].

]
Indeed, it i1s sufficient to choose a constant /if, so as to be

larger than

N, (T M M -
i

C (T, MM C L rC (T M) M

Ny (T2 M+ M)

HC, (T, M) M Pie, e, (T M) M

for any positive number 4/, and then 7,¢(0,7 ] such that

Ny (To- MM e

{LC (T, M) M| L rC,L Ty M )M+

M 1+a/2.),

X
o

e (r,, Ml)rrﬂfj‘v"' (Ty- M, {Cls +C (T, M))+M 1} (7\;’7&7‘

0’

M,

1

Al
("10

(,1‘0’/1’11>M2’ Cw(Tu'Mi)Mz’ C:s(‘TO’Mx)]uz’
C,o\Ty, MM, < M.

For simplicity, we take 7=7, from the beginning.



141

2.2 Nonlinear problem (8) and (9)

¥e construct the sequence {(w,, 0 )(x, t)} of the successive

approximate solutions as follows
(w,,0,) =0¢€ &,

w, and o are defined as the solutions w and o of (10)

"

of (18) assuming (w’, 0" )=(w, _,,q_)¢¥,, respectively.

-1 "n
Then the results in §2.1 imply that (w_,0 )(x,¢) uniquely

exists and belongs to % (72=0,1,2,.--).

Applying the estimates in §2.1 to the equations concerning

w,-w,_ _, and 0_-0 _  we obtain
i (2 +) 7
(w, 0 )(w,_,, o, _I=""<
. 2
) Y 4 (2+a)
cc, (M MW (w,_ o, )(w,_,, o, )l BT“ ,

where (C,9 — 0 as 7T — 0.
Therefore the sequence {(w ,0 ) converges to some function (w,0)
uniformly if we take 77¢(0,7] so as to satisfy C,(T",M, M, ).
The uniqueness of the solution to the problem (8) and (9) is proved
by the fact that the difference of two solutions supposed to exist satisfy
the inequality analogous to (20).
The positivity and the boundedness of p and @ are obvious
from our method for constructing the solution.

Thererefore our main theorem has been proved.
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