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1 Introduction.

Let L be a finite geometric lattice with the top element 1 and the bottom ele-
ment 0, and the rank function r. Let r = r(1). The characteristic polynomial

of L is defined by
=5 u( (0, X))t ),

XeL
In the nght handside p is the Mdbius function [6]. For certain geometric
lattices including the supersolvable lattices [7], it is known that the charac-
teristic polynomial x(L;t) factors as
x(L;t) = [[(t —d;) (each d; is a nonnegative integer).
i=1

In this paper we prove a sufficient condition (2.9) of the factorization of this
type. The condition is stated as the existence of a “nice” partition of the
set A = A(L) of atoms of L. It is not difficult to check that a supersolvable
geometric lattice admits a “nice” partition (2.4) .

In fact we will actually show a stronger result. Let us briefly explain about
it. Let K be an arbitrary field. In [4, p.171] the Orlik-Solomon algebra O.S(L)
of L over K was introduced. It is a graded anticommutative K-algebra. One
of the most important results concerning OS(L) is [4] :

Poin(OS(L);t) = > (0, X)(—t) ™).
Xel
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Here the left handside stands for the Poincaré series of the graded algebra
OS(L). Suppose that we have a partition (7y,...,7,) of the set A of atoms
of L. Define

(m;) ;= the vector space over K spanned by 1 and the elemenets of ;

for1=1,2,...,s.
Then the main theorem (2.8) in this paper is that there exists a natural
graded vector space isomorphism

£:(m)@(m)® - ® (7)) — OS(L)

if and only if the partition (71,...,7,) Is “nice”.
The above-mentioned sufficient condition easily follows from the main
theorem. v

2 Main Theorem and Its Corollaries.

Let L, K, A = A(L),0S(L) be as in the previous section.

Definition 2.1 A partition = = (,...,%,) of A is called independent if
atoms H,,...,H, are independent (i. e., r(H; V--- V H,) = s) whenever
Hier (i=1,...,s).

For X € L, define
Lx ={Yel|Y <X} Ax=A(lx)={HeA|H<X}.

Definition 2.2 Let X € L. Let = = (x,...,7,) be a partition of A. Then
the induced partition 7y is a partition of Ay whose blocks are the subsets
7N Ax (1=1,...,s) which are not empty.

Definition 2.3 A partition 7 = (71,...,7,) of A is called nice if:
1) it is independent, and
2) the induced partition 7y contains a block which is a singleton unless

Ax # 0.
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Remark. In [2], M. Falk anf M. Jambu studied a similar partition. A
major difference from ours lies in their assumption that the characteristic
polynomial of L factors completely in Z[t].

Example 2.4 Let L be a supersolvable lattice. Then the set 4 = A(L)
admits a nice partition. In fact, define

T;={H€AIGSX.','H$X;_1}
for a chain of modular elements
0=Xo< Xy < - <X, =1 (r(X) =1).

Then it is not difficult to show that a partition 7 = (my,...,7,) is a nice
partition.

Example 2.5 Consider the lattice arising from the following matroid ( the
non-Fano matroid)

4 .
3 .

For this, {{1}, {2,3,4},{5,6,7}} is a nice partition.

3
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For a partition = = (7y,...,7,) of A, define a graded vector space
(1) = (m) @ (m2) @+ ® (m,),

where each graded vector space (m;) is as in the Introduction. Agree that
(r) = K when A = 0. Since the Poincaré series Poin((m;);t) of each (m;) is
equal to (1 + |m;|t) , we obtain ‘

Poin((7);t) = [J(1 + |m:|t).
=1 .
Definition 2.6 A k-tuple J = (H,,...,H;) (k > 0) of elements of A is
called a k-section of 7 if ,
Hi€mp(i=1,...,k), 1<n(l)<n(2)<...<n(k)<s.
For a k-section I = (H,,..., Hy), define p; by
pri=z:®---®z, € (7).
Here
S H;, ilj=n()
7 1’7’ ifj & {n(1),...,n(k)}.

Then p; is homogeneous of degree k. The graded K-vector space (7) has
a basis {p; | I is a section of 7}.

For the Orlik-Solomon algebra we keep the notation in [5]: For a k-tuple
I=(Hy,...,H;) (k>0)of atoms, the notation a; € OS(L) stands for the
class of the exterior product ey, A...Aep,. Recall that each element of the

Orlik-Solomon algebra OS(L) can be (not necessarily uniquely) expressed as
a linear combination of {a; | I is a tuple of atoms}.

Definition 2.7 Define
k:(m) — OS(L)

as the homogeneous K-linear map of degree zero satisfying
x(p1) = az

for each section I of 7.
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The main theorem is:

Theorem 2.8 The map k is an isomorphism (as graded vector spaces) if
and only if the partition 7 1s nice. '

We will prove this theorem in the next section.

Corollary 2.9 Ifthere ezists a nice partition 7 = (7,,...,7,), we haves = r

and
,

x(Lit) = 37 p(0, X)) = T](t — |mi)).

X€eL =1

Corollary 2.10 If 7 is a nice partition, then the multiset {|my|,...,|r,|}
depends only upon L.

Corollary 2.11 If 7 is a nice partition, then
F(X) = i | m: N Ax # 0)]
forall X € L.

Corollary 2.12 Let A be an arrangement of hyperplanes in a vector space.
Let L be the intersection lattice of A. Suppose that there exists a partition
7 = (71,...,7s) of A such that

1) codim (HyN---NH,) = s whenever H; € m; (i=1,...,s), and

2) For every X € L, there exzists a block m;, of = such that the set '
{H €7, | X C H} is a singleton.

Then s = r(L) and

s

x(Lit) = J](t = |mi]).

=1

These corollaries, except 2.11 which will be proved in the next section,
are immediate consequences from the main theorem.

()}
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3 Proof of Main Theorem

We keep the notation in the previous section. First we will review three
results concerning the Orlik-Solomon algebra. Denote the homogeneous part
of degree d of the graded algebra OS(L) by OSi(L):

0S(L) = E 0Su(L).

k=0
For a tuple I = (H,,..., H)) of atoms, let
\VVI=HV.---VH. €L

For each X € L, define a vector subspace OSx (L) of OS(L) which is gener-
ated by {a; | VI = X}. Agree that 0So(L) = 0S;(L) = K.

Lemma 3.1 ([4, 2.11]) For each k > 0, we have

OSL)= € O0Sx(L).
XeL
r(X)=k

Lemma 3.2 ([3, 1.7]) For XY € L with Y < X, there ezists a natural
tsomorphism
OSy(L,\') - OSy(L).
Define a boundary map

8:0Sk(L) — OSy_a(L) (k=1,...,r)

to be the K-linear map satisfying

.k
0(ar) = ) _(-1)"ay
J=1
for any k-tuple I = (H,,..., H)) of atoms. Here
IJ = (Hls .o ,Hj-—laHj-{-l, e ,Hk)

for1 <j<k.
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Lemma 3.3 ([{, 2.18]) The complez (OS.(L),0) is acyclic.

Next let 7 = (my,...,m,) be a partition of the set A = A(L). We study
the graded vector space (7). Denote the homogeneous part of degree k of

(m) by (7)s:

k=0
For each X € L, define a vector subspace (7)x of (7) which has a basis
{p1 |1 is a section with VI = X}. Agree that (7)o = (7)y = K.

Lemma 3.4 Suppose that © is an independent partilion. For each k > 0,

we have
(= D (m)x.

XeL
r(X)=k

Proof. By definition, the right handside is actually a direct sum. Note
that (7), has a basis : '

{p; | I is a k-section of = }.

Put X =V I. Then p; € (v)x. We have r(X) = k because 7 is independent.
|

Lemma 3.5 For X,Y € L withY < X, there exists a natural isomorphism
(mx)y == (7)y.

Proof. If I is a section of 7 with VI =Y, then I C Ay C Ay. Thus /

is also a section of #y. This shows:

{I'| I is a section of = with \/J =Y}
= {I'|Iis asection of 7x with \/I =Y}.

Therefore an isomorphism

pr € (7x)y — pr € (7)y
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is obtained by inserting “1®” r — r(X) times. N

Define a K-linear map

satisfying

o(pr) = (-1

for any k-section I of m . Then it is easy to check 0o d = 0.

Lemma 3.6 Suppose that a partition © of A contains a block which is a
singleton. Then the complez ((7).,0) is acyclic.

Proof. We can assume that 7; is a singleton: =, = {a;}. Suppose that
z € (7)k is a cycle: Oz = 0. Write z as

Tr=aq ®-’B1+1®$23
where 71,22 € (72) ® - ® (7). Then

0=6z=1®x1—al®(8z1)+1®(6z¢2)=1®(z1+8m2)—a1®(611).

This 1imlies
z, = —0z,.
Define
Yy =a; ® T2 € (7)k41.
Then

Oy=1Qz,—a; ®(027)=1®z,+a, ®z,=2z. K

Proof of Main Theorem.

Sufficiency:

Assume that 7 is a nice partition. We will prove by induction on r(L) =
r(1). When r(L) =0, A= 0. Thus (r) = K = 0S(L).
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Assume that r = r(L) > 0. Note s < r because 7 is independent. Con-
sider a diagram

0= (1, 2 (@ 2D (M S (7 — 0

Ay d K 1Ky 1 %o

0 — 0S.(L) 3 0S54(L) 2 .- 2 0s(L) 3 0S(L) — o.

Here all of the vertical maps are induced from « : (7). — OS(L). The top
row is exact because of 3.6. The bottom row is exact because of 3.3. Note

that
(M= D )y~ B (mwv)y
YeL YeL
r(Y)=k r(Y)=k

by 3.4 and 3.5. Also note that

OSk(L) = @ OS)'(L) >~ @ OS}'(Ly)
YeL YeL
r(YV)=k r(Y)=k
by 3.1 and 3.2. By applying the induction assumption to Ly for r(Y) < r,
we know that &; (¢ =1,...,7 — 1) are isomorphisms. Therefore «, is also
an isomorphism. Putting these together, we get an isomorphism

k:(m) — OS(L).

Necessity:
Suppose  is an isomorphism. First we will show that 7 is independent.
Let I be a section of # . Then p; # 0. So

a; = &(pr) # 0.

This shows that / is indepenedent.
Next we will show that =y contains a block which is a singleton unless

X =0. Since
(r) = D)y, 0S(L)= P 0Sy(L),

Yel YelL
k induces isomorphisms

(z)y = OSy(L).
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By 3.5 and 3.2, we obtain
(77);) = @ (Wx)y o~ @ (W)Y ~ @ OS)I(L) o~ @ OS}'(Lx)
YeL

YeL YeL YeL
ehx y X yEX X

I

OS(Lx).
Let X # 0. Then

0= > u(0,Y) =Poin(0S(Lx);1) = Poin((rx); 1) = [[(1 = |m: N Ax]).

YeL i

€
y<X

This implies that mx contains a block which is a singleton. &

Remark. In [1] A. Bjorner and G. Ziegler gave a sufficient condition for
the map « to be an isomorphism. The condition is the existence of a rooting
map p for which the root complex RC(L, p) factors completely. We do not
know if the existence of a nice partition is enough to construct such a rooting
map.

Proof of Corollary 2.11. As we saw in the proof of Main Theorem, the
isomorphism « induces isomorphisms

kx : (mx)——0S(Lx)
forall X € L. So 7y is a nice partition of Ay. By 2.9, we have

r(X)=r(lx)=Irx|={i |mNAx #0}|. K

Since we have the factorization theorem for free arrangements [8], it is
natural to pose

Problem. If an arrangement admits a nice partition, then is it free?

The converse is not true in general. (For example, the Coxeter arrangemnt
D4 has no nice partitions.)

10
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