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Kazhdan-Lusztig Conjecture for Kac-Moody Lie Algebras.

TOSHIYUKI TANISAKI

（谷崎　俊行）

College of General Education, Osaka University, Toyonaka 560, Japan.

The purpose of this note is to give a survey of the papers [K1], [K2], [KT] which prove

the Kazhdan-Lusztig conjecture for symmetrizable Kac-Moody Lie algebras (cf. also

[C1]).

0. Introduction

0.1. Let $\mathfrak{g}$ be a finite dimensional complex semisimple Lie algebra, $\mathfrak{h}$ a Cartan

subalgebra and $W$ the Weyl group. For an element $\lambda\in \mathfrak{h}^{*}$ let $M(\lambda)$ be the Verma

module with highest weight $\lambda-\rho$ and $L(\lambda)$ the unique irreducible quotient of $M(\lambda)$ ,

where $\rho$ is the half of the sum of the positive roots.

Algebraic theory of these infinite dimensional highest weight modules was ini-

tiated by Verma [V], and several important works concerning them appeared in $70’ s$ .

Bernstein-Gel’fand-Gel’fand [BGG] determined the condition for $L(\mu)$ to be a com-

position factor of $M(\lambda)$ , and Jantzen [J] investigated properties of the multiplicities

of $L(\mu)$ in $M(\lambda)$ (see the exposition [T1]).

Although Jantzen’s method was very powerful and determined the mulitiplic-

ities in many cases, a general multiplicity formula was not known until the remarkable

paper of Kazhdan-Lusztig [KL1] appeared in 1979. Kazhdan-Lusztig defined certain

polynomials $P_{y)w}(q)(y, w\in W)$ , called the Kazhdan-Lusztig polynomials, through a

combinatorics in the Hecke algebra of the Weyl group, and proposed a conjectural
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multiplicity formula using these polynomials. They also give a geometric interpreta-

tion of these polynomials in terms of the intersection cohomologies of the Schubert

varieties ([KL2]). This conjecture was proved in 1981 by Beilinson-Bernstein $[BeB]$

and Brylinski-Kashiwara [BK] independently by relating the highest weight modules

with the intersection cohomologies of the Schubert varieties via D-modules on the flag

varieties (see the expositions [Se], [T2], [T3]). The precise statement is the following:

Theorem A ( $[BeB]$ , [BK]). If $\lambda$ is a regular dominan $t$ integral weight,

$tl_{J}en$

(0.1) ch
$M(w \lambda)=\sum_{z\geqq w}P_{w,z}(1)$

ch $L(z\lambda)$ .

Equivalently, if $\mu$ is a $reg$ular antidominant integral weight, $t\Lambda$ en

(0.2) ch
$L(w \mu)=\sum_{y\leqq w}(-1)^{\ell(w)-\ell(y)}P_{y,w}(1)$

ch $M(y\mu)$ .

Here $w,$ $y,$ $z$ are elements of the Weyl group $W,$ $\geqq is$ th$eBru$hat order, $\ell:Warrow Z\geqq 0$

is the length function, and ch denotes the characters.

The equivalence of (0.1) and (0.2) follows from the inversion formula of the

Kazhdan-Lusztig polynomials.

0.2. It is natural to ask whether the similar results hold for a Kac-Moody Lie algebra,

which is an infinite dimensional analogue of the finite dimensional semisimple Lie

algebra. We also have highest weight modules, Weyl groups, Hecke algebras and

Kazhdan-Lusztig polynomials in this setting.

Algebraic theory of highest weight modules for Kac-Moody Lie algebras was

developped by Kac-Kazhdan [KK] and Deodhar-Gabber-Kac [DGK]. Especially it
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was conjectured in [DGK] that the formula (0.1) holds for symmetrizable Kac-Moody

Lie algebras. Note that in this setting the formulas (0.1) and (0.2) give different

statements since dominant weights and antidominant weights are not conjugate under

the action of the Weyl group. This conjecture, given in 1982, was proved by Kashiwara

[K2], Kashiwara-Tanisaki [KT] and independently by Casian [C1] in 1989, i.e.

Theorem $B$ ([K2], [KT], and [C1]). The formula (0.1) holds for sym-

metrizable $Ka$c-Moody Lie algebras.

0.3. The proof goes along the line of the original finite-dimensional case. The al-

gebraic part [K2] relates the highest weight modules with D-modules on the flag

variety. This reduces the problem, via the Riemann-Hilbert correspondence, to the

calculation of intersection cohomologies of the Schubert varieties, and it is done in

the topological part [KT]. A geometric foundation of [K2] and [KT] is the scheme

theoretic construction of the flag variety given by Kashiwara [K1]. A technical diffi-

culty in these works comes from the fact that the flag variety is infinite dimensional,

and hence some parts of [K2] and [KT] are devoted to developping sufficient theories

of D-modules and Hodge modules on infinite dimension$a1$ varieties. Besides this the

proof is more or less the same as the finite dimensional case except for some points in

[K2]. The most important point we should mention here is the lack of the Beilinson-

Bernstein correspondence in the Kac-Moody setting. Hence the proof in the algebraic

part [K2] is similar to (but more comlicated than) the one in [BK] rather than the

one in $[BeB]$ .

The proof of Casian [C1] is somewhat different. He uses an analogue of

the composite of the localization functor and the de Rham functor. The localization

functor relates highest weight modules with D-modules, and the de Rham functor

relates D-modules with perverse sheaves. Hence D-modules are hidden and only the
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perverse sheaves appear in his paper.

$e$

0.4. Very recently we have $re_{\^{ved}}$ Casian’s preprint [C2] whose main theorem is the

formula (0.2) for affine Lie algebras.

1. Infinite dimensional schemes

1.1. We give some examples of infinite dimensional schemes.

(1) Infinite dimensional affine space $A^{\infty}=SpecC[x_{i}|i\in N]=\lim_{arrow}A^{n}$ . The

set of the closed points is given by $A^{\infty}(C)=\{(x_{i})_{i\in N}|x_{i}\in C\}$ .

(2) Infinite dimensional projective space $p\infty$ . The set of the closed points is

given by

$P^{\infty}(C)=$ {$line$ in the vector space $C^{\infty}=\lim_{arrow}C^{n}$ }

$=$ { $(x_{i})_{i\in N}|x;\neq 0$ for some $i\in N$ } $/C^{*}$ ,

and the scheme structure is naturally defined so that $p\infty$ is covered by open subsets

$U_{i}$ for $i\in N$ with $U_{i}(C)=\{(x_{i})_{i\in N}|x_{i}\neq 0\}/C^{*}$ and $U_{i}\simeq A^{\infty}$ . Note that $p\infty$

is not quasi-compact since the open covering $p\infty=\bigcup_{i\in N}U_{i}$ does not have a finite

subcovering.

(3) Infinite dimensional Grassmann variety. Let $V$ be a C-vector space and

$\{V_{i}\}_{i\in Z}$ a strictly decreasing sequence of subspaces of $V$ satisfying the following con-

ditions:

(a) $V= \bigcup_{i\in Z}V_{8}$ ,

(b) $\bigcap_{i\in Z}V_{i}=\{0\}$ ,

(c) $\dim V_{i}/V_{i+1}<\infty$ for any $i\in Z$ ,

(d) $V \simeq\lim_{arrow}V/V_{i}$ .
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We denote by $\mathcal{F}(V)$ the set of subspaces $U$ of $V$ such that $V_{-};\supset U\supset V_{i}$ for a

sufficiently large $i$ . The set of the closed point of the Grassmann variety Grass(V) is

given by:

(Grass(V))(C) $=$ {subspace $W\subset V|V=W\oplus U$ for some $U\in \mathcal{F}(V)$ },

and the scheme structure is naturally defined so that Grass(V) is covered by open

subsets $Grass_{U}(V)$ for $U\in \mathcal{F}(V)$ with $(Grass_{U}(V))(C)=\{W\in(Grass(V))(C)|V=$

$W\oplus U\}$ and $Grass_{U}(V)\simeq A^{\infty}$ . For $k\in Z$ set $\mathcal{F}_{k}(V)=\{U\in \mathcal{F}(V)|\dim U/(U\cap V_{0})-I$

$\dim V_{0}/(U\cap V_{0})=k\}$ . Then Grass $(V)$ $:= \bigcup_{U\in F_{-d}(V)}Grass_{U}(V)$ is a connected com-

ponent of Grass(V) for each $d\in Z$ .

1.2. We define certain classes of infinite dimensional schemes.

Definition. Let $X$ be a scheme over C.

(a) $X$ is said to be pro-smooth if $X$ is covered by open subsets $U$ such that

$U \simeq\lim_{arrow}S_{n}$ for some projective system $\{S_{n}\}_{n\in N}$ satisfying the following conditions:

(a1) $S_{n}$ is quasi-compact and smooth over $C$ for any $n$ .

(a2) The morphism $S_{n}arrow S_{n-1}$ is smooth and affine for any $n$ .

(b) $X$ is said to be essentially finite dimensional if $X$ is covered by open

subsets isomorphic to $Z\cross A^{\infty}$ for some finite dimensional varieties $Z$ .

(c) $X$ is said to be essentially smooth if $X$ is pro-smooth and essentially finite

dimensional.

It is shown that a C-scheme is essentially smooth if and only if it is covered

by open subsets isomorphic to $Z\cross A^{\infty}$ for some C-smooth schemes $Z$ . The infinite

dimensional schemes given in Section 1.1 are all essentially smooth.
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1.3. Some notions concerning finite dimensional varieties are extended to the above

classes of infinite dimensional schemes. For example, holonomic D-modules are de-

fined for pro-smooth schemes, corresponding analytic spaces and perverse sheaves are

defined for essentially finite dimensional schemes, and Hodge modules are defined for

essentially smooth schemes (see [K2], [KT]).
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2. The flag manifolds

2.0. We give the scheme theoretic definition of the flag variety of a Kac-Moody Lie

algebra (see [K1]).

2.1. Let $\mathfrak{g}$ be a Kac-Moody Lie algebra. Let $\mathfrak{h}$ be the Cartan subalgebra, $W$ the

Weyl group, $h_{i}\in \mathfrak{h}(i\in I)$ the simple coroots, $\alpha_{i}\in \mathfrak{h}^{*}(i\in I)$ the simple roots, $\triangle$

the set of roots, and $\triangle^{+}$ (resp. $\triangle^{-}$ ) the set of positive (resp. negative) roots. We

denote the root space corresponding to $\alpha\in\triangle$ by $\mathfrak{g}_{\alpha}$ . Set

$\mathfrak{n}^{\pm}=\oplus_{\alpha\in\Delta}\pm \mathfrak{g}_{\alpha}$ ,

$b^{\pm}=\mathfrak{n}^{\pm}\oplus \mathfrak{h}$ ,

$\mathfrak{l}_{i}=\mathfrak{h}+\mathfrak{g}_{\alpha_{i}}+\mathfrak{g}_{-\alpha;}$ $(i\in I)$

$\mathfrak{n}_{i}^{\pm}=\oplus_{\alpha\in\Delta^{\pm}-\{\pm\alpha_{i}\}9\alpha}$ $(i\in I)$ ,

$\mathfrak{p}_{i}^{\pm}=\mathfrak{n}_{i}^{\pm}\oplus 1_{i}$ $(i\in I)$ .

2.2. We give some group schemes corresponding to subalgebras of $\mathfrak{g}$ . Fix a Z-lattice

$P$ in $\mathfrak{h}^{*}$ such that $\alpha_{i}\in P$ and $\lambda(h_{i})\in Z$ for any $\lambda\in P$ . Let

$T=Spec(C[P])$

$U^{\pm}= \lim_{k}\exp(\mathfrak{n}^{\pm}/(ad\mathfrak{n}^{\pm})^{k}\mathfrak{n}^{\pm})arrow$

$B^{\pm}=$ (the semidirect product of $T$ and $U^{\pm}$ ),

$L_{i}=$ (the group corresponding to $[i$ with Lie $(\mathfrak{h})=T$) $(i\in I)$ ,

$U_{i}^{\pm}= \lim_{k}\exp(\mathfrak{n}_{i}^{\pm}/(ad\mathfrak{n}^{\pm})^{k}\mathfrak{n}_{i}^{\pm})arrow$

$(i\in I)$

$P_{i}^{\pm}=$ (the semidirect product of $L_{i}$ and $U_{i}^{\pm}$ ) $(i\in I)$ .

2.3. For $k\in Z$ let

$\mathfrak{g}_{k}=\{\begin{array}{l}\bigoplus_{\alpha\in\triangle,ht(\alpha)\geqq k}+\mathfrak{g}_{\alpha}(k>0)(\bigoplus_{\alpha\in\Delta,ht(\alpha)\leqq-k}-\mathfrak{g}_{\alpha})\oplus b^{+}(k\leqq 0)\end{array}$
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where $ht(\alpha)=\sum_{i\in I}m_{0}$ for $\alpha=\sum_{i\in I}m_{i}\alpha_{i}\in\triangle$ . Set $\hat{\mathfrak{g}}=\lim_{arrow j}(\mathfrak{g}/g_{j})$ and $\hat{\mathfrak{g}}_{k}=$

$\lim_{arrow j}(\mathfrak{g}_{k}/\mathfrak{g}_{j})$ . Then $(\hat{\mathfrak{g}}, \{\mathfrak{g}_{k}^{\wedge}\}_{k\in Z})$ satisfies the condition $(a)-(d)$ in Section 1.1 (3), and

we can consider the Grassmann variety Grass(g).

Note that the group schemes $B^{+}$ and $P_{i^{+}}$ naturally act on Grass(g). Let

$x_{0}\in Grass(\hat{\mathfrak{g}})$ be the point corresponding to $b^{-}\subset\hat{\mathfrak{g}}$ . Then the flag variety is defined

by

$X= \bigcup_{w\in W}wB^{+}x_{0}$ ,

where the action of $w\in W$ is given by taking a reduced expression of $w$ and choosing

representatives of the simple reflections $s_{i}\in W$ in $L_{i}\subset P_{i}$ .

Remark. There is another construction of the flag variety as the quotient

scheme $X=G/B^{-}$ Here $G$ is a scheme (not a group scheme) with locally free

$B^{-}$ -action defined as the spectrum of a certain subring of the dual space of the

enveloping algebra $U(g)$ (note that the comultiplication $U(\mathfrak{g})arrow U(\mathfrak{g})\otimes U(\mathfrak{g})$ defines

a ring structure on $U(\mathfrak{g})^{*})$ . See [K1] for the details.

2.4. Set $X_{w}=B^{+}wx_{0}$ for $w\in W$ . As in the finite dimensional case we have the

following properties of the Scubert cells $X_{w}$ .

Proposition 1 ([K1]). (i) $X_{w}\simeq A^{\infty}$ .

(ii) $X_{w}$ is an affine scheme with codimension $\ell(w)$ in $X$ .

(iii) $X=u_{w\in W}x_{w}$ .

(iv) $\overline{x}_{w}=u_{z\geqq w}x_{z}$ .

Here $l(w)$ is the length of $a$ redu$ced$ expression of $w$ $and\geqq is$ the Bruhat

order on $W$ .

Especially, $X$ is essentially smooth.

2.5. As an example we give a description of the flag variety of $\mathfrak{g}=A_{n-1}^{(1)}$ .
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Let $C[[t]]$ be the formal power series ring and $C((t))$ its quotient field. Let

$V$ be the $C((t))$-vector space with basis $\{e_{0}, \ldots, e_{n-1}\}$ and set $V^{+}=\oplus_{k=0}^{n-1}C[[t]]e_{k}$ .

Let $Y$ be the set of $C[t^{-1}]$-submodules $U$ of $V$ so that the kernel and the cokernel of

$Uarrow V/V^{+}$ are finite dimensional over C. Set

$Y_{k}=\{U\in Y|\dim Cok(Uarrow V/V^{+})-\dim Ker(Uarrow V/V^{+})=k\}$

for $k\in Z$ . The flag varety $X$ is given by

$X(C)$

$=\{(U_{k})_{k\in}z|U_{k}\in Y_{k}, U_{k}\supset U_{k+1}, U_{k+n}=t^{-1}U_{k}\}$

$\simeq\{(U_{0}\supset U_{1}\supset\cdots\supset U_{n-1}\supset t^{-1}U_{0}|U_{0}\in Y_{0}$ and

$U_{1}\ldots U_{n-1}$ are C-subspaces of $U_{0}$ satisfying $\dim(U_{0}/U_{k})=k$ }.

Identify $W$ with the group consisting of the permutations $\sigma$ of $Z$ satisfying $\sigma(k+$

$n)=\sigma(k)+n$ $(k\in Z)$ and $\sum_{k=0}^{n-1}(\sigma(k)-k)=0$ . Set $V_{i}=(\oplus_{k<i}C[[t]]t^{-1}e_{k})\oplus$

$(\oplus_{k\geqq i}C[[t]]e_{k})$ for $i=0,$ $\ldots$ , $n-1$ . Then the Schubert cells are given by

$X_{\sigma}(C)$

$=\{(U_{k})_{k\in}z\in X(C)|\dim(U_{k}\cap V_{i})=\#((-\infty,i]\cap\sigma[k, \infty)) (0\leqq i\leqq n-1)\}$ .
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3. Kazhdan-Lusztig conjecture

3.1. We recall basic facts concerning Verma modules. Let $\rho$ be an element of $\mathfrak{h}^{*}$ such

that $\rho(h_{i})=1$ for any $i\in I$ . For $\lambda\in \mathfrak{h}^{*}$ let $M(\lambda)$ be the Verma module with highest

weight $\lambda-\rho$ , i.e.,

$M( \lambda)=U(\mathfrak{g})/(U(\mathfrak{g})\mathfrak{n}^{+}+\sum_{h\in \mathfrak{h}}U(\mathfrak{g})(h-(\lambda-\rho)(h)))$
.

The $U(g)$ -module $M(\lambda)$ has a unique irreducible quotient $L(\lambda)$ , and other compo-

sition factors of $M(\lambda)$ are of the form $L(\mu)$ with $\lambda-\mu\in(\sum_{i\in I}Z\geqq 0^{\alpha_{i})}-\{0\}$ . A

main problem of the algebraic theory of highest weight modules is to detremine the

multiplicities of $L(\mu)$ in $M(\lambda)$ , and this is equivalent to giving a character formula of

the form ch $M( \lambda)=\sum_{\mu}a_{\lambda,\mu}$ ch $L(\mu)$ or ch $L( \lambda)=\sum_{\mu}b_{\lambda,\mu}$ ch $M(\mu)$ . The answer to

this problem will be given below when $\mathfrak{g}$ is symmetrizable and $\lambda$ is regular dominant

integral.

3.2. In order to write down the character formula, we need to recall basic facts

concerning the Hecke algebra.

The Hecke algebra $H(W)$ is a $Z[q, q^{-1}]$-algebra with basis $\{T_{w}\}_{w\in W}$ satisfying

the following relations:

$(T_{8}+1)(T_{s}-q)=0$ $(s\in S)$ ,

$T_{w_{1}}T_{w_{2}}=T_{w_{1}w_{2}}$ $(\ell(w_{1})+\ell(w_{2})=\ell(W_{1}w_{2}))$ ,

(see Iwahori [I], and [Bou]).

In [KL1] Kazhdan-Lusztig introduced a new basis $\{C_{w}^{*}\}_{w\in W}$ of $H(W)$ . It is

characterized by the following properties:

(a) $C_{w}^{*}= \sum_{y\leqq w}P_{y,w}(q)T_{y}=q^{l(w)}\sum_{y\leqq w}P_{y,w}(q^{-1})T_{y^{-1}}^{-1}$ ,
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(b) $P_{y,w}(q)\in Z[q]$ with $P_{w,w}(q)=1$ and $\deg P_{y)w}(q)\leqq(l(w)-\ell(y)-1)/2$ for

$y<w$ .

Define $Q_{y,w}(q)\in Z[q]$ for $y\leqq w$ by

$\sum_{y\leqq w\leqq z}(-1)^{t(w)-t(z)}Q_{y},{}_{w}P_{w,z}=\delta_{y,z}$
$(y\leqq z)$ .

The polynomials $P_{y,w}(q)$ (resp. $Q_{y,w}(q)$ ) are called the Kazhdan-Lusztig polynomials

(resp. the inverse Kazhdan-Lusztig polynomials).

3.3. The main result of [K2] and [KT] is the following.

Thoerem. Let $\mathfrak{g}$ be a symmetrizable $Ka$c-Moody Lie $alg$ebra. Then for any

regul$ar$ dominant integral weight $\lambda\in \mathfrak{h}^{*}$ we Aa$ve$:

ch
$M(w \lambda)=\sum_{z\geqq w}P_{w,z}(1)$

ch $L(z\lambda)$ ,

or equivalently

ch
$L(w \lambda)=\sum_{z\geqq w}(-1)^{\ell(z)-t(w)}Q_{w,z}(1)$

ch $L(z\lambda)$ .

We need the symmetrizability condition since the following fact is used in

[K2].

Proposition 2 (Deodhar-Gabber-Kac [DGK]). Let $\mathfrak{g}$ be a symmetriz-

a$bleKa$c-Moody Lie algebra, and $\lambda\in \mathfrak{h}^{*}$ a regular dominant integral weight. Then

any composition $fa$ctor of $M(w\lambda)$ is isomorphic to $L(z\lambda)$ for $somez\in W$ .

Proposition 2 is proved using the Casimir operator. I do not know whether

the symmetrizability condition is really necessary in Theorem (or in Proposition 2).
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3.4. We describe an outline of the proof of Theorem. For the sake of simplicity we

assume that $\lambda=\rho$ .

Let $X$ be the flag variety as in Section 2, and let $D_{X}$ be the sheaf of linear

differential operators on $X$ . We denote by $M(D_{X}, B^{+})$ the abelian category of admis-

sible holonomic $D_{X}$ -modules with $B^{+}$-actions. An admissible holonomic D-module

on an essentially smooth C-scheme $Y$ is a $D_{Y}$-module $\mathcal{M}$ satisfying the following

condition:

$(^{*})$ For any $y\in Y$ there exist an open neighborhood $U$ of $y$ , a smooth C-scheme

$Z$ , and a holonomic $D_{Z}$-module $\mathcal{N}$ such that $U\simeq Z\cross A^{\infty}$ and $\mathcal{M}\simeq \mathcal{N}\mathbb{H}$

$\mathcal{O}_{A\infty}$ .

For $w\in W$ we define objects $\mathcal{B}_{w},$ $\mathcal{M}_{w},$ $\mathcal{L}_{w}$ of $M(D_{X}, B^{+})$ as follows. $\mathcal{B}_{w}$ is the local

cohomology sheaf $?/x_{w}^{(w)}(\mathcal{O}_{X}),$ $\mathcal{M}_{w}$ is the dual holonomic $D_{X}$-module $(H_{X_{w}}^{l(w)}(\mathcal{O}_{X}))^{*}$ ,

and $\mathcal{L}_{w}$ is the image of the natural homomorphism $\mathcal{M}_{w}arrow \mathcal{B}_{w}$ .

Let $M(g, B^{+})$ be the abelian category of $U$ (g)-modules with $B^{+}$-actions. For

$\mu\in \mathfrak{h}^{*}$ let $M^{*}(\mu)$ be the $\mathfrak{h}- finite$ part of the dual of the Verma module with lowest

weight $-\mu$ . The character of $M^{*}(\mu)$ cincides with that of $M(\mu)$ . For $\mu\in P$ the

U(g)-modules $M(\mu),$ $L(\mu),$ $M^{*}(\mu)$ are objects of $M(g, B^{+})$ .

Define an additive functor I: $M(D_{X}, B^{+})arrow M(g, B^{+})$ by

$\tilde{\Gamma}(X, \mathcal{M})=\oplus_{\mu\in P}$ ( $\lim_{arrow}$(the weight space of $\Gamma(\Omega,$ $\mathcal{M})$ with weight $\mu$)),
$\Omega$

wehere $\Omega$ ranges over $B^{+}$ -stable quasi-compact open subsets of $X$ . Note that a $B^{+_{-}}$

stable open subset of $X$ is quasi-compact if and only if it consists of finitely many

$X_{w}’ s$ .

Proposition 3 ([K2]). (i) $\tilde{\Gamma}$ is an exact functor.
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(ii) $\tilde{\Gamma}(X, \mathcal{M}_{w})=M(w\rho)$ .

(iii) $\tilde{\Gamma}(X, \mathcal{B}_{w})=M^{*}(w\rho)$ .

(ii) $\tilde{\Gamma}(X, \mathcal{L}_{w})=L(w\rho)$ .

Therefore, in order to prove Theorem it is sufficient to show

$[ \mathcal{L}_{w}|\Omega]=\sum_{z\geqq w}(-1)^{\ell(z)-\ell(w)}Q_{w,z}(1)[\mathcal{B}_{z}|\Omega]$

for any $B^{+}$-stable quasi-compact open subset $\Omega$ of $X$ . Here $[\mathcal{L}_{w}|\Omega]$ and $[\mathcal{B}_{z}|\Omega]$ are ele-

ments of the Grothendieck group of the abelian category of $B^{+}$-equivariant holonomic

$D_{\Omega}$ -modules. By the Riemann-Hilbert correspondence we have

$So1(\mathcal{L}_{w})=^{\pi}C_{X_{w}}[-\ell(w)]$ ,

$So1(\mathcal{B}_{w})=C_{X_{w}}[-l(w)]$ ,

and hence the proof is reduced to showing:

$[^{\pi} C_{X_{w}}[-l(w)]|\Omega]=\sum_{z\geqq w}(-1)^{\ell(z)-\ell(w)}Q_{w,z}(1)[C_{X_{z}}[-l(z)]|\Omega]$

in the Grothendieck group of the abelian category of $B^{+}$ -equivarivant perverse sheaves

on $\Omega$ . This follows from the following.

Proposition 4 ([KT]). Let $w,$ $z$ be elements of $W$ such that $z\geqq w$ , and

let $i:X_{z}arrow\overline{X}_{w}$ be the inclusion. Set $Q_{w,z}(q)= \sum_{j}c_{j}q^{j}$ $(c_{j}\in Z)$ .

(i) $H^{2j1}(i^{*}(C_{X_{w}}))=0$ for any $j\in Z$ .

(ii) For any $j\in Z$ we have $c_{j}\geqq 0$ , and $?t^{2j}(i^{*}(\pi C_{X_{w}}))\simeq C_{X_{z}}^{\oplus c_{j}}$ .

The proof of Proposition 4 uses the theory of mixed Hodge modules (Saito

[Sa]) as in [T4].
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