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Campanato type estimates for solutions of difference-elliptic partial differential
equations with constant coefficients

Norio Kikucul AND MASASHI Mi1sAawa

Department of Mathematics, Faculty of Science and Technology, Keio University

Abstract. Difference-elliptic partial differential equations are discussed and Campanato type estimates
are obtained for solutions of the equations

1. Introduction

In treating the regularity of solutions of nonlinear elliptic and parabolic partial differntial
equations, it has been known that Campamato type estimates for solutions of the corresponding
linear equations play a fundamental role. Such estimates have been established by Campanato ([1]
and [2]) and Da Prato ([3]) and have a lot of applications in the theory of elliptic and parabolic
partial differential equations and of the calculus of variations (refer to [4] and [6]). .

The aim of this paper is to obtain Campanato type estimates for solutions of difference-elliptic
partial differential equations with constant coefficients. In contructing Morse flows for a functional
in the calculus of variations, we think a time-discrete apporoximation of the evolution equations
will play an essential role (refer to [7]) and such estimates represented as in this paper will be
fundamental.

Let 2 be a bounded open set in the Euclidean space R™, m > 2, u = (u!,u?,...,uM) be a
mapping: @ — RM M > 1 and Du = (Dyu, Dau,..., Dpu), Dau = du/d2* (1 < a < m) be the
gradient of u. Let T be a positive number arbitrarily given and set @ = (0,7T") x £2. We use the

usual Bamach space L,(f), Sobolev spaces Wr(2) = Wy(2,RM) and W}(£2) = Wr(2, R™). For
vectors u,v € RM, we put uv = Z]Ail uwiu? and |u| = uu.

Tor a positive integer N, N > 2, we put h = T/N and ¢, = nh (0 < n < N). Let up
be a function belonging to W} (£2). We shall be concerned with a family of linear elliptic partial
differential equations:

uz 2

(1.1) I sl - Do (A Dsud) (1 <n<N)

h

for each 7, 1 < i < M. In the summation convention over repeated indices, the Greek indices run
from 1 to m and the Latin ones from 1 to M. The assumption of the coefficients Af’jﬁ is the following:

{A?jﬁ} (1< a,Bf<m1<ij< M)is a constant matrix satisfying so-called Legendre-Hadamard
condition with a positive constant A :

(1.2) AsPeatan'n’ > NP |nl? for £ = (£4) € R™ and 7 = (') € RM.

Let f be a function belonging to W} (£2). We mean a family of weak solutions of (1.1) with an
initial datum ug by a family {u,} (1 < n < N) of functions u,, € W} (£2) which satisfy

(1.3) /n %—:}%ﬁj—lgod:v + /9 A%ﬁDﬁu{;Dago"da; =0 for any ¢ = (¢') € W3 ().
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Morever, if the condition

(1.4) ' un — f € WHQ) (1 <n < N)
is satisfied, we call {u,} a family of weak solutions with an initial datum u¢ and a boundary datum

For a family {u,}(1 < n < N) satisfying u, € VV;(Q), we define a mapping ux(t,-):
t€[0,T) — un(t,+) € VV;(Q) as follows:

up(0,-) = uo("),

(1.5) up(t, ) = ua() for th_1 <t<t, (1<n<N).

If {ua}(1 € n < N) is a family of weak solutions of (1.1) satisfying (1.4), we then call up,
defined by (1.5), a weak solution of (1.1) with an initial datum uo and a boundary datum f and
for simplicity we call up a weak solution of (1.1). We here recall some standard notations: For a

point zg = (%o, 20) € Q, we put
Br(o) = {v € R™ : & — 2| < R},

(1.6) Qrs(20) ={2=(t,2) €Q : |~ 20| <r1to —s <t <1},
Qo(20) = Qp./ﬂ(zo)-

In the above notation of Br(2o), Qr,s(20) and Q,(20), the centre zo and 2o will be abbreviated
when no confusion may arise. For 2z; = (t;,2;) (1 = 1,2), we introduce the parabolic metric

(1.7) v 6(z1,22) = maz{|ty — t2*%, |21 — 2]}

and for a measurable set 4 in Z* we denote the k-dimensional measure of A by |A|. For a positive
r and up, we shall use the notation :

1

(1.8) i r(tng» 20) = o
IQTI Qr(tﬂ09x0)

up(z)dz.

We remark that for a positive number [ we denote by [I] the greatest non-positive integer not greater
than I. The same letter C will be used to denote different constants depending on the same set of
arguments.

Now let hy be an arbitrarily given and fixed positive number sufficiently small. From now on,
we take N sufliciently large and assume that h(= T'/N) in the system (1.1) is smaller than hg, i.e.,
0 < h < hg. Let L be a positive number with > 2 and k be a positive integer with 2k > m. We
put

(19) | ﬁ;:: {z € Q : dist(z,90) > /(C(m) + 1)ho},
' Qho = [(C(M) + Do, T] % iy,

where C(m) is a positive number defined by
(1.10) C(m) = max{8(k+2)/3,4L/(L — 2)}

and dist(z,9N) is the Eucledian distance between z and 0Q.
Then our main result is the following, the proof of which will be given in Chapter 3.
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Theorem. Let u, be a weak solution of (1.1). Then there exist positive constants C and a,
0 < a < 1, independent of h and uy, such that the estimate

m+2
(1.11) / |Dup|*dz < C (1) / |Dup|?dz + Cp™t2e
Qv(tn,x) P Qp(tn,T)

holds for all (t,,z) € CZ;(I < n < N),r and p satisfying 0 < r < p < +/hg.

In the paper [7] the Holder estimates of solutions for a difference-elliptic partial differential
equation are obtained and the same technique used in this paper has been represented.

The authors would like to thank Professors S. Campanato and P. Cannarsa for many helpful
discussions and suggesttions.

2. Some Lemmata

Let up = up(2) be such a step function defined as in (1.5). In Lemma 2.1 and 2.2 we don’t
assume u; to be a weak solution of (1.2).

For the gradient operator D and a positive integer k, & > 2, we define an oparator D* by
D¥ = DD*-1 where D! = D.

Lemma 2.1 (Sobolev inequality). Let ux(t,-) belong to W (Q),p > 1, for each ¢,0 < t < T.
If kp > m is satisfled, for each positive constant p satisfying p* > hL/(L — 2) with L > 2 there
exists a positive constant C(p) depending on p such that the inequality

. 1/p
(2.1) sup  |up| £ C(p) / |D*up|Pdz + / | D*dyun|Pdz
P(tnoaxo) Qp(tﬂ.oyxo)

Qp(tno yTo

Orun(t) = (u(t) — u(t — h))/h

holds for any (tn,,z0) € Q,1 < ng < N, where dup(t) is the mapping defined by

forh=1t <t <T.

The next lemma is connected with estimating an oscillation of uj. This is known to hold for
functions with continuous time variables ([2] and [3]). We recall that @ ,(t,,z) is the function
defined in (1.8).

Lemma 2.2. Let up(2,-) belong to L,(§2), p > 1, for each t, 0 <t < T. If the function u, satisfies
(2.2) / lun — Gpoltn, )P dz < Crm+2+re
Qr(tn !z)

for all Q,(tn,z),1 < n < N, with uniform positive constants C and o,0 < a.< 1, then there exists
a positive constants C independent of h and uy such that the estimate

(23 Jun(tn, @) = un(t, ") < CL6((tnr @) , (b, )]

holds for each (tn,z) and (tn,z') € Q satisfying 6((tn, ), (ta, ")) < I min(dist(z, OQ), dist(

"mla aQ), \/E& \/t_n—') .

Next we shall state two fundamental properties for a weak solution of (1.1).
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The inequality (2.4) in Lemma 2.3 is so called Poincaré inequality for step functions with
respect to time variables. M.Struwe([10]) has shown such an inequality for weak solutions of
parabolic differential equations with the quadratic nonlinearity of gradients .

Lemma 2.3 (Poincaré inequality). Let u, be a weak solution of (1.1). Then there exists a
positive constant C independent of h and up, such that

(2.4) / [un(2) = Gp o (tny, 20)?dz < C’r2/ | Dup(2)|?d=
Q (t,.o,a:o Q (t,.o,:co)

holds for any (tn,,20) € @, 1 < ng < N, and positive number 7.

For the proof of Lemma 2.1, 2.2 and 2.3, we can refer to Appendix.
Next we shall show that so-called Caccioppoli type inequality holds for a weak solution of

(1.1).
Lemma 2.4 (Caccioppoli type estimate). Let u, be a weak solution of (1.1). Then there exists
a positive constant C independent of h and uy, such that an inequality of Caccioppoli type

(2.5) / |Dun|?dz < C [(p - )7 4 (r - s)“] / lun|2dz

r :(tno -'L'O) Qp,‘r(tno »Z0)
holds for all Qr s(tny,z0) and Qp r(tn,,%0),20 € Q, 1 < ny < N, satisfying [7/h] — [s/h] > 2 and
0<r<p.

Proof . Let n(a) € C’(‘)’°(B (20)) be a cut-off function such that 0 < 7 < 1, 7 =1 on B,(z¢)

and |Dn| < 2/(p — r). Moreover, we define a function o(t) on [t,, — 7,t,,] as follows
(2.6) o(t) = on for the1 < t < 1y (1 £n < N),
1, : ng — [s/h] < n < ny,
on = {n = no + [r/h] = 1}/ {[r/h) = 1 = [s/H]}, mo—[r/h]+1<n < no—[s/h] -1,
0, n < ng — [T/h].

Using a testing function® ¢ = on’uy in the identity (1.3) and integrating the resultant equality

over t in [tp, — T,1n,], Wwe obtain

/"“ / o (@unlts2)(ualt, ) = wnlt = h,z)dede

tng

(2.7) /B( o(t)Af P Dpul (t, 2)Do(n?(z)ul (2, z))dzdt = 0.

tng—
For brevity, we put the first and second term of the left-hand of (2.7) as Ly and L,, respectively.
By virtue of the definition of o(t), Ly reduces to

I = /"° / a(t)n (2)un(t, z) (un(t, ©) — un(t — h, 2)) dzdt

tng- [f/h]

[ ot @)n(a) (n(e) = tna (@) e

n=no—[1/h]+2 B

= 2 [ () (o) — (e de

n=ng~[s/h]+1 By (zo)
no—[s/H] :
+ E / o (2)un(2) (Un(2) = Un_1(2))dz.
BP 110)

n=ng—{7/h]+2
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We here remark that if [s/h] = 0,

no

L= 3 /B ) 0 ()tn(2) (tun(2) — tn_1(2)) dz.

n=ngo—[7/h}]+2

By using an inequality
Un(Un — Un—1) 2 (‘un|2 - ‘un—-1|2)/2a

we infer

oy
v

/ (@) (Jun(2)]? ~ [un_1(2)]?) do

N =

n=no— [s/h]+1
no—[s/h]

-+
N |

n=ng—[7/h]+2

N =

Bp( 0
no—[s/h]
+

[Se

n=no~[r/hl+2

Moreover, by using an equality

/ onn*(2) (|un(@)* = un-1(2)]*) dz
Bo(zo)

2 1
/B,(xo) 7 (@) o (2) P - 5/ . )772($)|un0—[s/h](cv)|2da:

[ 0@ (ua(@)F = luna(2)P) do
Bp(TO)

O'n(lun|2 - 'un—-ll2) = Unlunl2 - Un—llun—1]2 - (an - Un—l)lun——llz,

we obtain
1 2 2 1 2 ’ 2
Ly > 7° (@) |un,(2)|"de — N (%) Ung—(s/n) (2)]"d
2 JB,(=0) 2 JB,(=0
1 ng— [s/h]
+s [ 0@ @alun(@) = oncslun-a(@)P) do
n=ng— ['r/h]+2 B, (20)
o, mozle/Al
~3 Y Cemonn) [ @l (o)
n=no—[‘r/h]+2 ‘ B‘,(.’L’o)
(2.8)

no—[s/h}

2 ooy TN 53 J
= — )|, (2)°dz — = Op — Ope
2 Bp(xo) 77 ( )I nO( )‘ 2 Z ( 1) Bp(zo

-n=no—[T/h]+2

12 (&)t (2) 2ds.

According to the definition (2.6) of o, we have for ng — [r/h]+ 2 < n < ng — [s/h] that

On — Opn—1 < 3h/(T —s).

In fact , if 7 — s < 3h, .
On — Op1 <1 < 3h/(7—3)
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and if 7 — s > 3h,

< 1/(r/h-2—-3s/h) = h/(T — s —2h)
< hf(r—s5=2(r-3)/3) = 3h/(T — s).

On — On-1

Hence, we have

no—(s/h]
S (onmon) [ r@luna(e)Pde
n=ne—{r/h]+2 Bp(@o

no—[s/h]—l

<ar-o7h 3 [ @@l

n=no—[7/h]+1
tn

(2.9) < 3(r - s)"1/ ° / 72 (2)|un(t, z)|*dzdt,
tno'—T Bp(xo) i

so that from (2.8) and (2.9) we obtain

1 3 tno
I > —/ 72 () g () |2z — 2 (r — 3)—1/ / ()| un(t, )2 dudt.
2 JB, (o) 2 tng—7 J B,(0)

On the other hand, noting that

L, :/no / a(t)Af’jﬁDﬁ(n(:v)ui(t,x))Da(n(:v)u‘j'l(t,z))dzdt
t B,(z0)

ng~T
t, ] .

—/ ’ / cr(t)Af}ﬂDﬁn(a:)Dan(m)ﬂi(t,m)u}l(t,x)d:cdt
tno—‘r B‘,(.’L‘Q)

and that by Legendre-Hadamard condition on {A?’jﬁ } we have

tg '
AT oD ((@)untt, ) Pasds
t,,o—'T Bp(l'o)

< /t"" /Bp(m)a(t)A;?‘jﬁDﬁ(n(ﬂv)ui(t,m))Da(n(x)u’,;(t,z))dmdt,

ng—T
we obtain for some positive constant C that

1 tng
5/13,(z°) ?72(a:)luno(x)|2(l:c+A/tno_T /Bp(xo)U(t)lD(”(‘”)“h(t’w))Idedt

3 tag L [tmo
< =(r-s)7t / / n*(2)|un(t, z)|*dzdt + C(p — )2 / / lun(t, 2)|*dzdt,
2 tng=7 J B,(zo) tng—7 J B, (o)

which yields the required estimate

/ | Dup)?dz
Qr,a(tn.o .fvo)
3

< AT Hr =9t / lup|?dz + CA™Hp — r) 72 / lup)?dz.
2 Qp,f(tno 1 Lo . Q

p.r(tno 1Z0)
The inequality of the type (2.5) holds for the spatial higher derivatives in the following form.
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Lemma 2.5. Let uj, be a weak solution of (1.1). Then for each positive integer k there exists a
positive constant C independent of h and uy such that

' k
(2.10) / |D¥up|?dz < C [(p - 4 (r - 3)_1] / |un|®dz
‘ Qr,s(tnoyz()) Q"r"(t"o’x‘))

holds for all Qy s(tn,,%0) and Qpr(tny,%0), To € 2,1 < no < N, satisfying 7 — s > 2kh and
0<r<op

Proof. For each integer 7,0 < j < k, we put
p;j=r1+ (k - J)(P - T)/k, T; =8+ (k - .7)(T - 3)/k3 Ql’jy"'j = Qp,',Tj(ino, x0)~
Now noting (7 — s)/k > 2h and using Lemma 2.4 , we have
/ |Durl?dz < C[(k/ (o = »)) + K/ (7 - s)]/ |un|2dz.
P1HTY QPO’TO

By using the difference quotient method with respect to the spatial variables and calculating as in
the proof of Lemma 2.4, we obtain

J

Similarly as above, we have for 0 < 7 < k that

D*unlPdz < C [/ (o = ) + K/ (v = 9)] /Q\ | Du?dz.

P2TQ

/ |Diup|?dz < C [(k/(p - ) 4+ k/(r - .9)] / | DI~ uy |2 dz.

P§aTs @rjrmioa
By repeating the above a:rgument, we have
k
/ (DhunlPdz < C[(s/ (o = ) + 1/ = 9)] [ junld,
Qr,s(tnoaxo) Qp,f(tnoyxo)
which is the required inequality.

Lemma 2.6. Let up be a weak solution of system (1.1) . Then there exist positive constants C
and a, independent of h and uj such that the estimate

(2.11) |t (2") = un(2)] < Cl6 ((tw,2"), (n, 2))]"

holds for all (tn,z) and (tnr,2') € Q satisfying z,2' € {z € Q : dist(z,00) > /C(m)ho},
tn,tw € [C(m)ho,T) and 6((tn, "), (tn,2)) < Fmin(dist(z, OQ), dist(z’, ON), VIn, Vin), Lo

Proof. We take p such that p> > 4hL/(L — 2), where L is a positive number with L > 2.
Let k be a positive integer satisfying 2k > m. We then have by Lemma 2.1 that for all » < p

Duy|*dz < sup Duy|?|Q-] < C(p)||Dunll% Qr
/Q oy DS D10 S O g a0yl



17

where || - ”W*(Q 1) is the norm defined in the right hand of (2.1) in Lemma 2.1. Moreover, noting
2 (&,

that up is a weak solution of (1.1) and using Lemma 2.5, we have for p? > 8(k + 2)h/3

1 Dunl%; Clp) |Dun|*dz.

Wk(Qp/z(tno,-‘Eo)) - Qs (tng,20)

Hence we obtain
(2.12) / |Duy)?dz < C(p)|Q- |/ | Dup|?dz.
Qr(tng %o) tng+Z0)

Let us now use the dilatation argument. We shall notice two facts. At first we have that the scaled
function

Hh('sa ?/) = uh(t‘no + P23, Zo + Py)

satisfies, for each nonpositive integer I, —[p?/h] <1< 0

Un(8,y) = tngr1(@o + py) for (I—-1)h/p? < s < 1h/p?.
This follows from that, for integer ! |
(I - 1)h/p? < s < Ih/p?
is equivalent to

tno+l—1 < tno + p23 S t‘no+l'

Secondly, setting ’
W(Y) = Uno+1(zo + pY),
the following is valid for each nonpositive integer I, —[p?/h] <1< 0:

o ~7 i ﬂ - i 113 °
/B o AP D (y) Do’ (y)dy = —/ W) = T1) yay for o € W (B(0)).
1

B1(0) h/p?
In fact by transforming variables: ¢ = t,, + p%s,2 = 29 + py, we have that for ¢ € W3(B;(0))
/B o A"ﬁDpu,(y)Do,cp (y)dy = /1‘3 o AaﬁDﬁuno“(zo + py) Do’ (y)dy
31

1

=p*™™ / A?jﬁDﬁuio-&-I(QJ)Da&(m)dm’
B,(zg)

where @(z) := <p( 20}, Noting that &(-) € Wl(Bp(wo)) and using the identity (1.3), we obtain

—m o ; ~. —m Ung41(T) = Ung 41— -
el R e I R
e{To plTo0

Again from changing variables: t = t,, + p%s,z = 29 + py, it follows

p2'—m / uno+1(.’1:) huno+[ 1( )go(a,)clx _ / uno+l(m0 + Py) —huno*H—l (CEO + py)<p(y)dy
o(20) B:(0) |

8
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Combining the above calculations, we have the second assertion.
Here noticing that p? > 8(k + 2)/3 implies 1 > 8(k + 2)h/3p?, we are able to estimate the
L?—norm of Dux(s,y) on Qr/,(0,0) and Q1(0,0) similarly as in calculating (2.12), so that

[ it ulPdids < COIQul [ 1DT(s,v)Pdyds
Qr/p(oxo) Ql(oro)

By changing variables y = (z — z0)/p, s = (t — tn,)/p?, we arrive at the estimate

(2.13) / |Duy|?dz < C'(r/p)m+2/ |Dup|®dz.
Qr(tno 'IO) p(tnovxo)

holds for all 7 < p/2. This inequality (2.13) being valid for p > r > p/2, we conclude that (2.13)
holds for all » < p. 7

Now we recall that C(m) is a positive number defined in (1.10). For each (f,,,%0) € &
saisfying t,, € [C(m)ho,T] and zp € {z € Q : dist(z,00) > /C(m)ho} we rake a positive
number p satisfying p? > C(m)ho and Q,(tn,,%0) C Q. Noting that implies
p~l < C(m)™*hy='/2 we have by (2.13) that ;

(2.14) / IDupPdz < C(C(m)he)~(m+2)/2,m+? / | Dundz
Qr(tno ,xo) %(tnoyxo)
holds for (tn,,zo) € @ saisfying t,, € [C(m)ho,T],20 € {z € Q : dist(z,0Q) > /C(m)ho} and
r<p. :
On the other hand, we have the boundedness of the quantity fQ | Dup|? dz with respect to h.

In fact, substituting ¢ = u, — f into the identity (1.3) and summing the resultant inequality over
n from 1 to N, we have the calculations

N
hZ/ A:’jﬁDguf,Dau;dz
n=178 >

I

N N N
h Z/ A%ﬁDguilDo,f'dx - Z/ Un(Un = Up—q)dz + Z/ f(tn — up_1)de
n=1"% n=1 Q n=1 Q
L - By i i 1 2 1 12
<h) [ AYDgulDyfide ~ 5 [ lunlPde+ 5 | |uofdz+ | fundz— | fuode
—i/e Q Q Q Q

N V
<nY / AP Dpud Do fida + / 1f1dz + / |uo|dz,
n=1 Q Q Q@

which imply the estimate

(2.15) / |Dunl?dz < C/(lu0|2 + 1fP)de + CT/ IDfP.
Q Q Q
Hence, using the estimate (2.14),(2.15) and Lemma 2.3, we obtain
/ lup = @pr(tng, o)|* dz < C’I’Q/ |Dup|® dz < Cr™He.
Qr(tno ,%o) - Qr(tno ;"DO)

Consequently, the assertion of Lemma 2.6 follows from Lemma 2.2.

We conclude this section by proving the following estimate.
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Lemma 2.7. Let u), be a weak solution of systems (1.1). Then there exists a positive constant C
independent of h and uy, such that an inequality
(2.16)
| Duy|? dz < C{(?‘/p)m/ | Dun|? da + ( |M‘2m/(m+2) dz)(m+D/m)
B (zo) B, (o) B, (o) h

(1 < n < N) holds for any Br(zo) and B,(z0), 20 € Q, satisfying B,(20) CQ and 0 < r < p.

Proof. We shall carry out the calculation for m > 3 and leave the analogous result in the case
m = 2 for the reader to verify. 2* and (2*)' shall denote the Sobolev exponent and the dual one of
9, respectively. i.e. 2* = 2m/(m — 2) and (2*) = 2m/(m+2). Let n(1 < n < N)and p> 0,
B,(z0) C & be fixed and let v, € W3 (B,) be a function satisfying the relation

(2.17) / Ao’ﬁDpanDaga dz =0 for any ¢ = (¢',...,oM) € Wi(B,)
BP
and v — un € W3 (B,). A fundamental estimate, due to Campanato([1]), yields that
(2.18) / |Dv,|? dz < C(r/p)m/ |Duy,|? dz
B, /B,

holds for all 0 < r < p, where C' is a positive constant independent of r, p, u, and v,. Setting
o}

NOW Wy = Un — Un, We have from w, € W;(B,) and the estimate (2.18) that

/ |Dun|? dz < 2/ | Dv,|? da;—l—?/ | Dw,|? dz
- B,

*

(2.19) < QC(T'/p)m/ ]Dun|2d:c_+2/ | Dwn,|? dz.
» B,
Now we shall estimate the quantity fBr |Dw,|? dx. For this purpose we subtract (1.3) from
(2.17) to have

(2.20) / AP Dow,? D' do — / “—”-‘-’{’i"-:lga dz =0
P
o
for any ¢ € W1(B,). In particular, we may take ¢ = wy, in (2.20), whence
(2.21) / A PDywni Dpw,* da = / E”—:}—:—L”;—l-wn dz.
B

Hélder and Sobolev inequahtles yield the estimate

[/ Un — Up—1 w, (l(b' < (/ "' 1/2'(/ un 1|(2 ) dz )1/(‘)*)
B, h

=z / Dunl? (| —-—J‘"—ll” Y azy /)
with an absolute positive constant C. Mmeover, by virtue of Young inequality we infer
(2.22) |/ Un Z Unt oy, de| < /2\/3 |Dw,? do + S (/ un Un 7 Un=11(27) g )2/27)
p
Hence,by Legendre-Hadamard condition on {A?jﬁ}, we conclude from (2.21) and (2.22) that
(2.23) /;; | Dw,|? dz < %(/ I”L___'I:‘El!(z*)f dz )2/

P

holds. Thus substituting (2.23) into (2.19), we have the assertion of Lemma 2.7.

10
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3. Proof of Theorem

For the following e fix two positive numbers p and h, h < hy. We distinguish three cases in
the relation between p and h:

Case 1.
C(m)h < p?,
Case 2.
h < p? < C(m)h,
Case 3.

p* < h,

where C(m) is a positive integer determined in (1.10).

Case 1. For p satisfying p> > C(m)h we have obtained the estimate (2.13) in the proof of
Lemma 2.6, from which we have the assertion.

From now on we fix ({n,,20) € @n and p2 < ho.

Case 2. By virtue of (2.11) in Lemma 2.6, there exist positive numbers C and o, 0 < a < 1,
independent of h and uy, such that for each z € Q, we have

(3.1) [un(z) = un_1(2)| < CRY/?  ([C(m)ho/h]+1 < n < N).

By using the inequality (3.1) and (2.16) in Lemma 2.7, we have for o C 527;; and n, [C(m)ho/h]+1 £
n < N, that

(3.2) / | Dun(2)|2ds < 0(7-/p)’"/ |Dun(2)]? dz + Cho—2p™+2,
r 30) ¢ _ Bp Zo

At ﬁrst we shall show the inequality (1.11) with the restriction 0 < 7 < p/v/2. We here nomce
that 72 < p?/2 and h < p? imply [p%/h)h > r%. In fact,

< /2 < ([P /R + Dh/2 < (2K + [p2/h)h/2 = [o*/hlh.

Hence we have for t € (tn, — 7°,1,, that
(3.3) h/ | Duy(t, z)|*dz < / - |Dup|? d=.
Bp(.'l}o) P(tnolxo)
Multiplying (3.2) by h and using (3.3), we obtain for ¢ € (t,, — 7%,tpy and r < p/V2

(3.4) h/ | Dup(t, 2)|?dz < C(?‘/p)m/ [Duh(z)|2dz + Cpmtipa-1,
<o

r Qﬂ(tno ny)

Integrating both sides of (3.4) with respect to t in (tn, — 7%,1,, , we obtain for r < p/+/2 that

(35)  h |Dun(z)dz < C(r/p)™r? / |Dun(2)[2dz + Cripm+2pa-1,
Qr(tnoyzﬂ) . p(tnoyxo)

11
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Since the assumptions C(m)h > p? and 0 < o < 1 imply the estimate
BTt < C(m), Rt < (p2/C(m)),

we conclude from (3.5) that
/ |Dup|®dz < C(’I‘/p)m+2/ |Dupl®dz + Cp™*2,
Qr(tnov‘ro) Qp(tno 1%0)

The inequality being valid for » > p/\/§, the assertion of Theorem follows in Case 2.
Case 3. We here noté that the assumptions p?> < h and r < p imply 7% < h . Multiplying (3.2)
by 2, we obtain

/ |Dup(2)|?dz < C(r/p)™*+? / | Dup(2)|2dz + Cripe—2pm+2,
Qr(tno 'IO)

p(tno 1370)

Since p? < h and 0 < a < 1 imply p*(®=2) > h*=2 | we obtain for all 7 < p that
/ |Dup|?dz < C’(r/p)"”'g/ |Dup|*dz + Cp™t2e,
Qr(tnoyxo) \ p(tnolxo)

Therefore, the proof of Theorem is completed.

4. Appendix

In this chapter we shall give the proof of Lemmat 2.1,2.2 and 2.3 stated in Chapter 2. For
simplification we shall use notation: u(t,z) = us(¢, 2).

For the proof of Lemma 2.1, we prepare the following Proposition.

Proposition 4.1. Let p be a positive number satisfying p?> > hL/(L — 2) with a positive number -
L > 2. Then for each integer j,0 < j < [p?/h], there holds at least one of two inequalities:

(4.1) jh > p*/L, [p*/hlh — jh > p*/L.
Proof. It is sufficient to prove that
20%/L < [p?/h)h.
From p? 2 hL/(L — 2) with L > 2, we have

[0*/R]h > (p*/h—1)h = p* —h
> gt = (L=2)p*/L = (1 - (L-2)/L)"
=2p*/L.

Proof of Lemma 2.1. Let Q,(tn,,20) be fixed. For (tp,z) € Q,(tn,,20) (1 < n < N)
we shall estimate the value u(t,,z). For 2 € B,(z¢), we introduce polar coordinates (r,8) for the
spatial points y in the spherical cone V(z) with the vertex z, height § and opening a, which occurs

12
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in the cone condition of B, . Let g(s),0 < g(s) < 1, be a C*®~ function for —co < s < oo, such
that g(s)=1if s < } and g(s) = 0if s > 1. Then, for 1 < i < N we have

é T
w@) == [ grloGutro)dr

Integrating this equality with respect to df over the opening «, we then perform integration by
parts k — 1 times to obtain

ui(:l:)'—( 1)15// rk-1 8 g( )u,(r 9)]drd9

where C is a positive number. Noting r*~! = r¥~™pm~1 and dy = r™~1drdf, we have

' —1)* : koo
(+2) “E@ = (2 / g“’"%[g(pui(r,endy.

By taking j in Propositioh 4.1 as ng — n, we find that for each n, ng — [p?/h] < n < np, there
holds at least one of two cases:
Case 1.

[0* /W) = (ng = n)h > p*/L,
Case 2.
(no —n)h > p?/L.

Case 1. We remark that for each n satisfying [p?/h]h — (no — n)h > p?/L, it follows
R (tn—[pz/hL]—lytn] X V(z) C Qp(tny,To)-
We define a function o(t) on (tn_[p2/n1)-2,%n! @S follows:

o(t) = o; for t;_y <t <y,

On-[p2/nL)-1 = 0,

Ontpr/nr) = —[p?/RLIRL/p* +1,

o; = hL/p* + 0iy for n—[p*/RL}+1<i< n.

Using an equality

oiui(z) — oj—1ui—1(z) = (0i — oi—1)ui(2) + oi-1(ui(z) — ui—1(z))

and (4.2), we have

oiui(z) — oi—1ui—1(2)

et kC Bk i1
= &k i)l)vh/‘/(x) Tk-m‘a’;f[m 9(5 )“ (r,6)]dy
C . Ok roui(®) — uj-
+E 1_)1)|h v(x)rk—ma 7 loi- 19(5) = h 1(1)]‘1?/-

13



23

Noting we have by the definition of o;

n

Ontn(z) = E (oiui(z) — oicrui—1(2)),
i=n—[p2/hL]
we thus obtain
(-)FC [t / o 0% Lot —o(t—h) 7
Optn(z) = e 7 —— [ g(5)un(t, 7, 0)]dydt
(k- 1)! ta_ip2/nr—s S V(@) ark h )
(-1)*c rt / o OF roup(t,r,8) — up(t — h,r,0)
+ ~ T — lo(t = h)g ( ) | dydt.

(k - 1)' tn—[pQ/hL]-—l V(z) ark [ h

Since we have |(o(t) — o(t — h))/h| £ L/p* and |o(t)| < 1 from the definition of o(t), it follows

Jun(2)| < C /

+C/“

n—[p2/hL]~1

/ rk"mla—k[g(z)uh(t r,8)]|dydt
V(z) Ork ) T

ta[p2/nL)-1

/ Tk—ml’a_k_[g(z)étuh(t r,0)]|dydt.
V(x) ark § P

Noting the relation kp > m and (fn—[pi’/hL]_l,tn] X V(z) C Q,, we have

k
un(2)] < 25 / [ atemmete=nagae-vin [ -2 (g(Z yuntt, )] Pdyde) 7
V(J’) Q, 87’ 6

+C(/t"

n—[p2/hL)-1

—[e2/hL]~1
, k
/ ,.(k—m)P/(P—l)dydt)(zwl’)/p(// li[g(f)gtuh(t’r’ «9)]|pdydt)1/”.
v ark 7§
(z) Q

Hence from the calculatipn:

tn
/ / p(k=m)p/(p=1) gy 1t — /
t V{z)

n—[p2/hL]—-1 n-[p?/hL] 1

(// p=m)p/(P=1)pm =1 4.4 dt
—p2C(a) 5(Pk m)/(p=1)

we arrive at the estimate
0k T p 1/p
[un(@] < O [ [ |50 o5 )unty, )] Pyt
Q, 9T

+CO [ |57 lo(5)B0unr,0,0] dvay'se.

Case2. In this case we have tha,t (tn, n+[p2/hL)+1} X V(z) C Qu(tny,20) and we define a
function o(t) on (tn—1,tn4[p2/nr)4+1) as follows:
O'(t) = 0y for t;_1 <t <4y,
On =1,
o; = —hL/p* + 01 for n+1<i<n+[p?/hl],
Tnt(p2/nLi+1 = 0.

¢
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Noting the equality

n+{p® /hL]+1

@)= Y (o) = st (#)

i=n+1
n+[p? /hL}+1 n+[p?/RL]+1
= Y (e—oiu(@)+ Y, oina(ui(z) - wia(e)),
t=n+1l i=n+1

we have the assertion of this case similarly as in Case 1. Hence the assertion of Lemma 2.1 has
been shown.

Proof of Lemma 2.2. Let » and R be positive numbers arbitrarily given and fixed satisfying
r < R . Integrating the inequality

(4.3)  |2R(tn,2) = Ur(tn, 2)|? < 2P u(t, y) — GR(tn, 2)|P + 2P Hu(t,y) — Gr(tn, )|
with respect to (¢,y) on Q,(t,,z), we obtain

Q| |8R(tn, &) = Tr(tn, z)|P

(4.4) <2ord // |u(t, y) — @r(tn, z)|P dydt + 2P~} // lu(t,y) — @r(tn,z)|P dydt .
QR(tn 13:) ) \ r(tn’z)

By virtue of the estimate (2.2), we infer from (4.4) that
(4.5) |ZR(tn, 2) = Gy (tn, z)| < CRIMFZFP/Pp=(m42)/p

Now we shall show {@gr(t,,z)} is a Cauchy filter as R tends to zero. Let R be a fixed positive
number and set R; = 27'R (i =1,2,...). Then we obtain from the estimate (4. ) with R and r
replaced by R; and R;;, respectively that

(4.6) R, (tns @) = BRiy, (tny 2)| < C2AMHD/Po=ix g

holds for each 7 (¢ =1,2,...). Summing the inequality (4.6) with respect to i from j to k — 1, we
infer that

. k-1 .
. - - m -1 2a m o
(4.7)  |GR;(tn, ) = @R, (n,3)| < CA™HD/2R §. 277 < O 2P RS = CR;®.
E =y

Therefore, for each fixed (t,,2) € ", {@r,(tn,2)} (J =1,2,...)is a Cauchy sequence and hence
there exists a unique %(t,, ) such that

U(tn,z) = lim 4R, (tn,z).
j=00
Next we show that u(t,,z) is independent of the choice of R . Let r be a positive number
7 < R and put

ﬂ(trnx) = il_i{&ﬂr;(tn,x)a

15.
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where 7; = 27 (i=1,2,...). We proceed to the estimate as follows:

(4~8) Ii(tmx)“ﬂ(tmx)l < |§(tmx)"ar;(tmm)l+Iﬂra(tnax)‘vﬂR;(tmz)i"*‘lﬂR.'(tmx)"'ﬁ(tmz)l-

Since r < R, for each integer ¢ we can choose an integer k such that k > 4 and Reyq < 7 < R
In the inequality '

[iri(tns @) = 5, (tmy ©)] S [ry(ty @) = Ty (s )| + [, (1, ) = T, (2, )],
we use the inequalities (4.5) and (4.7), so that
(4.9) Tr, (tn, %) — TR, (tn, z)| S CR{FIHPPL=(mtDe | cpa < o(2m+2)/P 1 1)RE,
Hence, combining (4.9) with (4.8) and tending ¢ to infinity, we have
Wtn, @) = U(tn, ).
Also, taking 7 = 0 in (4.7), we infer
((tn, 2) — TR, (tn, 3)| < CRE.
Here, tending & to infinity, we obtain
(4.10) |@r(tn, ) — U(tn,z)| < CR*.
Noting that (4.10) holds for sufficiently small R > 0 and that for R,0 < R < VA,

1
ﬂR(tn,Q:) = 157 un(y) dya
|BR1 Bgr(z) -

we have

lim

—_— un{y)dy = u(tn, )
R—+0 |BR| J,(x) ny) &y = Ultn, o)

uniformly for each (t,,2) € Q . On the other hand, since we have for each Lebesgue point z € {) of
un(-),1 < n < N, that

lim —— un(y) dy = un(z),
A0 TBA] Jpncer (y) dy = un(2)

we obtain for

Wt X) = un(z) foralmost allz €\ ) .
Hence, taking (4.10) into account, we arrive at the estimate
(4.11) |Er(tn,z) — u(tn,z)] < CR* forany z &)

and for any 8> 0 .
We shall claim that the assertion of Lemma 2.2 now follows from the above estimate (4.11).
Let (t,,2) and (tw, ') be points in Q satisfying 8((tn, ), (tw,2z')) < I min (dist(z,0Q), dist(z’
,0Q), /Tn, V/tar), and put
r = 6((tn,2), (tw,z"))
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‘In the inequality
(4.12)

[u(tn, :z:) - u(tn’vw,)l < |u(tn, z) = B2r(tn, z)| + |Gar(tn, ) — Bor(tns, z")| + |z (tnr, zl) —u(tn, x,)| ’

we have the estimate (4.11) for the first and third terms in the right-hand of (4.12). We shall
estimate the second term . By integrating the inequality

|ﬂ2r(tn’ 33) - ﬂZr(tn’)x,)l S |a2r(tn7 ‘77) - u(ta y)l + Iu(t’ y) - ﬁZT(tﬂ‘ ) :D’)l

with respect to (¢,y) over Q2-(tn,z) N Q2r(tn, '), we infer

(4'13) 'Q?r(tnn (E) N Q2r(tn’ 3 m,)”ﬂ2r(tn> x) - ﬂ2r(tn’ 3 :E’)I
< [ lwltnn) - upldyae + [[ Ju(t, ) — iz, (b, 2")| dydt.
QQr(tnvz) Q2f(tn“ xxl)
By using Hélder inequality and (2.2), C s (4.13) yields ‘

(4.14) [T r(tn, @) = Gor(tn, )| < ClQ2r(tn, @) N Qar(tns, )| "} Qor|P~1/P(2)(m+2+P)/P,
Noticing Q2r(tn,2) N Q2r(tn,2") D Qr(tn, z), we reduce (4.14) to
(4.15) \ | [t2r(tn, ©) — Bar(tn, ") < Cr°.
Combining (4.11) and (4.15) with (4.12), we arrive at
lu(tn,z) — u(tn,z')| < Cr®

for each (t,,z)and(tn,2') € Q satisfying 6((t';,m),(tn;,:v’) < 3 min(dist(z, ), dist(z’, 0Q),
Vtn,V/tar). Thus the proof of Lemma2.2 is completed.

We shall next give the proof of Lemma 2.3. For the following we assume that the condition in
Lemma 2.3 is satisfied.

Let o(z), |o(z)| £ 1, |Do(z)] £ 2/r, be a smooth function belonging to C§°(B;) such that for

a positive ¥
/ ode >~
B3

or(z) = o(3).

For the following we fix r and we rewrite o, by ¢ and hence we remark that we have the estimate

and we put for a positive r

/ odx > yr™ and |Do(z)| < 2/r.
B2r

For u, € L'(Q, RN), we define uf . by
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Proposition 4.2. For o defined above there exists a positive number C such that we have
(4.16) g —ul P < C1'_m/ ' | Dul? d
([0, T} x suppo)NQ, (tny,zo)

for any r and for any positive integers n,n’', 1 < n,n’ < N, satisfying n > n' and no > n,n' >
no — [r?/h].
Proof. Testing the identity (1.3) with a function A(uj . — u7, ,)o, we obtainfor 1 < k < N

0= / o(uk = uk—1)(ug . — uf )dz + h/ AP DpuiDoo(ug . — uf Vida.
B

r r

Summing the resultant equations over k from n' + 1 to n, we infer
n n .
0= Z / o(up — up—1)(up , — up )dz + h Z / ‘\A?jﬂDﬁuiDad(ug’r —ug ) de.
k=n'+1 B. k=n'+1 B,
We proceed to the estimate as follows:

> [ olu - v, - w2

k=n'+1

= (/B oUup dz — -/B oup dz)(uy . — up )

:/ adm!ugr'_u;rp Z’Yrmlugtr_u:;’rl?
B, )T ) ) ,
and

n . . tn .
CGLIEY h/B A?‘jﬁDguiDaa(u‘,’z,r—ugl'r)‘dmlS/ /B |Al| Do || Duldedt|uZ,, — w2 |,
k=n'+1 r th r

where |A] is the operator norm of {Af‘f} Since |Do| < 2r~! and the assumption implies [tn,t,] C
[tno — 72, 2n,], it follows from (4.17) that '

n
BN / A2 Dgul Doo(us,, — uZ, ,)idal
k=n'-+1 B,

tng
< 4er~? / / lug . —ug | dedt + 47 e AP | Du|? dz
t 2 /B,

no—r /(‘IO,T]XSUde)ﬂQr(t,.O ,T)

=der™km|ug . — ud P+ 4"15“1],4[2/ | Dul? dz.
([0, T} x suppa)NQ, (tny,z)

Hence, by taking ¢ = v/8k,, we obtain the assertion of Proposition:

lug - = UZ',TV < 47_2/;m|A]27"m/ | Du|? dz.
([OvT}Xsuppa)nQr(tnox-T)

18
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By using this property, we shall prove Lemma 2.3. We here use the notation:

wi(t) = / DL / o(2)dz,

ul = // u(t, z)o(z)dzdt/ // o(z)dzdt,

Ujpr = 70 uj(z)dz
I IBT‘,Lr ]()

Uy = Ur(lng,20),

where @, (tn,, o) is the function defined in (1.8).

Proof of Lemma 2.3. At first we shall treat™with the case h < r%. Let B, = B,(zo) and
Qr = Qr(tny,z0) C Q,1 < np < N,zo € £, be fixed. Noting the integral fQ [u — ¢|® dz has the
minimum when ¢ = 4,, we have

(4.18) / lult, y) — @ |2 dydt < / lu(t, v) — u?? dydt

r r

<2 [[ fut -z a2 [[ e - P e
Q' Qr

The first term of the right-hand side of (4.18) is calculated as follows:
(4.19)

u(t,) = w0 dydt

= Z B Tu) =5y = 2 RR) [ e 0D = s

j=no—{[r2/hl+1

We shall estimate the tefm ]uj(y) — uf,|. Noting the calculation

w) -, = [ (w(y)—umomdy/ RO

and using Schwarz inequality, we infer

[ s =g ans [ (] - @@t/ /
</ , [, 1) = i@ agay | IRE ?da/ ( /B o))

Using usual Poincaré inequality, we proceed the estimate as follows:
L[ st - w@p dgay
B, JB,
< 2/ / |uj(y) = wjr|* dy dy + 2/ / |uj () = ujr|* df dy
B, JB, B, /B,
<z0r [ [ puitayagrace [ [ 1Du@Paay
B. /B, B, /B,

= 407|B,| [ 1Duw) dy.
B,

(4.20)

(4.21)

19



Hence, by virtue of (4.20) and (4.21), we infer

[ tuits) = g, ay
(4.22) <aCrtiBl [ 1Duwidy [ 0@ d /. o)y’
<crt [ IDuw)l .
g

Consequently, combining (4.19) with (4.22), we arrive at

(4.23) / /Q lu(t, y) — wS (D) dy dt < Cr? /Q |Du(z)[? dz.

On the other hand, the second term of the right-hand side of (4.18) is estimated as follows:

/ / a2 (1) - ul|? dy dt

(4.24) = h/ .77‘ - udl dy+(r - [7' /h]h)/ no [r2/h],r :|2 dy

i= no—['rQ/h]+1

=h|B| > g, —uflP + (7P = [P /RIR)I B g, e gy e — il 1
j=no—[r? /h]+1

We here notice the following calculation:

-/ u(s,va,.@)d@;ds/ J[ o@azas
= / " (/ u(s, ¥)o(y) dy) ds// ar(”)dy/ " lds = /ino ' uZ(s) ds//t:"iﬂlds
/tno / "(s)dycls//tltn / ldyds—- // ul(8) dyd.s// 1dz.

Hence we infer
=// (u?vr—u‘,’(s))d?ds// 1 de.
Qr Qr .

By using Schwarz inequality, we obtain

(4.25) [ug, —ulf? < / 1dz/Ar [ug, — uZ(s)[? d?ds/(/qr 1dz)?

=18 A =P, — gepl?) [ [ s

i= -[r2/h]+1
We here use Proposition 4.2 to have
(4.26) / g, - u? < Cr / |Du|? dz

20
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for ng — [r?/h] < 7 < no. Hence, combining (4.26) with (4.24), it follows
(4.27) / lug(t) — ul|?dz < Cr? // | Du|? dzdt.
Qr Qr

Substituting (4.23) and (4.27) into (4.18), we obtain the assertion with-the restriction h < r2.
Next we treat . the case r2 < h. In this case we have

u(t,y) = uno(y)  for  tny — 12 <1<ty

so that
1

IBTI By (wo0)

Up(tng, To) = Uno (V)dY.

Hence we obtain that

1 ~
/ |’LL(t, y) - ﬁr(tno’wO)P dz = T2'/ iuno(y) - 'B_ “no(@dylzdy
@+ (tng 0 (o) |Br| /B, (20)

< o /B D Py = 7 / |\ Du(z)|dz.

r tno sZ0

Therefore we have proved Lemma 2.3.
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