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Applications of Lyusternik-Schnirelmann theory to Hamiltonian systems

by K. Hayashi (Meiji Univ. )

林　喜代司
\S 1 Introduction

Let $x=(x^{1}, x^{2}, \ldots, x^{n})$ and $p=(p_{1},p_{2}, \ldots,p_{n})$ be points of $R^{n}$ and consider a Hamil-

tonian system

(1.1) $\dot{x}^{i}=\frac{\partial H}{\partial p_{i}}$
$\dot{p};=-\frac{\partial H}{\partial x^{i}}$; $i=1,2,$ $\ldots,$

$n$ ,

where $H=H(x,p)$ : $R^{n}arrow R$ is a $C^{\infty}$ function (Hamiltonian function) and means $\frac{d}{dt}$

Along a solution $(x(t),p(t))$ of (1.1), $H(x(t),p(t))$ is a constant, so, for given $e$ , the energy

surface $H^{-1}(e)\equiv\{(x,p);H(x,p)=e\}$ is an invariant set. If $H^{-}(e)$ is not compact, then

there is not necessarily a periodic solution on it.

On the existence of periodic solutions of Hamiltonian systems on energy surface, P.

Rabinowitz [6] obtained a remarkable

$T1_{\overline{1}}eorem1$ . $1/J1rx\tau r-1(e)$ is star shaped, then there exist at least one pericdic solution

of (1.1) on it.

For this theorem, the Hamiltonian function $H(x,p)$ is an arbitrary function. But origi-
nary in tha classical mechanics, the Hamiltonian function had a special form, namely (kinetic

$energy+potential’$ . This means $H(x,p)$ is of the form

(1.2) $H(x,p)= \frac{1}{2}a^{ij}(x)p_{i}p_{j}+U(x)$ ,

where $(a^{ij})$ is symmetric and positive definite. We call the Hamiltonian system (1.1) with

Hamiltonian function of the form (1.2) a classical Hamiltonian system. Then we have [1] [2]

Theorem 2. For classical Hamiltonian systems, if $H^{-1}(e)$ is compact, then there

exists at least one periodic solution on it.

In order to obtain more than one periodic solutions on compact energy surfaces of clas-
sical Hamiltonian systems, we have an eye to the following point. We put $T= \frac{1}{2}a^{ij}(x)p_{i}p_{j}$ ,

then we have $T\geq 0$ . Hence, if a point $(x,p)$ satisfies $T+U=e$ , then $U(x)\leq e$ . Thus we
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consider, for a fixed $e$ , the set

(1.3) $W\equiv\{x;U(x)\leq e\}$ .

Remark that $H^{-1}(e)$ is compact” if and only if $\zeta W$ is compact”.

From now on, we assume that $e$ is a regular value of $H$ (equivalently of $U$ ). Then $W$ is
a compact manifold with boundary $[U=e]$ . In this note, we propose a conjecture ( there

may be at least $\nu(W)$ periodic solutions on the energy surface of the classical Hamiltonian

system”, and give some circumstantial evidence of this conjecture. The number $\nu(W)$ is a

topological invariant of $W$ given below.

\S 2 Geodesics as solutions of (1.1)

For a classical Hamiltonian (1.2), the Hamiltonian system (1.1) is equivalent to the
$L$ agrangian system

(2. 1) $\frac{d}{dt}\frac{\partial L}{\partial\dot{x}^{t}}=\frac{\partial L}{\partial x^{l}}$ , $i=1,2,$ $\ldots,$
$n$ ,

where $L=T-U$ is the Lagrangian with

(2.2) $T=T(x, \dot{x})\equiv\frac{1}{2}a_{ij}(x)\dot{x}^{i}\dot{x}^{j}$ , $(a_{ij})=(a^{ij})^{-1}$ .

If $(x(t),p(t))$ is a solution of (1.1), (1.2) on $H^{-1}(e)$ , then $x(t)$ is a solution of (2.1) with

$T+U=e$ . Conversely, if $x(t)$ is a solution of (2.1), then $T(x,\dot{x})+U(x)$ is a constant $e$

and $(x(t),p(t))$ is a solution of (1.1), (1.2) on $H^{-1}(e)$ , where $p(t)$ is properly determined by
$x(t)$ . Also, it is known [Maupeutuis-Jacobi’s variational principle] that the above $x(t)$ is,

after a time change, a geodesic for a Riemannian metric

(2.3) $ds^{2}=(e-U(x)) \frac{1}{2}a_{ij}(x)dx^{i}dx^{j}$ .

This metric is called Jacobi metric for $e$ . This Jacobi metric is positive on Int $W=[U<e]$

and degenerate on $\partial W=[U=e]$ . Maupertuis-Jacobi’s principle gives

Lemma 1 If $\gamma$ : $[0,1]arrow W$ is a $C^{\infty}$ curve with

$\bullet$ $\gamma(s)$ is a geodesic for the Jacobi metric in Int $W$,

$\bullet\gamma(0),$ $\gamma(1)\in\partial W_{f}$
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then $(x(t),p(t))$ , where $x(t)$ is obtained by $\gamma(s)$ after proper time change $trightarrow s$ and $p(t)$ is

determined from $x(t)$ as above, is a periodic solution of (1.1) on $H^{-1}(e)$ ,

In fact, let $x(t)$ be the solution of (2.1) with

$\bullet$ $x(t)$ in Int $W$, $t_{0}<t<t_{1}$ ,

$\bullet x(t_{0}),$ $x(t_{1})\in\partial W$ ,

for some $t_{0}<t_{1}$ . Then the solution $x(t)$ stops at the times $t=t_{0}$ and $t_{1}$ , because on the

boundary $[U=e]$ , we have $T=e-U=0$ at the times, hence $\dot{x}=0$ . By the reversibility

of the system (2.1), the inverse curve $x(t_{1}-t)$ is also a solution of (2.1) with same total

energy $T+U$ . This stops again at $t=t_{1}+(t_{1}-t_{0})$ . Connecting these solutions

$\bullet x(t)$ , $t_{0}\leq t\leq t_{1}$ ,

$\bullet$ $x(t_{1}-t)$ , $t_{1}\leq t\leq t_{1}+(t_{1}-t_{0})$ ,

$\bullet$ $x(t)$ , $t_{1}+(t_{1}-t_{0})\leq t\leq t_{1}+2(t_{1}-t_{0})$ ,

$\bullet\cdots$ ,

we have a desired periodic solution.

As pointed out above, the Jacobi metric is degenerate on $\partial W=[U=e]$ . To avoid this,

we consider a compact manifold $W_{\delta}$ , which is contained in Int $W$ and diffeomorphic to $W$ ,

as follows.

Fix a small $\delta>0$ . For $b\in B=\partial W$ , let $x_{b}(t)$ be the solution of (2.1) with $x_{b}(0)=$

$b,\dot{x}(0)=0$ , and $t(b, \delta)$ the first time for which the length of the curve $x_{b}(t),$ $0\leq t\leq t(b, \delta)$ ,

with respect to the $Ja^{}cobi$ metric equals to $\delta$ . We put

$b_{\delta}=x_{b}(t(b, \delta))$ and
$B_{\delta}= \bigcup_{b\in B}b_{\delta}$

.

Finally let $W_{\delta}$ be the compact set consisting of the points “inside” $B_{\delta}$ . For sufficiently small
6, $W_{\delta}\approx W$ and it is known that if a geodesic with respect to Jacobi metric intersect with
$B_{\delta}$ orthogonally, then the geodesic can be extended so as to reach the boundary $B$ . We call

a geodesic of a compact manifold with boundary an orthogonal geodesic chord, if it starts

and ends at points of the boundary orthogonally. The above consideration and Lenma 1

give
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Lemma 2 Orthogonal geodesic chords of $W_{\delta}$ with respect to the Jacobi metric give

periodic solutions of the original Hamiltonian system (1.1) with (1.2) on $H^{-1}(e)$ .

\S 3 Lyusternik-Schnirelmann theory for orthogonal geodesic chords

For the existence and the number of orthogonal geodesic chords of compact Riemannian

manifolds with boundary, the following is known.

Theoren 3 Let $Y$ be a compact Riemannian manifold with geodesically convex

boundary. Then we have at least $\nu(Y)$ orthogonal geodesic chords.

The topological invariant $\nu(Y)$ is defined as follows. We put $B=\partial Y\neq\emptyset$ and

(3.1) $\Omega_{Y}\equiv$ { $\omega$ : $[0,1]arrow Y$ ; continuous and $\omega(0),$ $\omega(1)\in B$ }

with compact open topology. In the following, the coefficients of the (co)homology shall be

understood as $Z_{2}=Z/2Z$ . We define

1. $\nu_{\pi}(Y)=\{01$ $if\pi_{k}(\Omega_{Y}, B)otherwise\neq 0$
for some $k\geq 1$ ,

2. if $H_{*}(\Omega_{Y}, B)=0$ , then $\nu_{H}(Y)=0$ and otherwise
$\nu_{H}(Y)={\rm Max}\{k\geq 1$ ; $\exists\alpha_{1},$

$\alpha_{2},$
$\ldots,$

$\alpha_{k-1}\in H^{*}(\Omega_{Y})$ with $\deg\alpha_{j}>0$

and $\exists a\in H_{*}(\Omega_{Y}, B)$

such that $(\alpha_{1}\cup\cdots\cup\alpha_{k-1})\cap a\neq 0$ }

3. $\nu_{\Pi}(Y)$ is obtained as $\nu_{H}(Y)$ , exchanging $H^{*}(\Omega_{Y})$ and $H_{*}(\Omega_{Y}, B)$ to $H_{\Pi}^{*}(\Omega_{Y})$ and
$H_{*}^{\Pi}(\Omega_{Y}, B)$ . Here, $H_{II}^{*}$ and $H_{*}^{\Pi}$ are equivariant (co)homology with respect to the

involution $\omega\vdasharrow\omega^{-1}\equiv\omega(1-\cdot)$ .

4. $\nu(Y)\equiv{\rm Max}\{\nu_{\pi}(Y), \nu_{H}(Y))\nu_{II}(Y)\}$ .

The proof is given by Lyusternik-Schnirelmann theory applied to the following varia-

tional problem. Let $\Lambda$ be the path space consisting of all piecewise $C^{\infty}$ pathes $\lambda$ : $[0,1]arrow Y$

with $\lambda(0),$ $\lambda(1)\in B$ . Also define $E:\Lambdaarrow R$ by

(3.2) $E( \lambda)=\frac{1}{2}\int_{0}^{1}dt|\lambda(t)|^{2}$.

Nontrivial $(E>0)$ “critical points” of $E$ correspond to nonconstant orthogonal geodesic

chords. The assumption of the geodesical convexity corresponds to the condition (C) of
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Palais-Smale. For example, let $a\in H_{k}(\Lambda, B)$ be a nonzero element (remark that $\Lambda$ is

homotopically equivalent to $\Omega_{Y}$ ). For a representative of $a$

$z= \sum_{i}\sigma:$ , $\sigma_{i}$ : $\triangle^{k}arrow\Lambda$ , singular simplex,

we put

$|z|= \bigcup_{i}{\rm Im}\sigma_{i}\subset\Lambda$

and define

$\kappa_{a}\equiv\inf_{z\in a}{\rm Max} E(|z|)$ .

Then $\kappa_{a}$ is a nontrivial critical value.

If there is an $\alpha\in H^{*}(\Lambda)$ with $\deg\alpha>0$ satisfying $b\equiv\alpha\cap a\neq 0$ , then, in general, $\kappa_{b}\leq\kappa_{a}$

and when $\kappa_{b}=\kappa_{a}$ , there exist infinitely many critical points on the level. This means, in

that case, there exist at least two critical points, giving the meaning of the definition of
$\nu_{H}(Y)$ .

The topological invariant $\nu(Y)$ has the following properties.

1. for any $Y$ , we have $\nu(Y)\geq 1$ .

2. if $Y$ is contractible, then $\nu(Y)=\dim Y$ , in particular $\nu(D^{n})=n$ .

3. for solid torus $S^{1}\cross D^{2}$ , we have $\nu(S^{1}\cross D^{2})\geq 3$ .

Corresponding to these properties, we have the following results on the classical Hamil-
tonian systems.

1. there is always at least one periodic orbit [1] [2].

2. when $W\approx D^{n}$ , there exist at least $n$ periodic solutions for systems near a rotationally

synmetric one [3].

3. when $W\approx S^{1}\cross D^{2}$ , there exist at least 3 periodic solutions for systems near one with
some symnetry [5].

Thus it is plausible that the following may be valid: on a compact energy surface of a

classical Hamiltonian system, there may be at least $\nu(W)$ periodic solutions on it.
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