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Applications of Lyusternik—Schnirelmann theory to Hamiltonian systems

by K. Ha,ya.shi’ ( Meiji Univ. )
TBNA

§1 Introduction

Let z = (z1,22,...,2") and p = (pl,pg,...,p;,) be points of R™ and consider a Hamil-

tonian system

(1.1) m_t')p,-’ bi= =5 i=12,...,n,

where H = H(z,p) : R®* — R is a C* function ( Hamiltonian function ) and * means %
Along a solution (z(t),p(t)) of (1.1), H(z(t), p(t)) is a constant, so, for given e, the energy
surface H™Y(e) = {(z,p); H(z,p) = e} is an invariant set. If H~!(e) is not compact, then
there is not necessarily a periodic solution on it. ‘

On the existence of periodic solutions of Hamiltonian systems on energy surface, P.

Rabinowitz [6] obtained a remarkable

Theorem 1. If H=Ye) s star shaped, then there exist at least one periodic solution

of (1.1) on it.

For this theorem, the Hamiltonian function H(z, p) is an arbitrary function. But origi-
nary in tha classical mechanics, the Hamiltonian function had a special form, namely “kinetic

energy + potential”. This means H(z,p) is of the form
1 ..
(1'2) H(:L',p) = é'aw(z)pipj + U(:I}),

where (a¥) is symmetric and positive definite. We call the Hamiltonian system (1.1) with

Hamiltonian function of the form (1.2) a classical Hamiltonian system. Then we have [1] [2]

Theorem 2. For classical Hamiltonian systems, if H™(e) is compact, then there

exists at least one periodic solution on it.

In order to obtain more than one periodic solutions on compact energy surfaces of clas-
sical Hamiltonian systems, we have an eye to the following point. We put T' = 1a%(z)p;p;,
then we have T' > 0. Hence, if a point (z, p) satisfies T 4+ U = ¢, then U(z) < e. Thus we
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consider, for a fixed e, the set
(1.3) W ={z;U(z) <e}.

Remark that “H~'(e) is compact” if and only if “W is compact”.

From now on, we assume that e is a regular value of H ( equivalently of U ). Then W is
a compact manifold with boundary [U = €]. In this note, we propose a conjecture “ there
may be at least v(W) periodic solutions on the energy surface of the classical Hamiltonian
system”, and give some circumstantial evidence of this conjecture. The number v(W) is a

topological invariant of W given below.

§2 Geodesics as solutions of (1.1)

For a classical Hamiltonian (1.2), the Hamiltonian system (1.1) is equivalent to the

Lagrangian system

d oL OL
2.1 . ———= = e
( ) dt Bt ozt ? 1, 2} ) 1L
where L =T — U is the Lagrangian with
(2.2) T = T(s,) = -;-a,-,-(m)mi, (ag;) = (a)".

If (z(¢), p(t)) is a solution of (1.1), (1.2) on H~'(e), then z(t) is a solution of (2.1) with
T+ U = e. Conversely, if z(t) is a solution of (2.1), then T(z,2) + U(z) is a constant e
and (z(t), p(¢)) is a solution of (1.1), (12) on H™!(e), where p(t) is properly determined by
z(t). Also, it is known [ Maupeutuis—Jacobi’s variational principle ] that the above z(¢) is,

after a time change, a geodesic for a Riemannian metric
1 o
(2.3) ds® = (e — U(m))ia,-j(x)dz'a’m’.

This metric is called Jacobi metric for e. This Jacobi metric is positive on Int W = [U < €]

and degenerate on OW = [U = ¢]. Maupertuis—Jacobi’s principle gives

Lemma 1 If y:[0,1] = W is a C* curve with
e 7(s) is a geodesic for the Jacobi metric in Int W,

e 7(0),4(1) € oW,
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then (z(t), p(t)), where z(t) is obtained by y(s) after proper time change t < s and p(t) is
determined from z(t) as above, is a periodic solution of (1.1) on H™'(e).

In fact, let z(t) be the solution of (2.1) with
o z(t)in Int W, o<t <ty
o z(ty), z(t;) € OW,

for some t5 < t;. Then the solution z(t) stops at the times ¢ = %, and ¢;, because on the
boundary [U = €], we have T'= ¢ — U = 0 at the times, hence ¢ = 0. By the reversibility
of the system (2.1), the inverse curve z(¢; — t) is also a solution of (2.1) with 'same total

energy T'+ U. This stops again at ¢t = ¢; + ({; — ¢p). Connecting these solutions
[ .’L‘(t), to Ststly
o z(t; —t), t; <t <t +(t1—1o),

[ :c(t), 1+ (tl - to) S 2 S i1+ 2(t1 -~ to),

"

we have a desired periodic solution.

As pointed out above, the Jacobi metric is degenerate on W = [U = e]. To avoid this,
we consider a compact manifold Wy, which is contained in Int W and diffeomorphic to W,
as follows.

Fix a small § > 0. For b € B = 0W, let z(¢) be the solution of (2.1) with z4(0) =
b, 2(0) = 0, and (b, 6) the first time for which the length of the curve z,(¢), 0 < ¢t < #(5, §),
with respect to the Jacobi metric equals to §. We put

bs = zp(t(b,6)) and Bs= | bs.

beB

Finally let Wj be the compact set consisting of the points “inside” Bj. For sufficiently small
6, Ws =~ W and it is known that if a geodesic with respect to Jacobi metric intersect with
Bgs orthogonally, then the geodesic can be extended so as to reach the boundary B. We call
a geodesic of a compact manifold with boundary an orthogonal geodesic chord, if it starts
and ends at points of the boundary orthogonally. The above consideration and Lemma 1

give
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Lemma 2 Orthogonal geodesic chords of Ws wnth respect to the Jacobi metric give

periodic solutions of the original Hamiltonian system (1.1) with (1.2) on H™(e).

§3 Lyusternik—Schnirelmann theory for orthogonal geodesic chords

For the existence and the number of orthogonal geodesic chords of compact Riemannian

manifolds with boundary, the following is known.

Theorem 3 Let Y be a compact Riemannian manifold with geodesically convex

boundary. Then we have at least v(Y') orthogonal geodesic chords.

The topological invariant ¥(Y) is defined as follows. We put B = 8Y # @ and
(3.1) Qy = {w:[0,1] = Y;continuous and w(0),w(1) € B }
with compact open topology. In the following, the coefficients of the (co)homology shall be

understood as Z, = Z/2Z. We define

_ 1 if m(Qy,B)#0 for some k> 1,
L ow(Y) _{ 0 otherwise

2. if H.(Sy, B) =0, then vg(Y) = 0 and otherwise

vg(Y)=Max {k>1; 3Jay,0y,...,ar1 € H*(Qy) with dega; > 0
and 3 a € H.(Qy, B) :
such that (qU---Uag—1)Na#0 }

3. vn(Y) is obtained as vg(Y), exchanging H*(Q0y) and H.(Qy,B) to Hpi(Qy) and
HI(Qy,B). Here, Hy and HI are equivariant (co)homology with respect to the

involution w+— w™ =w(1-").

4. v(Y) = Max{v,(Y),vy(Y),vu(Y)}.

The proof is given by Lyusternik-Schnirelmann theory applied to the following varia-
tional problem. Let A be the path space consisting of all piecewise C* pathes A: [0,1] - Y
with A(0), \(1) € B. Also define E: A — R by

(3.2) B0 = | L gL

Nontrivial ( E > 0 ) “critical points” of E correspond to nonconstant orthogonal geodesic

chords. The assumption of the geodesical convexity corresponds to the condition (C) of

4
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Palais—Smale. For example, let a € Hi(A, B) be a nonzero element ( remark that A is

homotopically equivalent to Qy ). For a representative of a
z= Z oi, 0;:A% o A, singular simplex,

we put ‘
|z =JIma; C A

and define
Ko = ilelf Max E(|z]).
Then k, is a nontrivial critical value.
If there is an o € H*(A) with deg o > 0 satisfying b = aNa # 0, then, in general, x;, < &,
and when Kk, = K,, there exist infinitely many critical points on the level. This means, in

that case, there exist at least two critical points, giving the meaning of the definition of

I/H(Y).

The topological invariant v(Y') has the following properties.
1. for any Y, we have v(Y) > 1.
2. if Y is contractible, then v(Y) = dimY, in particular v(D") = n.

3. for solid torus S x D?, we have v(S* x D?) > 3.

Corresponding to these properties, we have the following results on the classical Hamil-

tonian systems.

1. there is always at least one periodic orbit [1] [2].

2. when W = D™, there exist at least n periodic solutions for systems near a rotationally

symmetric one [3].

3. when W =~ S x D?, there exist at least 3 periodic solutions for systems near one with

some symmetry [5].

Thus it is plausible that the following may be valid: on a compact energy surface of a

classical Hamiltonian system, there may be at least v(W) periodic solutions on it.
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