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Dynamics of Convection in Binary Fluid Mixtures

Hideo YAHATA

Department of Materials Science, Faculty of Science
Hiroshima University, Hiroshima 730

The Rayleigh-B\’enard convection in a binary fluid nixture is studied using a model

system of coupled-mode equations for several chosen sets of the external parameters.

The field variables are assumed to be twedimensional and periodic in the horizontal

direction. The velocity, the temperaure and the concentration variables obey the rigid,

isothermal and impermeable boundary conditions on the horizontal surfaces respec-

tively. The system with increase of the Rayleigh number develops periodic, quasi-

periodic and non-periodic travelling waves of the convection rolls one after another. In

particular, the non-periodic waves change the direction of propagation with irregular

time intervals.
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\S 1. Introduction

The Rayleigh-B\’enard convection occurring in a binary fluid mixture confined be-

tween two horizontal parallel plates heated from below has recently attracted consid-

erable interest both experimentally and theoretically. Depending on the chosen set of

the values of control parameters, there are cases where the system exhibits behavior

of convection in several respects quite different from that usually observed in ordinary

one-component fluids First, with increase of the Rayleigh number or the vertical

thermal gradient across the fluid, the heat conduction state loses its stability by the

subcritical Hopf bifurcation. Second, the convection rolls arising as a result of this

bifurcation for some cases take the form of a spatially localized state, which thereby

gives rise to coexistence of the convection and conduction states in the same vessel.

Third, the convection rolls quite often move in one direction or the other in the form of

travelling waves. It is further to be noted that the results given above are all observed

for a range of the Rayleigh numbers near the onset of convection.

In order to clarify these conspicuous properties of the system, a variety of theo-

retical attempts have been made. $8$ ) $\sim 15$ ) In particular, time evolution of the convection

rolls were studied with the aid of the Galerkin mode truncation or the finite difference

scheme applied to the basic equations of motion. The results of these computations

show that the system exhibits various types of oscillatory motion in the form of stand-

ing, travelling, modulated travelling and chaotic waves of the convection rolls. These

are considered to illustrate some facets of rich dynamical properties inherent in the

original fluid system. Incidentally, most experiments were performed using an ethanol-

water mixture confined in a rectangular cell. By contrast, in order to remove the

side-wall effect on formation of the convection rolls, experiments using an annular cell

have been carried out by at least two research groups. $6$ ), $7$ ) For this case, the convec-

tion is considered to obey the periodic boundary condition in the azimuthal direction.
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Furthermore, the ratio of the cell width to the annular radius is set to be sufficiently

small to such a degree that the effect of the cell curvature on the wave motion can be

neglected.

The purpose of the present paper is to study time behavior of the periodic rolls using

a Galerkin system of equations under the external conditions similar to those imposed

on the annular-cell experiments given above. Hence, the field variables are assumed

to be periodic in the azimuthal direction. We further assume that the field variables

are uniform in the radial direction so that their dependece on the radial coordinate is

discarded. Since the system is mainly dealt with near the onset of convection, it does

not appear that complicated nodal structure in the radial direction needs to be taken

into account in our computation. The system is thus assumed to be two dimensional.

Similar types of the Galerkin equations were used by several authors to study evolution

of the convection rolls under different external conditions. $10$ ), $12$ )

In \S 2 formulation of the problem is given to present the model equations of motion.

In \S 3 computational results are given for several chosen values of the external param-

eters suitable for comparison with those of the experiments. Finally, \S 4 is devoted to

a short summary.

\S 2. Basic equations of motion

We consider a binary fluid confined between two horizontal parallel plates heated

from below. Let $x,$ $y$ and $z$ denote the rectangular Cartesian coordinates with the $z$

axis directed upward. The physical quatities used in this paper are defined as follows:

$\rho$ is the density of fluid, $C_{p}$ is the specific heat per unit mass at constant pressure,

$\nu$ is the kinematic viscosity, $\kappa$ is the thermal diffusivity, $\alpha$ is the thermal expansion

coefficient, $\beta$ is the solutal expansion coefficient, $D$ is the diffusion coefficient of the
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component 1, $g$ is the gravitational constant, $d$ is the depth of the fluid layer and $T_{d}$. is

the temperature difference between the two horizontal boundaries. In addition to the

velocity, the pressure and the temperature, another field variable, i.e., the mass fraction

of the fluid component $x_{1}$ is needed to specify the dynamical states of binary fluids.

The heat and mass flux are $q=-C_{p}\rho\kappa_{\nabla^{T-C_{p}\rho\gamma_{1}}\nabla^{x_{1},j_{1}}}=-\rho\gamma_{2}\nabla^{T-\rho D_{\nabla^{X_{1}}}}$ where

the terms containing $\gamma_{1}$ and $\gamma_{2}$ represent the Dufour and the Soret effect respectively.

The term due to the Dufour effect is henceforth neglected since $q$ is for cases of liquids

dominated by the thermal conduction term. For the non-dimensional description of

the equations of motion, the length scale $d$, the time scale $d^{2}/\kappa$ , the temperature scale

$\kappa\nu/g\alpha d^{3}$ and the concentration scale $\kappa\nu\gamma_{2}/g\alpha d^{3}D$ are used. Within the franework of

the Boussinesq approximations, binary fluid convection is governed by the disturbance

equations for the velocity $u=(u_{x}, u_{y}, u_{z})$ , the temperature $\theta$ , the mass concentration $\xi_{1}$

1

and the pressure $\delta p$ . Using the variable $\eta=\xi_{1}+\theta$ instead of $\xi_{1}$ , these are expressed in

the form

$\partial_{t}u_{i}-\sigma\triangle u_{i}-\sigma\{(1+S)\theta-S\eta_{1}\}\delta_{i,z}+\partial_{i}(\delta p/\rho)=-u_{j}\partial_{j}u_{i}$ , $(i=x, y, z)$ (1)

$\partial_{t}\theta-\triangle\theta-Rau_{z}=-u_{j}\partial_{j}\theta$ (2)

$\partial_{t}\eta-\triangle\theta-L\triangle\eta=-u_{j}\partial_{j}\eta$ (3)

$\partial_{j}u_{j}=0$ (4)

where $Ra=g\alpha d^{3}T_{d}/\kappa\nu$ is the Rayleigh number, $\sigma=\nu/\kappa$ is the Prandtl number,

$L=D/\kappa$ is the Lewis number and $S=\beta\gamma_{2}/\alpha D$ is the separation ratio while $\backslash \delta_{\dot{t},j}$

is Kronecker’s delta. We solve the problem under the following conditions. On the

horizontal surfaces the field variables $u,$
$\theta$ and $\eta$ obey the rigid(non-slip), isothermal

and impermeable boundary conditions respectively:

$u=\partial_{z}u_{z}=\theta=\partial_{z}\eta=0$ on $z=\pm 1/2$ (5)
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Convection is now assumed to appear in the form of parallel rolls and to be spatially

periodic in the x-axis direction perpendicular to the roll axis (parallel to the $y$ axis).

Furthermore, the convection rolls are assumed to be two-dimensional. Hence, the field

variables depend only on the variables $x,$ $z$ and $t$ . The two dimensional flow $u$ is

expressed in terms of the stream function $\Phi(x, z, t)$ :

$u_{x}=-\partial_{z}\Phi$ , $u_{y}=0$ , $u_{z}=\partial_{x}\Phi$ (6)

Substitution of Eq. (6) in Eqs. (1) $\sim(4)$ gives rise to the equations of motion for $\Phi$ ,

$\theta$ and $\eta$ :

$\partial_{t}\triangle_{2}\Phi+\sigma\triangle_{2}^{2}\Phi-\sigma\{(1+S)\partial_{x}\theta-S\partial_{x}\eta\}=-(\partial_{x}\Phi)(\partial_{z}\triangle_{2}\Phi)+(\partial_{z}\Phi)(\partial_{x}\triangle_{2}\Phi)(7)$

$\partial_{t}\theta-\triangle_{2}\theta-Ra(\partial_{x}\Phi)=(\partial_{z}\Phi)(\partial_{x}\theta)-(\partial_{x}\Phi)(\partial_{z}\theta)$ (8)

$\partial_{t}\eta-\triangle_{2}\theta-L\triangle_{2}\eta=(\partial_{z}\Phi)(\partial_{x}\eta)-(\partial_{x}\Phi)(\partial_{z}\eta)$ (9)

with $\triangle_{2}=\partial_{x}^{2}+\partial_{z}^{2}$ . Next, the two-dimensional field variables $\Phi,$ $\theta,$
$\eta$ are approximated

by the finite sum of the orthogonal functions satisfying the associated boundary con-

ditions

$\Phi(x, z, t)=\sum_{\epsilon=\pm 1}\sum_{\ell=1}^{L}\sum_{n=1}^{N}P_{\epsilon,\ell,n}(t)f_{\epsilon}(\ell ax)\varphi_{n}(z)$ (10)

$\theta(x, z, t)=\sum_{\epsilon=\pm 1}\sum_{\ell=1}^{L}\sum_{n=1}^{N}T_{\epsilon,\ell,n}(t)f_{\epsilon}(\ell ax)\chi_{n}(z)$ (11)

$\eta(x, z,t)=\sum_{\epsilon=\pm 1}\sum_{t=1}^{L}\sum_{n=1}^{N}E_{\epsilon,\ell,n}(t)f_{\epsilon}(\ell ax)\psi_{n}(z)$ (12)

where $L$ and $N$ are the number of truncation, $a$ is the wavenumber of the rolls while

$f_{\epsilon}(x)=\cos(x)$ for $\epsilon=1;=\sin(x)$ for $\epsilon=-1$ . In the present work, the expansion

functions $\varphi_{n},$ $\chi_{n},$
$\psi_{n}$ are obtained as the solutions for the eigenyalue equations on the

domain $(-1/2,1/2)$
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$(\partial_{x}^{4}-\alpha_{n}^{4})\varphi_{n}=0$ , $\varphi_{n}(\pm 1/2)=\partial_{x}\varphi_{n}(\pm 1/2)=0$ (13)

$(\partial_{x}^{2}+\beta_{n}^{2})\psi_{n}=0$ , $\partial_{x}\psi_{n}(\pm 1/2)=0$ (14)

$(\partial_{x}^{2}+\gamma_{n}^{2})\chi_{n}=0$ , $\chi_{n}(\pm 1/2)=0$ (15)

where $\alpha_{n},$
$\beta_{n},$

$\gamma_{n}$ denote the corresponding eigenvalues for $n=1,2,$ $\ldots,$
$N$ . With the

aid of the Galerkin procedure, we obtain a system of ordinary differential equations

governing time evolution of the mode amplitudes $X=\{P_{\epsilon,l,n}(t), T_{\epsilon,t,n}(t), E_{\epsilon,t,n}(t)\}$

$\partial_{t}X=F(X)=L(X)+N(X, X)$ (16)

or, more precisely,

$\partial_{t}X_{p}=F_{p}(X)=\sum_{p’}L_{p,p’}X_{p’}+\sum_{p’}\sum_{p’}N_{p;p’,p’},X_{p’}X_{p’}$
(17)

for $p=1,2,$ $\ldots,$
$N_{t}$ with $N_{t}$ denoting the total number of the retained mode variables.

\S 3. Computational results

In this paper, we deal with a truncated model whose field variables are approxi-

mated by

$\Phi(x, z, t)=\sum_{t=1}^{L}\sum_{n=1}^{N}\{P_{1,\ell,ne}(t)\cos[(2\ell-1)ax]\varphi_{ne}(z)+P_{-1,\ell,ne}(t)\sin[(2\ell-1)ax]$

$\cross\varphi_{ne}(z)+P_{1,\ell,no}(t)\cos(2\ell ax)\varphi_{no}(z)+P_{-1,\ell,no}(t)\sin(2\ell ax)\varphi_{no}(z)\}$ (18)

$\theta(x, z, t)=\sum_{n=1}^{N}[\sum_{t=1}^{L}\{T_{1,t,ne}(t)\cos[(2\ell-1)ax]\chi_{ne}(z)$

$+T_{-1,t,ne}(t)\sin[(2\ell-1)ax]\chi_{ne}(z)+T_{1,t,n\circ}(t)\cos(2\ell ax)\chi_{no}(z)$

$+T_{-1,\ell,no}(t)\sin(2lax)\chi_{no}(z)\}+T_{1,0,no}(t)\chi_{no}(z)]$ (19)

$\eta(x, z, t)=\sum_{n=1}^{N}[\sum_{\ell=1}^{L}\{E_{1,\ell,ne}(t)\cos[(2\ell-1)ax]\psi_{ne}(z)$
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$+E_{-1,t,ne}(t)\sin[(2\ell-1)ax]\psi_{ne}(z)+E_{1,\ell,no}(t)\cos(2lax)\psi_{no}(z)$

$+E_{-1,t,no}(t)\sin(2lax)\psi_{no}(z)\}+E_{1,0,no}(t)\psi_{no}(z)]$ (20)

where the suffices $e$ and $0$ represent even and odd respectively. The truncation numbers

are chosen to be such that $L=2$ and $N=2$ . The system thus contains 52 mode

variables in all, i.e., $N_{t}=52$ .

The present model system is considered to describe convection rolls extending pe-

riodically along the azimuthal direction in the entire annular cell. To our knowledge,

there are two cases where experiments on binary fluid convection have been performed

using annular cells. Hence, we here study the dynamical preperties of our model

equations for the two cases where the values of the model parameters are specified

in the same way as those used in these experiments. The first case referred to as A

is associated with the experiment due to Kolodner, Bensimon and Surko(KBS) using

the 8 wt-% ethanol in water at $T\simeq 27^{o}C$ where the system is specified by $\sigma=9.7$ ,

$L=0.0068,$ $S=-0.266,$ $a=2.86$ and $d=0.241$ cm6) The second case $B$ is the one

due to Kato and Sawada(KS) using the 24 wt-% ethanol in water at $T\simeq 20^{O}C$ where

the system is specified by $\sigma=18,$ $L=0.015,$ $S=-0.11,$ $a=2.89$ and $d=0.315$

cm The vertical thermal gradient across the system is henceforth expressed in terms

of $r=Ra/(Ra)$ . with $(Ra)_{c}=1708$ .

3.1 Case A.

First, we find the steady states of Eq.(16) $F(X)=0$ using the Newton method

for a range of the values of $Ra$ near the onset of convection. The result is shown

in Fig. 1 in terms of the steady state value of the mode $P_{1,1,1e}$ . The solution of

the finite-amplitude convection consists of two branches constituting multiple-steady

states. It is found that the lower branch is always unstable and that the upper one

becomes unstable above $r=r_{c}=1.17$ through the supercritical Hopf bifurcation.

With increase of $r$ , the convection-free state dominated by thermal conduction and
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concentration diffusion loses its stability at $r=r_{os}=1.38$ due to the subcritical

Hopf bifurcation. Incidentally, KBS gives the result: $r_{os}=$ 1.412. Above $r_{os}$ , the

mode amphtudes begin to grow indefinitely because the nonlineariy associated with

the instability provides no saturation. When the amplitudes become sufficiently large,

the motion tends to the stable oscillating state which winds around the unstable upper

steady state arising from the supercritical Hopf bifurcation above $r=r_{c}=1.17$ .

We next show the dynammical behavior of this oscillating state for several values of $r$ .

Figures 2 show time evolution of the fundamental mode amplitudes for the temperature

$T_{1,1,1e}(t)$ and $T_{-1,11e\rangle}(t)$ at $r=1.2,1.3$ and 1.5. This clearly indicates that the motion

is in the state of a travelling wave in that the phase difference between the above two

amplitudes is just $\pi/2$ . In addition, the PSD for $T_{1,1,1e}(t)$ in Fig. 3 show that the

motion is periodic at $r=1.2$ , quasi-periodic at $r=1.3$ , and non-periodic at $r=1.5$ .

In the KBS experiment, the period of the extended travelling wave gradually increases

from 5 to 250 $d^{2}/\kappa$ over a range of $r$ from 1.250 to 1.412 By contrast, in our model

the wave propagates with almost the same $period\sim 4d^{2}/\kappa$ over a range of $r$ around

$r_{os}$ . In order to show the travelling-wave state in more detail, the periodic pattern of

the roll state is depicted in Fig. 4 for successive values of time. The wave patterns are

found to move with lapse of time. In particular, it is found that at $r=1.5$ the abrupt

alternation of the direction of the wave propagation occurs quite irregularly.

3.2 Case B.

For the case where the external parameters are the same as those in KS experiment,

the steady states are determined in such a way as shown in Fig. 5. First it is to be

noted that the system is unstable on the lower branch of its steady convection state.

When $r$ is increased, the thermal conduction state becomes unstable at $r=r_{os}=1.17$

through the subcritical Hopf bifurcation. In contrast to Case $A$ , however, the upper

branch of the steady state solution remains stable over a wide range of the values of
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$r$ around $r_{os}$ , and loses its stability at the Rayleigh number as high as $r=r_{c}=2.10$ .

Hence, the system point which above $r_{os}$ departs from the unstable convection-free

state tends to the stable steady state represented by the upper-branch of the steady

solutions. In this sense, the extended oscillating state does not expected to occur. If we

refer to the experimental results due to KS, it appears that the oscillating convection

occurs only in the form of a spatially localized state.7) In order to give further evidence,

we compute the steady state of the starting original equations (1) $\sim(4)$ directly using

finite-difference MAC method without relying on the Galerkin truncation procedure.16)

The results show that the solution tends to the steady state for several moderate values

of $r$ above $r_{os}$ . For comparison, Figs. 6 and 7 show the isopleths of the field variables

$u_{x},$ $u_{z},$
$\theta$ and $x_{1}$ obtained by these two different procedures. Although these two give

the results quite similar to each other for $u_{x},$ $u_{z}$ and $\theta$ , marked difference in the result

for $x_{1}$ is quite noticeable. This occurs as a result of the smallness of the coefficient $L$ .

It seems that the Galerkin procedure is quite ineffective in describing steep variation

of the field variable near the boundary plates.

\S 4. Summary and discussions

As mentioned earlier, quite a few attempts were so far made to elucidate dynamical

properties of the convection rolls appearing in binary fluid mixtures. Among others,

the Lorentz model was extended to describe binary fluid systems. The model needs to

contain at least eight mode variables. As for the boundary conditions obeyed by the

field variables, in the 8-mode model due to Cross, the velocity and the concentration

variables are assumed to be free-slip and permeable on the horizontal surfaces By

contast, in the 8-mode model by Linz and L\"ucke(LL), the horizontal boundary condi-

tion for the concentration flux is modified in such a way to satisfy the impermiability. 12)
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If the expansion functions in Eqs. (10) $\sim(12)$ are suitably chosen to satisfy the bound-

ary conditions given above, the eight mode variables included in the model are given by

$P_{1,1},{}_{1e}P_{-1,1,1e},$ $T_{1,1,1e},$ $T_{-1,1,1e},$ $T_{1,0,10},$ $E_{1,1,1e},$ $E_{-1,1,1e},$ $E_{1,0,10}$ . It seems that the LL model

gives the results in several respects quite similar to that of ours presented as Case A

of \S 3. If the values of the model parameters assumed in both computations are taken

into account, the results of LL should be compared rather with those of ours for Case

B. This is, however, impossible because the critical Rayleigh number $r_{c}$ for Case $B$ is

quite high due to the rigid boundary condition imposed on the velocity and the value

of the wavenumber determined by the circumference of the annulus. With this reser-

vation, it is concluded that both systems with increase of $r$ exhibit similar behaviors

summarized as follows: (i) the convection-free state undergoes the subcritical Hopf

bifurcation at $r=r_{os}$ ; (ii) the convection state represented by the upper branch of the

steady state solution becomes unstable above $r=r_{c}$ through the supercritical Hopf

bifurcation; (iii) with further increase of $r$ above $r_{c}$ , the system falls in the modulated

travelling-wave state. In our 52-mode model, the variables not included in the eight

fundamental variables given above are found to take relatively small values during the

system evolution. If this is taken into account, the main difference between the LL and

our models hes in the boundary condition imposed on the velocity. As far as the above

results show, it seems that this has no crucial influence on global dynamical behavior

of convection.

On the other hand, evolution of the two-dimensional thermosolutal convection in a

box was studied using a finite difference method. $13$ ), $14$ ) The boundary conditions were

chosen in such a way that the velocities are free-slip; that the temperture as well

as the concentration is fixed and insulating (or impermeable) on the horizontal and

the side walls respectively. The computational results show that convection exhibits

a variety of spatio-temporal behavior in the form of travelling, standing, modulated
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travelling and chaotic waves. Furthermore, the travelling waves were found to reverse

their direction of propagation with irregular time intervals. 14) This result has a marked

resemblance to that occurring in propagation of the travelling waves of our model,

although the relevant travelling waves in our models are basically sustained in the

modulated (or quasi-periodic) state. However, we have thus far not clarified in our

model the mechanism underlying this reversal phenomenon. Incidentally, Funakoshi

and Inoue carried out a series of experiments on surface waves in a cylindrical container

subject to horizontal periodic forced oscillations They discovered that chaotic waves

under certain conditions reverse their direction of propagation along the circumference.

It is not clear if this has any relevance with the above-mentioned similar results for

binary mixtures.

The model used in this paper applies to the convection rolls extending in the entire

annulus because of their assumed periodicity in the $x$ direction. In actual experi-

ments, however, the rolls extending only over a limited region of the container are

more prevalently observed in both rectangular and annular cells. It appears at present

that no remarkable progress has been made in theoretically understanding emergence

and evolution of the spatially localized convection state.
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Figure Captions

Fig. 1. The solution $X=P_{1,1,1e}$ representing steady convection states for Case A as a

function of $r$ where $r_{os}=1.38$ 2nd $r_{c}=1.17$ .

Fig. 2. Time evolution of the mode amplitudes $T_{1,1,1e}(t)$ (full line) and $T_{-1,1,1e}(t)$

(dashed line) for Case A with (a) $r=1.2,$ $(b)r=1.3,$ $(c)r=1.5$ .

Fig. 3. The PSD for $T_{1,1,1e}(t)$ for Case A where the abscissa measures the frequency

in unit of $10\kappa/d^{2}$ ; (a) $r=1.2,$ $(b)r=1.3,$ $(c)r=1.5$ .

Fig. 4. Spatial patterns of the temperture field for Case A at $r=1.5$ and $z=0.2$ as a

function of position along the $x$ direction at time intervals 0.032 $d^{2}/\kappa$ . Time increases

in the upward direction: (a) the rolls drift in the same direction, (b) the wave reverses

the direction of propagation.

Fig. 5. The solution $X=P_{1,1,1e}$ representing steady convection states for Case $B$ as a

function of $r$ where $r_{os}=1.17$ .

Fig. 6. The isopleths for (a) $u_{x},$ $(b)u_{z},$ $(c)\Theta$ , and (d) $\xi_{1}$ drawn in the $(x, z)$ -planes

at $r=1.4$ , where $\Theta$ represents the sum of the disturbance field $\theta$ and the steady tem-

perature field with a linear profile in the vertical direction. The results are obtained

using the 52-mode model given in the present paper.

Fig. 7. The same as in Fig. 6 except that the results are obtained by the finite-

difference MAC method.
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