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Normal Forms of the Bifurcation Equations in the Problem
of Capillary-Gravity Waves*

HISASHI OKAMOTO1 AND MAYUMI SHOJI2

Abstract. We analyze two dimensional capillary-gravity waves on surface of irrota-
tional flow. Two sets of algebraic equations are proposed as normal forms. We show
that these equations provide bifurcation diagrams, which are qualitatively the same
as those obtained numerically. Thus we establish a rigorous basis for the numerical
results in [1,2,17,18]. We also show that study of not only physically acceptable
solutions but also self-intersecting unphysical solutions is necessary for complete
understanding of the phenomena.

\S 1. Introduction.
The purpose of the present paper is to give a mathematical account of the

bifurcation diagrams arising in the theory of progressive water waves of two di-
mensional irrotational flow. In this paper we consider nonlinear capillary-gravity
waves, which was first analyzed by Wilton [21]. By capillary-gravity waves we
mean that we take into account of both surface tension and gravity. There is
a well-established (both physical and mathematical) theory on this problem $($

[9,13-16,19-21]). Recent researches, however, showed new phenomena in the
capillary-gravity waves.

The problem is a bifurcation problem and it is of a primary importance to
determine bifurcation diagrams, which are sometimes called solution diagrams.
Among many references, Chen and Saffman $[1,2]$ , Schwartz and Vanden-Broeck
[17] and the second author of the present paper [18] computed capillary-gravity
waves numerically. In particular, [18] presented various bifurcation diagrams for
various parameters. A mathematical analysis of the bifurcation was given by
Pierson and Fife [15], Reeder and Shinbrot [16] and Toland and Jones $[9,20]$ .
These authors gave a rigorous mathematical background to the physical theory by
Wilton [21] and others. Later [13] showed that some of the results in [9,15,16,20]
can be derived more simply by making use of the results in Fujii et al. $[4,5]$ .
However, the numerical computation in [18] shows that there are considerably
complicated structures in the bifurcation diagrams, which can not be found in the
previous papers.

In this paper we give a normal form of the bifurcation equation, which turns
out to be a set of polynomials in two independent variables with a bifurcation
parameter. Our normal form is more degenerate than the bifurcation equations in
$[9,20]$ . By this introduction of degeneracy we can explain a semi-global structure of
progressive waves in [18], which can not be found by the previous works. Actually,
our task is to examine the agreement of the numerically computed diagrams in
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[18] and those given by abstract bifurcation equations in the present paper. Our
normal forms of the bifurcation equations are derived by utilizing the theorems in
Golubitsky et al. [6,7,8]

We emphasize a rather unexpected fact that we should take account of solutions
in which the wave proMes have self-intersections. (We call such a solution a overlap
solution or an unphysical solution. ) In fact, in some bifurcation diagrams, some
classes of non-overlap (thus physical) solutions are disconnected from the other
classes in the phase space, if we take a look at only physical solutions. If, however,
we consider both physical and unphysical solutions, all classes of the solutions are
connected. The authors think this is an important step towards a new development
in the theory of capillary-gravity waves. For example, the disconnected part of the
solutions will not be traced if we neglect unphysical solutions.

This paper is composed of five sections. In \S 2 we introduce an equation originally
due to Levi-Civita [10], which is a fundamental equation for the progressive water
waves. At the end of this section, a rough description of our result is presented. In
\S 3 we consider bifurcation equations and its simplification by means of its $O(2)-$

equivariance. The bifurcation equations are classified by a pair of distinct positive
integers, which we call a mode. We consider only the cases of mode $(1,2)$ and $(1,3)$

We discuss the validity of our normal forms in \S 4 in the case of $(1,2)$ . The case
of $(1,3)$ is discussed in \S 5.

\S 2. The fundamental equation.
We consider a two dimensional irrotational flow of inviscid incompressible fluid

with a free surface. What we consider is a problem of progressive waves, by which
we mean a fluid motion with free surface whose configuration is constant if viewed
in a coordinate system moving with the same speed as that of wave. Accordingly,
in this moving frame, the fluid particles move in a opposite direction while the
wave profile remains at rest. In this moving frame, we take $(x, y)$ coordinate
system with $x$ horizontally to the right and $y$ vertically upwards. We let $c$ denote
the propagation speed and let $y=h(x)$ represent the free surface. Our further
assumption is that the wave profile is periodic in $x$ with a period, say, $L$ and that
the wave profile is symmetric with respect to the y-axis. We assume that the flow
is infinitely deep. By this and the periodicity assumption, we have only to consider
the fluid in $-L/2<x<L/2,$ $-\infty<y<h(x)$ . Then the problem is to find a
wave profile function $y=h(x)$ and a complex potential $f\equiv U+iV$ , where $U$ is
a velocity potential and $V$ a stream function, such that $U+iV$ is a holomorphic
function of $z\equiv x+iy$ and satisfies

$U( \pm\frac{L}{2},$ $y)= \pm\frac{cL}{2}$ , on $- \infty<y\leq h(\pm\frac{L}{2})$ , respectively,

$\frac{\partial U}{\partial n}=0$ on $y=h(x)$ and $y=0$ ,

$\frac{df}{dz}arrow c$ as $yarrow-\infty$
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(2.1) $\frac{1}{2}|\frac{df}{dz}|^{2}+gy+\frac{T}{d}K=constant$ , on $y=h(x)$ ,

where, $\partial/\partial n$ denotes the outward normal derivative, $g$ is the gravity acceleration,
$T$ the surface tension coefficient, $d$ the mass density, and $K$ is the curvature of the
boundary $y=h(x)$ . $K$ is represented as follows:

$K=-( \frac{h’}{\sqrt{1+h^{\prime 2}}})’$ ,

where the prime means the difFerentiation with respect to $x$ .
This is a free boundary problem, in which a boundary portion $y=h(x)$ should

be sought. There is a mathematical device found by Stokes [19], which makes
it considerably easy to handle the free boundary problem above. The idea is to
regard $f$ as an independent variable rather than the dependent one. The new
formulation is described as follows:

Find a $2\pi$ -periodic function $\theta=\theta(\sigma)$ such that

(2.2) $e^{2H\theta} \frac{dH\theta}{d\sigma}-pe^{-H\theta}\sin(\theta)+q\frac{d}{d\sigma}(e^{H\theta}\frac{d\theta}{d\sigma})=0$ $(0\leq\sigma<2\pi)$ ,

where $H$ is a linear operator defined through the Fourier series as follows:

(2.3) $H( \sum_{n=1}^{\infty}(a_{n}\sin n\sigma+b_{n}\cos n\sigma))=\sum_{n=1}^{\infty}(-a_{n}\cos n\sigma+b_{n}\sin n\sigma)$.

Note that the equation (2.2) depends on two parameters $p$ and $q$ . These parameters
are defined as

$p= \frac{gL}{2\pi c^{2}}$ $q= \frac{2\pi T}{dc^{2}L}$

(see, [13]). The physical meaning restricts those parameters to be nonnegative:

$(p, q)\in[0, \infty)\cross[0, \infty)$ .

This formulation (2.2,3), which is equivalent to the original one, is derived in [13]
and used for proving the existenxe of non-zero solution $\theta$ . Since we define $\theta$ and $\tau$

in Appendix by
$u– iv=ce^{-i\theta+\tau}$ ,

where $(u, v)$ is the velocity vector, the function $\theta$ represents the angle made by the
tangent vector to the free boundary and the x-axis.

Although the derivation of (2.2) is given in [13], we give an outline of the
derivation in the Appendix for the sake of the reader’s convenience.
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In order to apply a mathematical theory of bifurcation such as Golubitsky and
Schaeffer [6,7,8] or others, we use a mathematical setting with function spaces.
Namely we define, for a nonnegative integer $k$ , Banach spaces $X_{k}$ by

$X_{k}= \{f=\sum_{n=1}^{\infty}(a_{n}\sin n\sigma+b_{n}\cos n\sigma)|$ $\sum_{n=1}^{\infty}n^{2k}(|a_{n}|^{2}+|b_{n}|^{2})<\infty\}$

or we can write $X_{k}=H^{k}(S^{1})/R$ . Sobolev’s imbedding theorem yields that $X_{k}\subset$

$C^{k-1}(S^{1})$ for $k=1,2,$ $\cdots$ . We then define a nonlinear operator $F:X_{2}arrow X_{0}$ by

$F(p, q; \theta)=e^{2H\theta}\frac{dH\theta}{d\sigma}-pe^{-H\theta}\sin(\theta)+q\frac{d}{d\sigma}(e^{H\theta}\frac{d\theta}{d\sigma})$ .

Thus, our task is the determination of the zeros of $F$ . Clearly, $\theta\equiv 0$ is a solution
to $F=0$ for all the values of the parameters $p$ and $q$ . Our aim is, therefore, to
find non-zero solutions. We remark that $\theta\equiv 0$ corresponds to $(u, v)=(c, 0)$ and
the corresponding free boundary is flat. Using this $F,$ $[13]$ gave a simple proof of
existence of non-zero solutions which bifurcate from $\theta\equiv 0$ .

In the present paper our aim is to reproduce the numerical bifurcation diagrams
in [18] in an abstract way. Therefore we reformulate our equation so that we
can compare the results here and those in [18]. We divide $F$ by $p$ and define
parameters $\kappa$ and $\mu$ by $\mu=1/p$ and $\kappa=q/p$ . We then redefine $F$ as follows.

(2.4) $F( \mu, \kappa;\theta)=\mu e^{2H\theta}\frac{dH\theta}{d\sigma}-e^{-H\theta}\sin(\theta)+\kappa\frac{d}{d\sigma}(e^{H\theta}\frac{d\theta}{d\sigma})$ .

The following (A-C) are easy to prove:

(A). Although $F$ is physically meaningful only for $0\leq\kappa<\infty,$ $0<\mu<\infty$ th$e$

mapping $F$ is a well-defined smooth mapping from $R^{2}\cross X_{2}$ into $X_{0}$ and satisfies
$F(\mu, \kappa;0)\equiv 0$ .

(B). Its Fr\’echet derivative at $\theta=0$ is given by

$F_{\theta}( \mu, \kappa;0)w=\mu\frac{dHw}{d\sigma}-w+\kappa\frac{d^{2}w}{d\sigma^{2}}$ $(w\in X_{2})$ .

This formula yields

(2.5) $F_{\theta}(\mu, \kappa;0)(\sin n\sigma)=(n\mu-1-n^{2}\kappa)\sin n\sigma$ $(n\in \mathbb{N})$ .

and a similax formula with $sin$ replaced by $cos$ .

(C). Therefore, $F_{\theta}(\mu, \kappa;0)$ has a nontrivial null space if and only if $(\mu, \kappa)$ satisfies

(2.6) $n\mu=1+n^{2}\kappa$
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for some positive integer $n$ .

Since the proof of these facts are easy we do not give them here (see [13],
where the same result is proved in the context of the original $F$ using $(p, q))$ . We,
however, note that $H^{1}(S^{1})$ and $H^{2}(S^{1})$ are Banach algebras, which leads to (A).
By arguing just in the same way as in [13], we see that $(\mu_{0}, \kappa_{0}; 0)$ which satisfies
(2.6) is a bifurcation point. Namely there is a nontrivial solution to $F=0$ in any
neighborhood of $(\mu_{0}, \kappa_{0},0)$ in $R^{2}\cross X_{2}$ . It is, however, very important to notice
that some of the bifurcation points differ from others by the dimension of the
null space. In fact, some $(\mu, \kappa)$ satisfies (2.6) for two distinct $n’ s$ . For a $(\mu, \kappa)$

satisfying (2.6) for $n$ and $m(n\neq m)$ , the kernel of $F_{\theta}(\mu, \kappa;0)$ is a 4-dimensional
space spanned by $\sin m\sigma$ , $\cos m\sigma$ , $\sin n\sigma$ and $\cos n\sigma$ . We call such a point a
double bifurcation point and the other a simple bifurcation point. Thus a double
bifurcation point is characterized by

$m\mu=1+m^{2}\kappa$ , $n\mu=1+n^{2}\kappa$ ,

where $m$ and $n$ are distinct positive integers. We call the pair of positive integers
$m$ and $n$ a mode. We define

(2.7) $\mu_{0}(m, n)=\frac{m+n}{nm}$ ,

(2.8) $\kappa_{0}(m, n)=\frac{1}{mn}$ .

Consequently the bifurcation points of mode $(m, n)$ is characterized as $(\mu, \kappa;\theta)=$

$(\mu_{0}(m, n),$ $\kappa_{0}(m, n);0)$ . In a neighborhood of the simple bifurcation point, we can
only prove the existence of waves whose profile has $n$ troughs and $n$ crests with
equal height and depth (Fig. 1). On the other hand, any neighborhood of the
double bifurcation point has solutions in which the wave profiles are of mixed
nature (Fig. 2). This fact is essentially known early in this century (Wilton [21]
$)$ . However, the global structure of the solution set has not been well understood
until the studies by [1,2,17,18].

Fig. 1 Fig. 2
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The result in this paper is summarized as follows:

The paper [18] computed zeros of $F$ numerically and found a number of new
bifurcation diagrams. In this paper, we consider the Lyapunov-Schmidt reduction
for $F=0$ and obtain a bifurcation equation. We then simplify the equation by
change of variables to obtain a normal form which turns out to be polynomials $($

see $(4\cdot 12,1S)$ and $(5.1S, 14))$ . We draw the figures of zeros of the normal form,
changing two p\‘arameters called unfolding parameters. We then verify that these
figures agree with the numeri$cal$ diagrams in [18].

\S 3. O(2)-equivariance.
In this section, we prove that $F$ satisfies a certain property called $O(2)-$

equivariance and that this property forces $f$ to be of a special simple form $($

(3.5-8) below). We first define an action of the orthogonal group $O(2)$ on $X_{0}$ as
follows: let us recall that $O(2)$ is generated by rotations of angle $\alpha\in[0,2\pi$ ) and
a reflection. Accordingly,

$\gamma_{\alpha}\theta(\sigma)=\theta(\sigma-\alpha)$ $(0\leq\alpha<2\pi)$

$\gamma-\theta(\sigma)=-\theta(-\sigma)$

defines an action of $O(2)$ on $X_{0}$ , where $\gamma_{\alpha}$ represents the element of $O(2)$ repre-
senting the rotation of angle $\alpha$ and $\gamma$-the reflection. Then we have

PROPOSITION 3.1. The $m$apping $F:X_{2}arrow X_{0}$ is $O(2)- eq$uivariant, by which we
mean

$F(\mu, \kappa;\gamma\theta)=\gamma F(\mu, \kappa;\theta)$ $( \gamma\in O(2) )$ .

The proof is given in [13], though it is straightforward.
Proposition 3.1 enables us to simplify the bifurcation equation. We make a

bifurcation equation as follows: Let $(\mu_{0}, \kappa_{0}; 0)$ be a double bifurcation point of
mode $(m, n)$ $(0<m<n)$ . Let $P$ denote the $L^{2}$ -projection from $L^{2}(S^{1})$ onto the
four dimensional subspace spanned by $\sin m\sigma,$ $\cos m\sigma,$

$\sin n\sigma$ and $\cos n\sigma$ . Then,
the equation

(3.1) $(I-P)F(\mu_{0}+\mu_{1},$ $\kappa_{0}+\kappa_{1}$ ; $x\sin m\sigma+y\cos m\sigma$

$+z\sin n\sigma+w\cos n\sigma+\phi(\mu_{1}, \kappa_{1}; x, y, z, w))=0$.

uniquely defines a $(I-P)X_{2}$ -valued mapping $\phi$ in some open set containing
$(0,0;0,0,0,0)$ . We define $G$ by

(3.2) $G(\mu_{1}, \kappa_{1}; x, y, z, w)=PF(*)$ ,

where the arguments of $F,$ $*$ is the same as in (3.1). This mapping $G$ is a
bifurcation equation.
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Remark. From now on, we write as $f$ : $Rarrow R$ , even when the defining domain
of $f$ is some small open set of R. For instance, we consider mapping germs at the
origin, although we write as if it were defined in the whole space.

By Proposition 3.1 and the fact that the bifurcation equation inherits the group
equivariance from the basic differential equation ([7]), we see that $G$ too has an
O(2)-equivariance. To represent this more conveniently, we identify $(x, y, z, w)\in$
$R^{4}$ with $(\xi, \zeta)\in C^{2}$ in the way that $\xi=x+iy$ , $\zeta=z+iw$ . Therefore, we can
regard $G$ as a mapping on (some open subset of) $R^{2}\cross C^{2}$ . Similarly, we can
regard that $G$ takes its value in $C^{2}$ . Let $(G_{1}, G_{2})$ be the componentwise expression
of $G$ in $C^{2}$ . We now have

PROPOSITION 3.2. The $m$apping $G$ above is $O(2)$-equivariant in the sense that
the following (3.3,4) hold $true$ .
(3.3) $G(\mu_{1}, \kappa_{1} ; e^{im\alpha}\xi, e^{in\alpha}\zeta)=$

$(e^{im\alpha}G_{1}(\mu_{1}, \kappa_{1}; \xi, \zeta), e^{in\alpha}G_{2}(\mu_{1}, \kappa_{1} ; \xi, \zeta))$ , $(\alpha\in[0,2\pi))$

(3.4) $G(\mu_{1}, \kappa_{1} ; \overline{\xi},\overline{\zeta})=(\overline{G_{1}(\mu_{1},\kappa_{1};\xi,\zeta)},\overline{G_{2}(\mu_{1},\kappa_{1};\xi,\zeta)})$ .

For the Proof, see [13]. Proposition 3.2 forces the mapping $G$ to be of a special
form. Let us prepare some symbols.

Definition. Let $k$ be a positive integer. We call a function $f$ : $R^{k}\cross C^{2}arrow \mathbb{R}$

O(2)-invariant if
$f(a;e^{im\alpha}\xi, e^{in\alpha}\zeta)\equiv f(a;\xi, \zeta)$ $(\alpha\in[0,2\pi))$

and
$f(a;\overline{\xi},\overline{\zeta})\equiv f(a;\xi, \zeta)$

are satisfied. Here $a\in R^{k},$ $\xi,$ $\zeta\in C$ .
The set of all germs (at the origin) of O(2)-invariant $c\infty$-functions is a com-

mutative ring with a unit. Let $\mathcal{E}$ denote this ring. The set of all the mapping
$G$ : $\mathbb{R}^{2}\cross C^{2}arrow C^{2}$ satisfying (3.3,4) constitutes an $\mathcal{E}$-module. Let $E$ denote this
$\mathcal{E}$-module. In order to give a simple expression to $\mathcal{E}$ and $E$ , we need to introduce
two positive integers $n’$ and $m’$ . We define them to be coprime positive integers
satisfying $n/m=n’/m’$ . We now have

PROPOSITION 3.3. Any elemen$tf\in \mathcal{E}$ is of the following form
$f(a;\xi, \zeta)=g(a;u, v, s)$

where $g$ is a $c\infty$ function of $k+3$ variables and $u,$ $v,$ $s$ are defined by

$u=|\xi|^{2}$ , $v=|\zeta|^{2}$ , $s=Re[\overline{\xi}^{n’}\zeta^{m’}]$ .
PROPOSITION 3.4. The module $E$ is generated over $\mathcal{E}$ by the following four ele-
ments:

$X_{1}=(\xi, 0)$ , $X_{2}=(0,\overline{\xi}^{n’-1}\zeta^{m’})$ , $X_{3}=(0, \zeta)$ , $X_{4}=(0, \xi^{n’}\overline{\zeta}^{m’-1})$ .
The proofs of these Propositions 3.3,4 can be found in [11]( see also [4,8]).
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COROLLARY 3.1. The mapping $G$ at the bifurcation point ofmode $(1, 2)$ is of th$e$

following form

(3.5) $G_{1}=f_{1}\xi+f_{2}\overline{\xi}\zeta$ ,
(3.6) $G_{2}=f_{3}\zeta+f_{4}\xi^{2}$ ,

where $f_{j}$ are of the following form

$f_{j}=f_{j}(\mu_{1}, \kappa_{1}; |\xi|^{2}, |\zeta|^{2}, Re[\overline{\xi}^{2}\zeta])$. $(j=1,2,3,4)$

COROLLARY 3.2. The $m$apping $G$ at the bifurcation point ofmode $(1, 3)$ is of the
following form

(3.7) $G_{1}=g_{1}\xi+g_{2}\overline{\xi}^{2}\zeta$,
(3.8) $G_{2}=g_{3}\zeta+g_{4}\xi^{3}$ ,

where $g_{j}$ are of the following form

$g_{j}=g_{j}(\mu_{1}, \kappa_{1} ; |\xi|^{2}, |\zeta|^{2}, Re[\overline{\xi}^{3}\zeta])$ . $(j=1,2,3,4)$

\S 4. Bifurcation equation of mode $(1,2)$ .
In this section we give a normal form of the bifurcation equation of mode $(1,2)$ .

We show that a theorem in [11] is applicable to the problem now in question.
The bifurcation equation $G$ : $\mathbb{R}^{2}\cross C^{2}arrow C^{2}$ is now written as (3.5,6). We

use the theory in [6,7,8] in which mapping germs containing one parameter are
considered. Our mapping, however, has two parameters. In [18], $\mu$ is used as
a bifurcation parameter and $\kappa$ a splitting parameter. We thereby freeze $\kappa_{1}$ . We
introduce A and consider $G(\lambda, 0;\xi, \zeta)$ . We then regard $G$ as a mapping germ of
$(\lambda, \xi, \zeta)$ . We can now write as

(4.1) $G_{1}=f_{1}(\lambda;u, v, s)\xi+f_{2}(\lambda;u, v, s)\overline{\xi}\zeta$ ,
(4.2) $G_{2}=f_{3}(\lambda;u, v, s)\zeta+f_{4}(\lambda;u, v, s)\xi^{2}$ .

If we have shown that this mapping is finitely determined and if we have computed
universal unfoldings, then the equation for small but nonzero $\kappa_{1}$ can be realized
by one of the unfolded mappings ([6,7,8]). Thus we are lead to the analysis of
(4.1,2).

Since $G$ is a bifurcation equation, all the derivatives of first order vanishes at
the origin. Accordingly $f_{j}(0;0,0,0)=0$ $(j=1,3)$ . In order to go further, we
need to compute $f_{2}(0;0,0,0)$ and $f_{4}(0;0,0,0)$ . This is done in [13]. The result is,
in the present notation,

$f_{2}(0;0,0,0)=-3/4$ , $f_{4}(0;0,0,0)=-3$ .
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See also Proposition 4.1 below.
In this situation we can use Theorem 3.2 and 3.3 of [11]. According to this

theorem, the qualitative behaviour of the set of the solutions is described by

(4.3) $(\epsilon\lambda+\alpha+bv)\xi+\overline{\xi}\zeta=0$, $(\delta\lambda+\hat{b}v)\zeta+\xi^{2}=0$ ,

wherer $\epsilon,$ $\alpha,$
$\delta,$

$b,\hat{b}$ are real constants.
We now turn to the original problem of the progressive water waves. As in

[18], we assume that the wave profile is symmetric with respect to the y-axis.
This assumption is equivalent to the oddness of $\theta$ in $\sigma$ ([13]). The oddness of
$\theta$ is written by $\gamma-\theta=\theta$ . This is interpreted as $(\overline{\xi},\overline{\zeta})=(\xi, \zeta)$ . Consequently we
consider only real solutions to $G(\lambda, \xi, \zeta)=0$ . We therefore put $\xi=x$ , $\zeta=z$ in
(4.3). Thus we have to solve

(4.4) $(\epsilon\lambda+\alpha+bz^{2})x+xz=0$ ,

(4.5) $(\delta\lambda+\hat{b}z^{2})z+x^{2}$ $=0$ .

We now see the numerical bifurcation diagrams. Fig. 3-7 are borrowed from
[i8]. Each of Fig. 3-7 has different $\kappa$ and is drawn in the frame of $(\mu, A_{1}, A_{2})$ . In
each figure, the picture below shows the diagram viewed in the direction of $A_{1}$ -axis.
$\kappa$ decreases as the figure number increases. The variables $x$ and $z$ in this paper
correspond to $A_{1}$ and $A_{2}$ in [18], respectively. In these diagrams, there are two
kinds of curves: solid curves and broken curves. The both represent zeros of $F=0$ .
Th$e$ difference is that the solutions on the broken curves have self-intersections in
the wave profile like:

On the other hand, those on the solid curves do not have any self-intersection.
So, they look like Fig. 2. At the boundary of solid curve and broken curve, the
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wave has contact points, which $re$sembles Crapper’s pure capillary wave ([3]).
Fig. 2 corresponds to the point $a$ in Fig.4. References [1,2,17] reached this point.
Before [18], however, both physicists and mathematicians neglected the solutions
to $F=0$ which have self-intersections simply because they represent unphysical
states. However, [18] revealed that there are some limit points (turning points)
in the physically meaningful regions of the diagrams (see Fig. 5) while they do
not appear for relatively large $\kappa$ (see Fig. 3,4). It indicates that total analysis
of both physical and unphysical solutions is necessary for the explanation of the
existence or nonexistence of limit points. The necessity becomes clearer when we
consider waves of $mode(1,3)$ in the next section.

By a simple computation, we find that (4.4,5) yields a bifurcation diagram listed
in [4]. Fig. 8 is borrowed from [4]. In this figure, $\xi$ and $\eta$ correspond to $x$ and
$z$ in our notation, respectively. The bifurcation parameter is taken vertically.
We notice that these diagrams are only a subset of those in [18]. Therefore, the
normal form $(4\cdot 4,5)$ can reproduce solutions only a small portion of the numerical
solu tions in [18].

In order to capture wider class of solutions, we now use an idea in [4- 7]: Suppose
we are given a problem to find zeros of $F(a_{1}, \cdots a_{k};u)=0$ with $k$ parameters. If
there exists a set of solutions which is described by a normal form of codimension
$\geq k$ , then the problem requires more than $k$ parameters.

Following this principle, we assume as follows:

In addition to $\kappa$ and $\mu$ , there is a parameter, say, $\nu$ , and a smooth mapping
$\hat{F}(\kappa, \mu, \nu;u)$ such that $\hat{F}(\kappa, \mu, 0;u)\equiv F(\kappa, \mu;u)$ . In other words, our problem is
embedded in an extended system.

We do not know what is the additional parameter. Rather than identifying the
parameter, we continue our abstract analysis under this assumption. We can then
regard $f_{2}(0;0,0,0)$ and $f_{4}(0;0,0,0)$ depend on $\nu$ . We finally assume that:
$f_{2}(0;0,0,0)$ vanishes at some $\nu=\nu_{0}$ and that $f_{4}(0;0,0,0)$ does not at $v=v_{0}$ .

Under this assumption, we are allowed to divide $G_{2}$ by $f_{4}$ in some neighborhood
of $(\kappa_{1}, \mu_{1}, \nu ; u)=(0,0, \nu_{0} ; 0)$ ([11]). Then it holds that

(4.6) $G_{1}=(\epsilon\lambda+au+bv+cs+f_{5})\xi+(\eta\lambda+d_{1}u+d_{2}v+d_{3}s+f_{6})\overline{\xi}\zeta$ ,

(4.7) $G_{2}=(\delta\lambda+\hat{a}u+\hat{b}v+\hat{c}s+f_{7})\zeta+\xi^{2}$ ,

where $\epsilon,$
$\delta,$

$\eta,$ $d_{j}$ $(j=1,2,3),a,$ $b,c,\hat{a},\hat{b},\hat{c}$ are real constants and $f_{j}$ are terms of
order $\geq 2$ . We are now in a position to quote some results in [11]:

THEOREM 4.2. Under some nondegeneracy conditions on $\epsilon,$
$\delta,$ $a,$

$b,\hat{a},\hat{b}$ and $d_{2}$ , the
mapping $G$ in (4.6,7) is $O(2)$-equivalent to

(4.8) $G_{1}=(\epsilon\lambda+a^{/}u+b’v+c’s)\xi+d’v\overline{\xi}\zeta$,

(4.9) $G_{2}=(\delta\lambda+\hat{a}^{/}u+\hat{b}’v)\zeta+\xi^{2}$ ,
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where $a’,$ $b’,$ $c’,$ $d’,\hat{a}’$ and $\hat{b}$ ‘ are real constants. A universal $O(2)$-unfolding of the
mapping (4.8,9) is given by

(4.10) $F_{1}=[\epsilon\lambda+\alpha+(a’+\tau_{1})u+(b’+\tau_{2})v+(c’+\tau_{3})s]\xi+[\beta+(d’+\tau_{4})v]\overline{\xi}\zeta$ ,

(4.11) $F_{2}=[\delta\lambda+\hat{a}’u+\hat{b}’v]\zeta+\xi^{2}$ ,

where $\alpha,$
$\beta,$

$\tau_{1},$ $\cdots\tau_{4}$ are unfolding parameters.

This theorem enables us to neglect the higher order terms and some of the
first order terms in $(u, v, s)$ without losing any information on the bifurcation
diagrams. As for the precise statement of the nondegeneracy assumption, see
[11]. This assumption includes $\epsilon\delta\neq 0,\hat{b}\neq 0$ , etc. We assume that these holds.
Since the assumption is generic in the sense that it is expressed as “.. $.”\neq 0$ , our
assumption is a reasonable on$e$ .

We now consider real solutions, whence we have

(4.12) $(\epsilon\lambda+\alpha+ax^{2}+bz^{2}+cx^{2}z)x+(\beta+dz^{2})xz=0$ ,

(4.13) $(\delta\lambda+\hat{a}x^{2}+\hat{b}z^{2})z+x^{2}$ $=0$ .

In order for (4.12,13) to be a normal form of the bifurcation equations, we must
reproduce Fig. 3-7 by choosing parameters appropriately. We now show this is
possible. Fig. 9-13 are the set of zeros of (4.12, 13) for suitable parameters. These
are drawn by a personal computer and a lazer beam printer. We see that Fig 9-13
completely reproduce Fig. 3-7.

Remark. By the same idea, Fujii et al. [5] finds bifurcation diagrams similar to
Fig. 9-13 in the problem of reaction diffusion equations. They do not, however,
obtain the normal form (4.12,13).

We finally remark that these figures do not automatically prove that (4.12,13)
has zeros like Fig. 3-7. In fact, we are dealing with a mapping germ defined by
(4.12, 13). Therefore we must prove that figures like Fig. 3-7 can be drawn in any
small neighborhood of the origin by choosing appropriately small $\alpha$ and $\beta$ . This
is, however, checked by the method described in [12].

Although we believe that there is a parameter $\nu$ which makes our assumption
valid, we do not know the identity of $\nu$ . This is a $very\cdot week$ point of our theory.
We first thought that the aspect ratio serves as the parameter. The aspect ratio
is a parameter which represent the ratio of the wave length and the depth of the
flow. This means that we consider a $ge$neralized problem in which $H$ in (2.3) is
replaced by

$H( \sum_{n=1}^{\infty}(a_{n}\sin n\sigma+b_{n}\cos n\sigma))=\sum_{n=1}^{\infty}\frac{1+r^{n}}{1-r^{n}}(-a_{n}\cos n\sigma+b_{n}\sin n\sigma)$
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(see [13]). Here $r\in[0,1$ ) is a new parameter. As $rarrow 0$ , the depth becomes
deeper. When $r=0$ this generalized problem reduces to the original problem
of flows of infinite depth. Although only $0\leq r<1$ is physically allowed, the
formulation itself has a well-defined meaning for all $r\in(-1,1)$ . Therefore we
expect$ed$ the existence of some $r$ at which $f_{2}(0;0,0,0)$ vanish. The calculation,
however, showed:

PROPOSITION 4.1. It holds that

$f_{2}(0;0,0,0)=- \frac{3(1+r)}{4(1-r)}$ , $f_{4}(0;0,0,0)=- \frac{3(1+r)}{1-r}$ .

PROOF: We note that (2.6) is replaced by

$n \frac{1+r^{n}}{1-r^{n}}\mu=1+n^{2}\kappa$ .

Similarly, (2.7,8) are replaced by

(4.14) $\mu_{0}=\frac{3(1-r^{2})}{2+8r+2r^{2}}$ $\kappa_{0}=\frac{(1-r)^{2}}{2+8r+2r^{2}}$ ,

since $m=1$ and $n=2$ . We note that

$f_{2}(0;0,0,0)= \frac{\partial^{2}G_{1}}{\partial x\partial z}(0;0,0)$ .

It holds that

(4.15) $\frac{\partial G}{\partial x}(\lambda;\xi, \zeta)=PF_{\theta}(\mu_{0}+\lambda, \kappa_{0}, r;\#)(\sin\sigma+\phi_{x}.)$,

where $F$ now depends upon $r$ as well as $\mu$ and $\kappa$ and $\#$ denotes $x\sin\sigma+y\cos\sigma+$

$z\sin 2\sigma+w\cos 2\sigma+\phi$ . Differentiating (4.15) in $z$ , we obtain

$\frac{\partial^{2}G}{\partial x\partial z}(0;0,0)=PF_{\theta}(\mu_{0}, \kappa_{0}, r;0)(\phi_{xz}^{0})+PF_{\theta\theta}$( $\mu_{0},$ $\kappa_{0},$ $r$ ; O)(sin $\sigma,$
$\sin 2\sigma$ ).

Since $\phi$ is $(I-P)X_{2}$ -valued and since $F_{\theta}(\kappa_{0}, \mu_{0}, r;0)$ commutes with $P$ by (2.5),
the first term of the right hand side vanishes. Hence $f_{2}(0;0,0)$ is the coefficient of
$\sin\sigma$ of $F_{\theta\theta}$ ( $\mu_{0},$ $\kappa_{0},$ $r$ ; O)(sin $\sigma,$

$\sin 2\sigma$ ). We now compute the second order Fr\’echet
derivative of $F$ . We have

$F_{\theta\theta}( \mu_{0}, \kappa_{0}, r;0)(f, g)=2\mu_{0}\frac{d}{d\sigma}(HfHg)+fHg+gHf+\kappa_{0}\frac{d}{d\sigma}(Hf\frac{dg}{d\sigma}+Hg\frac{df}{d\sigma})$

for all $f,$ $g\in X_{2}$ . This $formu$]a yields

$F_{\theta\theta}$ ( $\mu_{0},$ $\kappa_{0},$ $r$ ; O)(sin $\sigma,$
$\sin 2\sigma$ ) $=2 \mu_{0}\frac{1+r}{1-r}\frac{1+r^{2}}{1-r^{2}}\frac{d}{d\sigma}(\cos\sigma\cos 2\sigma)$

$-( \frac{1+r^{2}}{1-r^{2}}\cos 2\sigma\sin\sigma+\frac{1+r}{1-r}\cos\sigma\sin 2\sigma))$

$+ \kappa_{0}\frac{d}{d\sigma}(-\frac{1+r}{1-r}\cos\sigma\cdot 2\cos 2\sigma-\frac{1+r^{2}}{1-r^{2}}cos2\sigma\cos\sigma)$ .
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Consequently we obtain

$PF_{\theta\theta}$ ( $\mu_{0},$ $\kappa_{0},$ $r$ ; O)(sin $\sigma,$
$\sin 2\sigma$ ) $= \mu_{0}\frac{1+r}{1-r}\frac{1+r^{2}}{1-r^{2}}(-\sin\sigma)$

$+( \frac{1}{2}\frac{1+r^{2}}{1-r^{2}}-\frac{1}{2}\frac{1+r}{1-r})\sin\sigma+\kappa_{0}(\frac{1+r}{1-r}+\frac{1}{2}\frac{1+r^{2}}{1-r^{2}})\sin\sigma$ .

By this equality and (4.14) we have

$f_{2}(0;0,0,0)=- \frac{3(1+r)}{4(1-r)}$ .

In a similar way we obtain

$f_{4}(0;0,0,0)=PF_{\theta\theta}$ ( $\mu_{0},$ $\kappa_{0},$ $r$ ; O)(sin $\sigma,$
$\sin\sigma$) $=- \frac{3(1+r)}{1-r}$ .

This completes the proof. 1
We are puzzled by this computation: we must look for another parameter.

Although there is a possibility that the parameter may be a one repres$e$nting
vorticity, a one representing the viscosity or a density ratio in the two phase
problem, we do not have any definite idea for the moment.

\S 5. Bifurcation equation of mode $(1,3)$ .
In this section we consider (3.7,8) and introduce a certain degeneracy which

makes (3.7,8) yield bifurcation diagrams in [18].
First of $aU$ , we assume that

(H1) $g_{2}(0;0,0,0)\neq 0$ , $g_{4}(0;0,0,0)\neq 0$ .

We divide (3.7) by $g_{2}$ , and (3.8) by $-g_{4}$ . This operation preserves $O(2)-$

equivariance (see [11]) and give rise to the following O(2)-equiva1ent mapping:

(5.1) $G_{1}=(\epsilon\lambda+au+bv+cs+g_{5})\xi+\overline{\xi}^{2}\zeta$ ,

(5.2) $G_{2}=(\delta\lambda+\hat{a}u+\hat{b}v+\hat{c}s+g_{6})\zeta-\xi^{3}$ ,

where $\epsilon,$
$\delta,$ $a,$ $\cdots\hat{c}$ are real constants and $g_{5}$ and $g_{6}$ are of order $\geq 2$ . Before doing

further simplification of the mapping we prepare some symbols for the notational
convenience. Let $\mathcal{M}$ be the set of all $g\in \mathcal{E}$ satisfying $g(0;0,0,0)=0$. The symbol
$\mathcal{M}^{2}$ implies the ideal of $\mathcal{E}$ generated by $\{fg;f\in \mathcal{M},g\in \mathcal{M}\}$ . Using this notation,
we can say that $g_{5},$

$g_{6}\in \mathcal{M}^{2}$ . Let $\mathcal{E}_{\lambda}$ be the set of all the $c\infty$-germs of function
$\phi(\lambda)$ at $0\in R$ . We designate by $\mathcal{M}_{\lambda}$ the set of all $\phi\in \mathcal{E}_{\lambda}$ satisfying $\phi(0)=0$ . Note
that the elements of $\mathcal{E}_{\lambda}$ is a germ of a function of $\lambda$ only. The ideal in $\mathcal{E}$ generated
by $f_{1},$ $\cdots f_{r}$ is denoted by { $f_{1},$ $\cdots f_{r}\rangle$ .
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Let us writ$e$ as $g_{5}=\lambda^{2}\eta_{1}(\lambda)+g_{7}$ , $g_{6}=\lambda^{2}\eta_{2}(\lambda)+g_{8}$ , where $\eta_{1},$ $\eta_{2}\in \mathcal{E}_{\lambda}$ and
$g_{7},g_{8}\in \mathcal{M}^{2}\cap\{u, v, s\}$ . We now perform the following change of variables:

$(\xi, \zeta)arrow((1+\phi(\lambda))\xi,$ $\zeta)$ ,

where $\phi\in \mathcal{M}_{\lambda}$ is to be determined later. This change preserves the $O(2)-$

equivariance (see [11]). Applying this change and dividing (5.1) by $(1+\phi)^{2}$

, (5.2) by $(1+\phi)^{3}$ , we obtain

$G_{1}’= \frac{1}{1+\phi}(\epsilon\lambda+\lambda^{2}\eta_{1}+au+bv+cs+g_{9})\xi+\overline{\xi}^{2}\zeta$ ,

$G_{2}’= \frac{1}{(1+\phi)^{3}}(\delta\lambda+\lambda^{2}\eta_{2}+\hat{a}u+\hat{b}v+\hat{c}s+g_{10})\zeta-\xi^{3}$ ,

where $g_{9},$ $g_{10}\in \mathcal{M}^{2}\cap\{u, v, s\}$ . We choose $\phi$ such that

$\frac{\lambda+\epsilon^{-1}\lambda^{2}\eta_{1}(\lambda)}{1+\phi(\lambda)}=\frac{\lambda+\delta^{-1}\lambda^{2}\eta_{2}(\lambda)}{(1+\phi(\lambda))^{3}}$

Namely we define $\phi$ by

$\phi(\lambda)=\sqrt{\frac{1+\delta^{-1}\lambda\eta_{2}}{1+\epsilon^{-1}\lambda\eta 1}}-1$.

We then write $(\lambda+\epsilon^{-1}\lambda^{2}\eta_{1})/(1+\phi)$ as $\lambda$ . After these computations, we may
assume that $G$ fas the following form:

$G_{1}=(\epsilon\lambda+au+bv+cs+g_{12})\xi+\overline{\xi}^{2}\zeta$ ,
$G_{2}=(\delta\lambda+\hat{a}u+\hat{b}v+\hat{c}s+g_{12})\zeta-\xi^{3}$ ,

where $g_{11},g_{12}\in \mathcal{M}^{2}\cap\{u,$ $v,$ $s\rangle$ .
We next consider the following change of variables, which also preserves $O(2)-$

equivariance:
$(\xi, \zeta)arrow(\xi+\alpha\overline{\xi}^{2}\zeta,$ $\zeta+\beta\xi^{3})$ ,

where $\alpha$ and $\beta$ are real constants. By this change, $G$ is transformed to

(5.3) $G_{1}’=(\epsilon\lambda+au+bv+(c+2a\alpha+2b\beta)s+g_{13})\xi+(1+\mu_{1})\overline{\xi}^{2}\zeta$,
(5.4) $G_{2}’=(\delta\lambda+\hat{a}u+\hat{b}v+(\hat{c}+2\hat{a}\alpha+2\hat{b}\beta)s+g_{15})\zeta-(1+\mu_{2})\xi^{3}$ ,

where $g_{13},$ $g_{15}\in \mathcal{M}^{2}\cap\{u, v, s\}$ and $\mu_{1},$ $\mu_{2}\in\langle u,$ $v,$ $s$ }. If

(H2) $a\hat{b}-\hat{a}b\neq 0$ ,
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then we can make the coefFicient of $s$ vanish in (5.3,4). Accordingly we obtain
after dividing (5.3) by $1+\mu_{1}$ and (5.4) by $1+\mu_{2}$ ,

(5.5) $G_{1}’’=(\epsilon\lambda+au+bv+g_{15})\xi+\overline{\xi}^{2}\zeta$ ,

(5.6) $G_{2}’’=(\delta\lambda+\hat{a}u+\hat{b}v+g_{16})\zeta-\xi^{3}$ ,

where $g_{15},$ $g_{16}\in \mathcal{M}^{2}\cap\{u,$ $v,$ $s\rangle$ . Our next simplification is obtained by the following
change of variables:

$(\xi, \zeta)arrow(l_{1}\xi,$ $\ell_{2}\zeta)$ ,

where $p_{1}$ and $p_{2}$ denote $1+\alpha_{1}u+\alpha_{2}v+\alpha_{3}s$ and $1+\beta_{1}u+\beta_{2}v+\beta_{3}s$ , respectively,
with real constants $\alpha_{j}$ and $\beta_{j}$ . Applying this transformation and dividing (5.5) by
$l_{1}^{2}l_{2},$ $(5.6)$ by $l_{1}^{3}$ , we have

$H_{1}= \frac{1}{l_{1}^{2}\ell_{2}}(\epsilon\lambda+au+bv+g_{17})\xi+\overline{\xi}^{2}\zeta$ ,

$H_{2}= \frac{p_{2}}{\ell_{1}^{3}}(\delta\lambda+\hat{a}u+\hat{b}v+g_{18})\zeta-\xi^{3}$ ,

where $g_{17},$ $g_{18}\in \mathcal{M}^{2}\cap\langle u,$ $v,$ $s$ }.
We wish to eliminate some of the second order terms. Let

$g_{17}=A_{1}\lambda u+A_{2}\lambda v+A_{3}\lambda s+g_{19}$ , $g_{18}=B_{1}\lambda u+B_{2}\lambda v+B_{3}\lambda s+g_{20}$ ,

where $g_{19}$ and $g_{20}$ belong to $\langle u, v, s\rangle^{2}+\mathcal{M}^{3}\cap\langle u,$ $v,$ $s$ }. Then the coefficients of
$\lambda u,$ $\lambda v,$ $\lambda s$ in $G_{1}$ and $G_{2}$ are, respectively,

$A_{1}-\epsilon(\alpha_{1}+\beta_{1})$ , $A_{2}-\epsilon(\alpha_{2}+\beta_{2})$ , $A_{3}-\epsilon(\alpha_{3}+\beta_{3})$

and
$B_{1}-\delta(3\alpha_{1}-\beta_{1})$ , $B_{2}-\delta(3\alpha_{2}-\beta_{2})$ , $B_{3}-\delta(3\alpha_{3}-\beta_{3})$ .

Choosing $\alpha_{j}$ and $\beta_{j}$ appropriately, we can make these coefficients vanish. This is
possible if

(H3) $\epsilon\neq 0$ , $\delta\neq 0$ .

Thus we have proved that the original $G$ in (5.1,2) is O(2)-equiva1ent to the fol-
lowing new $G$ :

(5.7) $G_{1}=(\epsilon\lambda+au+bv+c_{1}u^{2}+c_{2}uv+c_{3}v^{2}+g_{21})\xi+\overline{\xi}^{2}\zeta$ ,

(5.8) $G_{2}=(\delta\lambda+\hat{a}u+\hat{b}v+c_{4}u^{2}+c_{5}uv+c_{6}v^{2}+g_{22})\zeta-\xi^{3}$ ,

15



where $g_{21},$ $g_{22}\in \mathcal{M}^{3}\cap\{u,$ $v,$ $s\rangle$ $+\{us, vs, s^{2}\}$ . We wish to prove that (5.7,8) is $O(2)-$

equivalent to itself with $g_{21}\equiv 0,$ $g_{22}\equiv 0$ . If this is possible, we have a normal form
in some sense and our task is reduced to consider

(5.9) $G_{1}=(\epsilon\lambda+au+bv+c_{1}u^{2}+c_{2}uv+c_{3}v^{2})\xi+\overline{\xi}^{2}\zeta$,

(5.10) $G_{2}=(\delta\lambda+\hat{a}u+\hat{b}v+c_{4}u^{2}+c_{5}uv+c_{6}v^{2})\zeta-\xi^{3}$ ,

However, the results in [11] is limited to the case of mode $(1,2)$ and no ready-made
result seems to be available concerning the elimination of $g_{21}$ and $g_{22}$ . Accordingly
we give up proving that (5.7,8) is $O(2)$-equivalent to (5,9,10). We only show that
(5.9,10) explains the figures in [18] we11.

We now assume that $\epsilon=\delta=1$ . Setting $y=w=0$, we have

(5.11) $G_{1}=(\lambda+ax^{2}+bz^{2}+c_{1}x^{4}+c_{2}x^{2}z^{2}+c_{3}z^{4})x+x^{2}z$ ,

(5.12) $G_{2}=(\lambda+\hat{a}x^{2}+\hat{b}z^{2}+c_{4}x^{4}+c_{5}x^{2}z^{2}+c_{6}z^{4})z-x^{3}$ .

Numerical Results for mode $(1,3)$ . Let us see the numerical bifurcation dia-
grams. Fig.14-19 are cited from [18]. Notation is the same as in the case of mode
$(1,2)$ . As the figure number increases, the value of $\kappa$ increases. Let us explain Fig.
17, for instance. The diagrams are viewed in three directions. The figure in the
right above is a view in the direction of the $\mu$-axis. The figure in the left below is
a view in the $A_{3}direction$ . Wave profiles are drawn in the right below. The index
$a,$

$b$ , etc. correspond to the points marked in the figure in the left above. We can
observe a pair of closed loops, which are symmetric with respect to the $\lambda$-axis.
As the parameter $\kappa$ increases, they intersect, are tangent to or separate from the
primary pitchfork branch. Fig. 19 shows that the loops shrink to points. Here
we observe a very important fact about the connectedness of the branch. Some of
the physical solutions on the loops are connected to the mode 3 branch through
unphysical solutions (see Fig. 18). Thus the physical solutions on the loops are
disconnected from other physical solutions if we neglect the unphysical solutions.
In computing the branch, [18] used Keller’s path-tracing method as is common in
the bifurcation problem. Therefore, disconnected part may well be missed, when
you look for only physical solutions. If, however, we consider all the solutions,
both physical and unphysical, then all the solutions ar$e$ traced.

We introduce two unfolding parameters $\alpha$ and $\beta$ in (5.11, 12):

(5.13) $G_{1}=(\lambda+\alpha+ax^{2}+bz^{2}+c_{1}x^{4}+c_{2}x^{2}z^{2}+c_{3}z^{4})x+x^{2}z$ ,

(5.14) $G_{2}=(\lambda+\hat{a}x^{2}+(b+\beta)z^{2}+c_{4}x^{4}+c_{5}x^{2}z^{2}+c_{6}z^{4})z-x^{3}$ .

Here we assumed that $\hat{b}$ is close to $b$ and introduced a small $\beta$ . In other words, we
assum$ed$ that there is a $\nu$ at which $b=\hat{b}$ and we unfolded the bifurcation equation
there.

The equation (5.13) implies $x=0$ or

(5.15) $\lambda=-\alpha-ax^{2}-bz^{2}-c_{1}x^{4}-c_{2}x^{2}z^{2}-c_{3}z^{4}-xz$ .
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The former relation and (5.14) give a pitchfork in $(\lambda, z)$ plane: $x=0$, $\lambda z=$

$-(b+\beta)z^{3}-c_{6}z^{5}$ . We assume that $b>0$ and $c_{6}>0$ . Substituting (5.15) into
(5.14), we have

(5.16) $-\alpha z+f\hat{a}-a$ ) $x^{2}z+\beta z^{3}-x^{3}-xz^{2}+d_{1}x^{4}z+d_{2}x^{2}z^{3}+d_{3}z^{5}$ . $=0$ .

where we have put $d_{1}=c_{4}-c_{1},$ $d_{2}=c_{5}-c_{2},$ $d_{3}=c_{6}-c_{3}$ . This equation does not
contain $\lambda$ .

The roots of (5.13, 14) constitute of either the pitchfork ($x=0$ & $\lambda z+\hat{b}z^{3}+$

$c_{6}z^{4}=0)$ or the curves given by (5.15, 16).
Let us check whether the normal form above can reproduce these figures. Choos-

ing small parameters $\alpha$ and $\beta$ appropriately, we can draw various diagrams. Among
those, Fig.20-23 suit our purpose. In these figures, we fixed the following param-
eters:

$a=5.25$, $b=0.2$ , $c_{1}=0$ $c_{2}=0$ $c_{3}=0.101$

$\hat{a}=1.0$ , $\hat{b}=1.0$ , $c_{4}=0$ $c_{5}=0$ $c_{6}=0.001$

The values of unfolding parameter $\alpha$ in Fig.20 - 23 are, 1.0, 1.6, 1.8, 1.85, respec-
tively. These abstract diagrams explains Fig.16-19 completely. Fig.14,15 are more
complex and we can not reproduce them by the normal form.

Remark. As in \S 4, it is necessary to prove that Fig. 20-23 can be drawn in any
neighborhood of the degenerate bifurcation point. So far, we can not prove this.

Concluding Remark. We consider two pairs of algebraic equations (4.12,13) and
(5.13,14). These “ normal forms “ reproduce quite a large class of the numerical
solutions in [18]. The success of our $e$quations suggests that another appropriate
parameter exists and that the degeneracy which we assumed exists. Unfortunately
we can not specify the parameter. We showed that the aspect ratio parameter is
not the one.

Appendix.
In this Appendix, we give an outline of the derivation of (2.2). As Stokes did, we

regard $z$ as a function of $f$ rather than regarding $f$ as a function of $z$ . Following
Levi-Civita [10], we introduce independent variable

$\zeta=\exp(-\frac{2\pi if}{cL})$

and dependent variable $\omega=i\log(c^{-1}df/dz)$ . By the relation $\zetarightarrow frightarrow zrightarrow\omega$ , we
regard $\omega$ as a function of $\zeta$ . Note that $\zeta$ runs in $0<|z|<1$ and that $\omega$ is analytic
in $\zeta$ . As $\zetaarrow 0,$ $\omega$ approaches zero. Thus the origin is a removable singularity and
$\omega$ is an analytic function in the whole disk $|\zeta|<1$ . Let $\theta$ and $\tau$ denote, respectively,
the real and the imaginary part of $\omega$ . Let $(\rho, \sigma)$ be the polar coordinates for $\zeta$ ,
i.e., $\zeta=\rho e^{\sigma}$ . We now rewrite (2.1) by means of $\theta(p, \sigma)$ and $\tau(\rho, \sigma)$ : On the free
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boundary, we have $V=0$ . Therefore it holds that $dz/df= \frac{\partial x}{\partial U}+i_{\partial U^{L}}^{\partial}\lrcorner$ . On the
other hand, by

$\frac{df}{dz}=ce^{-i\theta+\tau}$ ,

we have

$\sigma=\frac{-2\pi U}{cL}$ $\frac{\partial x}{\partial U}=\frac{e^{-\tau}}{c}\cos\theta$ , $\frac{\partial y}{\partial U}=\frac{e^{-\tau}}{c}\sin\theta$ , $\frac{dh}{dx}(x)=\tan\theta$

and
$| \frac{df}{dz}|^{2}=c^{2}e^{2\tau}$ , $\frac{\partial}{\partial x}=\frac{\partial\sigma}{\partial x}\frac{\partial}{\partial\sigma}=-\frac{2\pi e^{\tau}}{L\cos\theta}\frac{\partial}{\partial\sigma}$

By these formula we easily get to

(A.1) $e^{2\tau} \frac{\partial\tau}{\partial\sigma}-pe^{-\tau}\sin\theta+q\frac{\partial}{\partial\sigma}(e^{\tau}\frac{\partial\theta}{\partial\sigma})=0$ on $\rho=1$ ,

where $p= \overline{2}\pi^{\frac{L}{c^{2}},q}E=\frac{2\pi T}{c^{2}Ld}$ .
We thus obtain the following reformulation:

Find a function $\omega=\omega(\zeta)$ which is continuous on $\{|\zeta|\leq 1\}$ , is analytic in
$\{|\zeta|<1\}$ and satisfy (A.1) and $\omega(0)=0$ .

Levi-Civita considered the problem in this formulation when $q=0$ .
Since an analytic function is completely determined by its boundary value, a

further reduction of the equation (A.1) is possible. In fact we can write (A.1) only
by $\theta(1, \sigma)$ $(0\leq\sigma<2\pi)$ . This is done by utilizing (2.3). We have $\tau(1, \sigma)=H(\theta^{*})$ ,
where $\theta^{*}(\sigma)=\theta(1, \sigma)$ . The equation (A.1) is now written as (2.2).
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