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Abstract

Weakly nonlinear theory of steady hydrostatic mountain
waves in 2-layered stratified Boussinesq fluid of infinite depth
is presented. Weakly nonlinear effects ( second-order correction)
on drag, downslope wind and the steepening or flattening of the
stream line are examined, and are found to be very sensitive to
the depth of the lower layer, D, %2/%1 ( %1=N:/U and % =N1/U ;
Ny and N»: Brunt-Vaisala frequencies of the lower layer and upper
layer, respectively) and terrain shape. Drag obtained from
linear theory is invariant under the change of # in #:1D, while
that obtained from weakly nonlinear theory is no more invariant
under the change of # in 21D. Tﬁe theory gives an estimate of the
applicability‘range of linear theory. The-theory is found to be
in good agreement at least in a qualitative sense with nonlinear

numerical solutions for some cases.

1. Introduction
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Flows over orography have attracted meteorological
interest for a 1long time. Linear aspects of flows under a
radiative upper boundary condition over a 2-dimensional mountain
have been made clear analytically. However, applicability of
linear theqry to severe downslope winds, foehns, blocking, clear
air turbulence and so on is questionable because of the ‘small
amplitude assumption used in linear theory. Nonlinear aspects of
flows have not been examined enough yet.

For a homogeneous atmosphere ‘( constant horizontal
velocity,U, and constant Brunt-Vaisala frequency,N), nonlinear
steady aspects can be analytically examined by wuse of Long's
equation ( Long, 1953; Lilly and Klemp,1979). Lilly and Klemp's
theory takes into account the nonlinear lower boundary and
radiative upper boundary conditions, and their theory gives the
critical inverse Froude number $h=Nh/U ( h: the height of the
mountain ) for wave breaking and the magnitude of nonlinear
enhancement of drag and downslope wind.

Nonlinear aspects of the flow of a multilayered
fluid past a 2-dimensional mountain have not been examined enough
yet, analytically or numerically. Durran(1986) ahd Tkawa(1990a)
showed that, for some 2-layered fluids, the deviation of nonlinear

numerical solutions from linear analytic solutions 1is larger
even for a small inverse Froude number, 4h, than that for
homogeneous fluids. They found that, when %1h becomes larger than
a certain critical value, the flow becomes quite similar to the
transitional flow familiar in hydraulic theory ( Houghton and
Kasahara, 1968 ), resulting in the high drag state with strong
downslope wind. As far as %1 h is smaller than the critical value,

the deviation from linear theory becomes gradually large as %1h
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becomes large. No satisfactory nonlinear theory for it was
presented in Durran and Ikawa.

Among recent theories which shed light on the transition
of the flow into high drag state are those by Smith(1985),
Mitsudera and Grimshaw(1989) ( an extended one of Grimshaw and
Smyth(1986), allowing for a radiative upper boundary condition )
and Laprise and Peltier(1989). However, those theories are not
directly applicable to the case of 2-layered stratified fluid
studied by Durran and Tkawa because of restrictive assumptions
made in those thegries.

" In this paper, weakly nonlinear ( second-order
perturbation ) theory of steady hydrostatic mountain waves in 2-
layered stratified fluid with a radiative wupper boundary
condition is presented. This theory cannot account for the
catastfophic change of the flow resulting in high drag‘ shown by
Durran and Ikawa, implying that this is not a weakly but a
strongly nonlinear phenomenon. However, the theory can account
for the deviation of the flow from that of linear theory reported
by Ikawa{1990a), such as the second-order enhancement of drag and
downslope wind, as far as %1h is small.

This paper is a simplified version of the original paper

by Ikawa(1990b), where more detailed descriptions are given.
2. Formulation of weakly nonlinear theory

The 2-layered stratified fluid considered here has the
constant horizontal mean wind Ui. In each layer, the Brunt-
Vaisala frequency, N; (j=1,2), is constant; The depth of the

lower layer is D, and that of the upper layer is infinite. As an
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extension of Lilly and Klemp's . equations (1979) for 1-layered
stratified fluid of infinite depth, IN presented the exact
equations for 2-layered stratified fluid of infinite depth, where
nonlinear boundary conditions, nonlinear interface conditions and
radiation conditions are taken into account. First, these
equations are repeated below for reader's convenience.

Long's equation (1953) for each layer under the

’hydrostatic and Boussinesq approximation is written as follows:
(92/922+8;2)8; (x,2)=0 ; %;2N;/U; ( for j=1 and 2 ), (1)

where 8; (x,z) is the vertical displacement of an air parcel from

its undisturbed height Z ( 8;=z-Z). The solution is written as:

for zsZi (x):.

81 (x,z)=Zs(x)cos (%1 (z-Zs(x)) - Bi (x)sin(%1 (z-Zs(x)),

for z2Z; (x): (2)

82 (x,z)=A2 (x)cos (%2 (z2-D-Az (x))-Be (x)sin(%2 (z-D-Az2 (X)),

where Z; (x) is the interface height given as
Zi (x)=82 (x,D+A2 (x)) +D=A2 (x)+D. (3)

It is noted that the nonlinear }lower boundary condition
81 (x,Zs (x))=Zs (x) 1is automatically satisfied. The  nonlinear
interface conditions are

81 (x,2)=82(x,2),
and

381 (x,2)/3z = 88:2(x,2)/8z

at the interface (x,z)=(x,Z;(x)). This condition ensures the
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continuity of velocity (u=U; (1-38/3z), w=U; 38/3x) and pressure (
Bernouli's equation: 1/2pau?+p+pgz=constant on a streamline,
where p=pa(lfN2€7g) ) at the interface. They are rewritten as:
Az (x)=Zs(x)cos (%1 (D+Az2 (x)-Zs(x)) - B1 (x)sin(8: (D+Az2 (x)-Zs(x))
(4)
92Bs (x)=01{Zs(x)sin(%1 (D+A2 (x)-Zs(x)))+B1 (x)cos (81 (D+A2 (x)-
Zs(x)))}. (5)

The upper radiation conditions ( Lilly and Klemp,1979) require
B*z (x)=-Hil(A*z2), A%y (x)=Hil(B=*z), (6)
where
Axp (x)=Az (x)cos (8242 (x))+B2 (x)sin(R24A2 (X)),

Bws (x)=-Az (x)sin(f2Az (x))+B2 (x)cos (R2A2 (x)).

Hil denotes the Hilbert transform defined as

[

Hil(f)=———— P J' f{x’) ax' (8)
™ X -X

for a function f(x), where P denotes Cauchy's principal value.

For the three unknown functions B (x),A2(x) and Bs(x),
three nonlinear relations (4),(5) and (G)Aéxist. However,  these
equations are transcendental equations and difficult to Dbe
solved. As pointed out by IN,' Eqs.(4), (5) and (6) yield
Smith's(1985) equation for the special cases of #2=0.

Next, to solve the ’above\ franscendental eduations
approximately, the functions Bi, A» and Bs are assumed to be
expanded in powers of the small parameter g=%1h as follows:

Bi=h(Bie+£B11+0(€2)), (9-1)
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A2=h(Aze +gA21+0(£2)), (9-2)

Bo=h{(Bze+£B21 +0(g2)), (9-3)
where h is a representative height of the mountain, Zs(x). The
normalized mountain shape function Zsp is given‘as

Zse (x)ZZs(x)/h. (10)

Substituting the above relations into Egs.(4)-(5) and
assuming
g1 >> aZf2/01~1 >> g, (11)

the first- and second-order solutions are

obtained as below:

Bio=-(sZs0 (x)+rHil(Zsa (x))), (24)
Azp=(cosA+ssinA)Zsp+rsin(A)Hil(Zse (X)), (25)
B2p=-(cosA+ssinA)Hil(Zse )+rsin(A)Zse (X)), (26)
where

= 2 , (27)

1+a2+(1-a2 )cos(2A)
a2 )si
- (1-a2 )sin(24a) . (28)

1+a2+(1-a2 )cos{2A)
Bi: 1is given as belows:

1
“sin2A+(cosA/a)?

Bi1 [(cosa/a) (-Hil(Cy)+C3-C2)-sinA(Hil(Cz)+Cs-Cy)]

=B1122Zsp2+B112MZsoHil(Zso )+B11 MM Hil(Zsp )2
+HB112ZHil(Zse2 )+HB112PHil(ZseHil(Zsa ) ) +HB1 1 PP Hil (Hil (Zsp )2),
(29)

where
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B1122Z {cosA(cosA+ssinA)2 -(1/a2)cosA(cosA+ssinA-1) (cosA+ssinA)
+arsin®A(cosA+ssinA)-sinA(cosA+ssinA-1) (sinA-scosA)}

/1 sin?A+(cosA/a)?]. (30)

For the definitions of Bi1zh, Byihh HB112z HB1jzh HBjihh, gsee
Tkawa (1990b) . B

Once B11 is obtained, A21 and B»i are readily obtained from
Egqs. (15) and (16). A1 and Ba; are also expressed in linear
combination of the six functions of x, i.e., Zsp?, ZspHil(Zsp),
Hil2 (Zsep)... Hil(Hil2 (Zsp)).

Surface pressure ps is given (see Eq.(31) of Lilly-Klemp) as
Ps=-p/2(U2-U;2+N2Zs (x)?)

U; 2
=~ 85— [2eB1a+e2 (B1a2+2By1 )+0(€e3) + £2Zsp2(x) .

Neglecting the O(e®*) terms in ps, wave drag is given as

dZs _ pN1Uih2? dZse

= = 2
DRG= I Ps ax dx 2 f [2B1o+e(B122+2B11 )] ax dx
N1 U; h2 .
= - —3—2———— {-28D(Zso )-2rD(Hil(Zsa))

+el (2B1122+52)D(Zsp2) _
+(2B112"+2s1)D(ZsoHil(Zso ) )+ (2B1 s Mh+r2 )D(Hil2 (Zsp ))
+2HBy122D(Hil(Zse?))+2HB112PD(Hil (ZseHil(Zsp)))
+2HB1 1 PPD(Hi1 (Hil2 (Zsp))) 1}, (37)

where the operator D on a function f(x) is defined as
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D(f) = J LI A (38)
dx ’

3. Weakly nonlinear effects for the case of a bell-shaped mountain

and comparison with nonlinear numerical solutions

The formula derived in section 2 are applied to the case

of a bell-shaped mountain defined as

~ ha? '
7s = ‘W (39)

The functions and integrals necessafy in computing flow patterns
and drag are listed in Table 1 of Ikawa(1990b) and shown in Fig.1
of Ikawa(1990b). From Eq.(37) and Table 1 of Ikawa(1990b),

surface pressure drag for a bell shaped mountain is obtained as

DRGNZ DRG/DRGL= [r-kfgf( sr + By1zh + 2HByj22)], (40)

where DRGL is the drag by linear theory for the case of %2/%1=1

defined as

7oN1 Ui h2

DRGL =
4

(41)

To check the validity of the theory, the dependency of
DRGN on %1h obtained from the weakly nonlinear theory is compared
with that of nonlinear numerical solutions for the case of
22/921=0.4 ahd a bell shaped mountain (Eq.(39) with af%:1=45 ).

Specifications for numerical experiments are the same in Ikawa
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(1990a); the vertical grid distance Az=200m (%1Az%0.1%) is used;
the lateral boundary condition is the same as CS (cyclic and
small ) in Ikawa. Some numerical data are the same in Ikawa, and
some are newly computed for the present purpose.

In Fig.l, the comparison between the two for the three
cases of 21D=0.72w, 1)49« and 1.39% is shown. Weakly nonlinear
theory predicts the large increase in DRGN for £1D=0.72w% and the
large and slight decreases for DQ1D=1.39n and 1.49w, as %1h
becomes large. As shown in Fig.1l, these features are also seen in
numerical counterparts, but quantitative agreement is not good.
For the case of %:1D=0.72#x, the agreement between the two appears
to be very good up to %91h=0.375; however, as mentioned in Ikawa,
the shock-like disturbance propagating downstream is seen in the
numerical solution with %1h=0.375, and the flow pattern and its
time dependency differs between the two.

One of the reasons might be the neglect of the higher-order
terms and nonhydrostatic effects 1in weakly nonlinear . theory.
Major reason is probably the numerical errors in nonlinear time-
dependent numerical solutions associated with nonsteadiness of
the numerical solutions, insufficient boundéry conditions and
finite discretization errors. DRGN is very sensitive to 2 D; for
example, near %1D=1.4n, the difference pf 0.1 in 91D yields the
difference of more than 30% in DRGN as shown in Fig.4 of
Ikawa(1990b). The use’of the vertical grid distance $%1Az%0.1w may
result in ‘large error of the effective %D in the finite
difference numerical model. To see the effects of the finite
discretization error ‘in representing, the interface on the
humerical mesh, the experiment with the finer vertical resolution

{ Az=100m instead of Az=200m) is conducted for the case of



%1D=1.49%, and the result is indicated by the symbol A in
Fig.1b. The finer resolution yields a closer value of DRGN to
that obtained by weakly nonlinear theory. Durran(1986) also
reported large discrepancy as much as 25% in DRGN between the
linear and nonlinear numerical solutions for the 2-layered fluid
with %1h=0.001.
Taking into account these situations, it might be said

that the theory is in fairly good agreement at least in a
qualitative sense with nonlinear numerical solutions. The other
cases reported by Ikawa appear to be not inconsistent with the

results by the weakly nonlinear theory.
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Fig.1 a) Comparison of the normalized drag ( DRGN )

~ obtained from weakly nonlinear theory ( drawn by the dotted 1line

) with those obtained from nonlinear numerical solutions (
indicated by the symbol x ) for the case of 8%2/%1=0.4 and
21D=0.72x. The ordinate denotes DRGN and the abscissa denotes
€1 h. _

b) the same as a) but for Q1D=1.49n. For the explanation of the
symbol A in Fig.1b, see text.

C) the same as a) but for %3D=1.39x. The lower and upper dotted
lines show DRGNs obtained from weakly nonlinear theory for

21D=1.38% and %;D=1.45mw, respectively.
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