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Infinite Networks and Random Walks

Maretsugu YAMASAKIT
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§ 1. Introduction
Nash—WilliamS [7] carried out the method of associating a
~ denumerable Markov chain with an electric circuit and gave‘a
criterion for the Markov chain to be recurrent. This is a
discrete analogue of thé geometric criteria for a Riemann surface
to have no Green function.‘ Following his idea, several practical
criteria for the Markov chain to be transient have been established
by Griffeath and Liggett [1] and Lyons [4].
On the other hand, the study of an electric circuit has been
\ developed as a theory of infinite networks in the last twenty years.
On a locally finite infinite network, a flow problem and a
classification problem for infinite networks have been studied with
the aid of the reasoning in the theory of potentials on a Riemann
surfaces (cf. [2], [12]).

Recently, Schlesinger [8] and Soardi [9] shed light on Lyons'
results with the aid of flow problems on an infinite network which
is not necessarily locally finite.

One of our aims is to notice that most of the results in
the theory of locally finite networks developed in [2], [10], [11]
and [12] remain valid under the condition studied in [6] that the
network is p-almost locally finite. Every p-almost locally finite
network can be classified to be either of parabolic type of order p

or of hyperbolic type of order p. The parabolic index ind N of a



o1

network N can be defined as the infimum of p > 1 such that N is
p-almost locally finite and of parabolic type of order p. Our
theory has many counterparts in the theory of Markov chains in case
case p = 2. For 2-almost locally finite network N, the Green
function of N exists if and only if it is of hyperbolic type (of
order 2). By means of this fact, we shall show that the Markov
chain P associated with the network N is transient if and only if N
is of hyperbolic type. Consequently, many practical.criteria for
P to be transient follow from the theory of networks.

Geometric criteria for N to be of hyperbolic type of order p
will be given by using the the extremal length and the extremal
width of N of order p (c¢f. [6]). They are related to the set of
paths from a finite set to the ideal boundary of N and the set of
cuts between a finite set and the ideal boundary of N respectively.
By reviewing the Lyons' product of two flows, we obtain another
proof of the fact that the parabolic index of the network defined
by the d-dimensional iattice domain with unit arc resistance is

equal to d (cf. [5]).

§ 2. Notation and terminology

Let X be a countable set of nodes, Y be a countable set of
arcs and K be a node-arc incidence function, i.e.,

K:XxXxXY— {-1, 0, 1}.

We always assume that the graph G = {X, Y, K} is connected and has

no self-loop. For vy € Y and x € X, set
e(y) = {x € X; K(x, ¥y) # 0}(the set of extremities of arc y),
Y(x) = {y € Y; K(x, yv) # 0}(the set of arcs incident to node x),
X(x) = U {e(y); ¥ € Y(x)} (the set of neighboring nodes of x),

- 2 -



92

U(x) = X(x) - {x}. ‘
The pair N = {G, r} of the graph G = {X, Y, K} and a strictly
positive real valued function r on Y is called an infinite network.
For 1 < p < «, we say that the network N is p-almost locally finite
if the following condition holds:
)Pl

(ALF)p < o for every x € X.

2yEY(X) r(y
We say simply that N is almost locally finite if it is 2-almost
locally finite. Clearly; N is p-almost locally finite if it is
locally finite, i.e., Y(x) 1s a finite set for every x € X.

Lét L(X) be the set of real valued functions on X and let
LO(X) be the set of all u € L(X) with finite support, i.e., {x € X;
u(x) # 0} is a finite set. We define L(Y) and LO(Y) similarly.

For w, w' € L(Y), define the inner product < w, w' > by

<w, w' >=3 r(y)w(y)w'(y)

yeEY
if the sum is well-defined. For w € L(Y), its energy H{(w) is
defined by
3 9
H(w) = Eer r(y)Iwy)|® = <w, w>.
Denote by L2(Y; r) the set of all w € L(Y) with finite H(w).
For u € L(X), its discrete derivative (weighted difference) du

€ L(Y) and its discrete Dirichlet integral (sum) D(u) are defined

as follows:
du(y) = - r(y)_lixEX K(x, y)u(x),
= Zer r(y)[du(y)12.

Denote by D(N) the set of all u € L(X) with finite Dirichlet

D(u) = H(du)

integral and by Sa (a € X) the characteristic function of {a}:
Sa(a) = 1 and sa(x) = 0 for x # a.
By definition, we have

dsa(y) = - r(y)—lK(a, y)
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for every y € Y and
_ -1

D(g,) = Eer r(y) “IK(a, y)I.

Hence N is almost locally finite if and only if ea € D(N) for all a

€ X, or equivalently LO(X) c D(N).

Hereafter always assume in this section that N is almost

locally finite. In order to introduce the discrete Laplacian, we
set
LS(X; r) = {u € L(X); Eer IK(x, y)du(y)| < « for all x € X},
LS(Y; r) = {w € L(Y); Zer |K(x, y)w(y)] < « for all x € X}.
The boundary operator 8: L(Y) — L(X) defined by
aw(x) = I oy K(x, 3)W(y)
acts on LS(Y; r). For u € LS(X; r), we define the (discrete)

Laplacian Au € L(X) by

Au(x) = 2 K(x, y)du(y) = 8[dul.

yeEY
For w € LZ(Y; r), we have

(2.1) EyEY |K(a, y)w(y)]| = Eer r(y)|lde, (y)Iw(y) |
< (e )1 2 H(w) 112

for all a € X, so that LZ(Y; r) ¢ LS(Y; r). From the relation

< o

{du; u € D(N)} ¢ L2(Y; r),
it follows that D(N) € LS(X; r).

To clarify the geometric meaning of Au as in [11], we set

t(x) = ey KX, 9 Irxn 7

t(x, z) = - 2
0

' -1 ,
vey K(x, y)K(z, y)r(y) if x +# z,

t(x, Xx)
for every x, z € X.
Clearly, t(x, z) = t(z, x) for all x, z € X. Note that t(x, z) >
0 for all x € U(z) and

t(x) = 2 t(x, z) > 0.

z€eX
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Let us put

"S(N) = {u € L(X); t(x, z)|u(z)] < « for all x € X}.

2zEX

Proposition 2.1. S(N) = LS(X; r) and

Au(x) = - t(x)u(x) + 2 t(x, z)u(z)

z€X
for all u € S(N).

Proof. Let u € S(N) and a € X. Then, by Theorem A (the
monotone convergence theorem) below

zer |K(a, y)du(y)|

< Syey T HIKGa, WIILIK(GE, yIua)] + 3 1K(z, y)u(z)]]

z€U(a)
= t(a)|u(a)] + EzeU(a) Zer |K(a, y)K(z, y)|lu(z)] < .
Hence S(N) c LS(X; r). Conversely, let u € LS(X; r) and a € X.

In case u is non-negative, we have by Theorem A

zzeU(a) tla, z)u(z) = - zZEX zer K(a, ¥)K(z, y)r(y) ‘u(z)
+ Soey Kla, %) u(a)
= - ey Zxex K@, ¥IK(z, 3)r(x) Mu(z) + t(a)u(a)
= 2,ey K(a, y)du(y) + t(aju(a)

< Eer [K(a, y)du(y)| + t(a)u(a) < =,
so that u € S(N). In the general case, we see that ut o= max{u, 0}
and u_ = max{- u, 0} belong to LS(X; r), since |du'(y)| < |du(y)|
and |du (y)| < |du(y)]. Thus u', u~ € S(N) by the above

| observation. Therefore u = u° - u_ € S{(N) and LS(X; r) c S(N).

As in the above proof, we have to pay a special attention to
the pointwise summability (resp. convergence) of a function (resp.
a sequence of functions on X or Y) if N is not locally finite.

One of the following two well-known results (cf. [3; Theorems 1-44,
1-49]) will play a fundamental role in modifying the proofs of the

results given for the case where N is locally finite:
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Theorem A. (Monotone convergence theorem) Let Q be a
countable set and u be a nonnegative function on Q.( If {fn} is a
monotone increasing sequence of nonnegative functions on § and if
it converges pointwise to f, then

1i > fo(s)u(s) = 2

f(s)n(s).

e 2gen s€q

Theorem B. (Dominated convergence theorem) Let § and u be
the same as above and let {fn} be a sequence of real valued
functions on @ which converges pointwise to f. If there exists
h € L(Q) such that Ifnl < h on @ for all n and stQ h(s)u(s) < =,
then

lim ., >

ta(shu(s) = 3 o T(s)uls).

s€ef s€ef)

We say that a function u € S(N) is harmonic (resp. super-
harmbnic) on a subset A of X if Au(x) = 0 (resp. Au(x) < 0) on A,
Denote by HD(N) the set of all harmonic Dirichlet finite

functions, i.e.,
HD(N) = {u € D(N); Au(x) = 0 on X}.
Notice that D(N) is a Hilbert space with respect to the inner
product |
((u, v)) = < du, dv > + u(xo)v(xo) (x0 € X).
Denote by DO(N) the closure of LO(X) in D(N) with respect to the

/2

norm flull = [((u, u))]l This does not depend on the choice of

XO. The norm convergence implies the pointwise convergence. In
fact, we see by [6] that for every nonempty finite subset F of X,

there exists a constant MF such that

(2.2) lu(x)] < MFHuH for all u € D(N).

zXEF ‘
Let {un} be a sequence D(N) such that Ilun - ull » 0 as n =» «,
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For any a € X, we see by (2.1) that {Aun} converges pointwise to Au.

Thus HD(N) is a closed subspace of D(N) by the above observation.

Proposition 2.2. The Green's equality
(2.3) < df, du > = - szX f(x)[Au(x)]
holds for for every f € LO(X) and u € S(N).

Proof. By definition,

< df, du > = - Zer du(y)ZXeX K(x, y)f(x).
Our relation follows if the change of the order of summation is
assured. To prove this, let Sf = {x € X; f(x) # 0}. Then Sf is
a finite set, c = ZZESf max{|f(x)]; x € X} < » and
£ (x)K(x, y)du(y)| = 2 cqr ZyEY [f(x)K(x, y)du(y)lv
|K(x, y)du(y)| < =.

zXEX zyEY

< c Eer

Corollary. < dv, dh > = 0 for every v € DO(N) and h € HD(N).

By the usual argument in the theory of Hilbert spaces, we

obtain a discrete analogue of Royden's decomposition theorem:

Theorem 2.1. Every u € D(N) is uniquely decomposed in the

form: u = v + h with v € DO(N) and h € HD(N).

§ 3. Parabolic and hyperbolic networks

We begin with

Lemma 3.1. Let N be almost locally finite and A be a
nonempty finite subset of X. Then 1 € DO(N) holds if and only if
the value of the following extremum problem vanishes:

(3.1) d,(A, @) = inf{D(u); u € L,(X) and u = 1 on A}.

Proof. Assume that dz(A, =) = 0. There exists a sequence
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{un} in LO(X) such that u, = 1 on A and D(un) -+ 0 as n - o, Since

bu - u (x,)l = [D(u_)1/2

n =+ 0 as n » », we see by (2.2) that un(x)

- un(xo) converges to as n » « for each x € X. Since u, = 1 on A,
_ . 2,1/2

un(xo) -+ 1 as n » «, so that Hun - 1l - [D(un) + (un(XO) 1)7]
- 0 as n = o, "Thus 1 € DO(N). Next, we assume that 1 € DO(N).
There exists a sequence {fn} in LO(X) such that 1 - fnn - 0 as n -~
©, Note that {fn} converges to 1l by (2.2) and D(fn) - 0 as n = o,
By considering max{0, min{fn, 1}} for fn’ we may suppose that 0 < f
£ 1 on X. Define g, € L(X) by |

g, = 1 on A and g, = fn on X - A.

Then g, € LO(X) and

DCfn - gn) = Zer(A) r(y)[dfn(y) - dgn(y)]z,

where Y(A) U {Y(x); x € A}. Put

r(y) THE g KX, ¥)(E (X)) - g ()17

Wn(Y) xX€X

Then

0<w (y) <2r(y)",

‘ -1 _ ‘ -1 -

Zoev(a) T 7 = Zien Zyey(x) FY) T < = by (ALF),.
Since wn(y) - 0 as n= o, it follows from Theorem B that D(fn - gn)
= 0 as n = «, Thus D(gn) - 0 as n = «, Since dZ(A’ ®) S»D(gn)’

we have d2(A, ) = 0.

Remark 3.1. It is easily seen that
(3.1)° d2(A, ) = inf{D(u); u € DO(N) and u = 1 on A}.

On account of this lemma, we can introduce

Definition 3.1. We say that an almost locally finite network
N is of parabolic type (of order 2) if there exists a nonempty

finite subset A of X such that dz(A, ) = 0, We say that an

- 8 -
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almost locally finite network N is of hyperbolic type (of order 2)

if it is not of parabolic type.

The Green function g, of N with pole at a € X is defined (if
it exists) by the condition:

(3.2) g € DO(N) and Aga(x) = - aa(x) on X.

a
If there exist two functions fl and f2 which satisfy (3.2), then
u = fl - fz € HD(N) n DO(N), so that D(u) = 0 by Proposition 2.2.
Therefore u is a constant function. In case N is of hyperbolic
type, u = 0 by Lemma 3.1, namely the uniqueness of the Green
function follows. Assume that N is of hypefbolic type. Then
there exists a unique optimal solution u, of the extremum problem:

(3.3) dz({a},‘w) = inf{D(u); u € DO(N) and u(a) = 1} > 0.

By the standard variational technique, we see that g, = ua/D(uaI

satisfies (3.2). By the usual argument as in [11], we have
(3.4) 0 < g, (x) = gX(a) < min{g_(a), g (X)};
(3.5) < dga, dv > = v{(a) for all v € DO(N).

In case N is of parabolic type, there is no function which
satisfies (3.2)(ef. Remark 6.1).

We see by Proposition 2.1 that the minimum principle and
Harnak's principle for superharmonic functions holds in our case
(cf. [11; Lemmas 2.1 and 2.4]). In order to approximate the Green
function of N by the sequence of Green functions of subnetworks,
let {Nn}(Nn = {Xn, Yn’ K, r}) be an exhaustion of N (cf. [8]).

Note that each NI1 is a finite subnetwork of N.

(n)

The Green function g,

of Nn with pole at a is defined by
the condition:

(3.8) Agén)(x) = - Sa(x) on Xn’ g;n)(x) = 0 on X - Xn'
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The uniqueness of g;n) follows from the minimum principle. To
show the existence of g;n), consider the following extremum
problem:
(3.7) Minimize D(u)

subject to u € L(X), u(a) =1 and u = 0 on X - Xn'
Denote by d2({a}, X - Xn) the value of problem (3.7). There

(n)
a

exists a unique optimal solution u of this problem. Then

(M) - ()

a a /D(u;n)) satisfies our requirement.

By the minimum principle, ,
0<e™Mix) <™V (x) < g™ (ay on x.
a a a
Thus the pointwise 1limit of {g;n)} is either a real valued function
-on X or identically « by Harnack's principle. Notice that

(3.8) lim . d,({a}, X - X)) = d,({a}, =).

Lemma 3.2. Let u;n) be the unique optimal solution of

problem (3.7). Then there exists Va € DO(N) such that Va(a) = 1

(n)

and llu
hu,

- Va" - 0 as n =» o,
Proof. By the standard argument, we have for n < m
(n) _ _(m), _ (n), _ (m)
D(ua u, ) = D(ua ) D(ua )y,
It follows that {uén)} is a Cauchy sequence in DO(N). Thus

there exists v_. € D.(N) such that Hu(n) - v.l =+ 0 asn-> «,
a 0 a a

Clearly, Va(a) = 1.

Since gén)(a) = dy({a}, X - X ), we see by (3.8) that {g;“)}

converges to a real valued function on X if and only if d2({a}, w )

> 0, i.e., N is of hyperbolic type. If N is of hyperbolic type,
(n)

then Hga

- gaﬂ - 0 as n » « by the above observation.
By modifying the proofs of [10; Theorem 3.2] and [11; Theorems

3.1 and 3.2], wé obtain

_10_
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Theorem 3.1. An infinite network N is of hyperbolic type if

any one of the following conditions is fulfilled:

(C.1) 1 ¢ DO(N);

(C.2) DO(N) # D(N);

(C.3) The Green function g, of N with pole at a exists;

(C.4) For any exhaustion {Nn} of N, the sequence {gén)} of the

Green functions of Nn with pole at a converges to g,-
(C.5) There exists a nonconstant positive superharmonic

function on X.
We shall prove another criterion:

Theorem 3.2. An infinite network N is of hyperbolic type if
and only if the following condition is fulfilled:
(C.6) For any nonémpty finite subset F of X, there exists a
constant M(F) such that

(3.9) lu(x)| < M(F)[D(u)]l/z

zXGF
for all u € DO(N).

Proof. Assume that N is of hyperbolic type and let F be a
nonempty finite subset of X. It suffices to show that there exists
a constant M(F) which satisfies (3.9) for all u € DO(N) with D(u) =
1. Supposing the contrary, we can find a sequence {un} in DO(N)

such that D(un) = 1 and > Iun(x)l » ® as n > ©, Since F is a

xX€eF
finite set, we may assume that Iun(b)l -+ © as n + » for some b € F.

Let v, = un/un(b). Then vn € DO(N) and Vn(b) = 1, so that

B N 2.-1
dy({b}, @) < D(v)) = Dlup/u (b)) = [u (b)“17" 5 0
as n = o, Thus N is of parabolic type by Theorem 3.1, which
contradicts our assumption. Thus (C.6) holds. Next we assume

- 11 -
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(C.8). If N is of parabolic type, then there exists a finite
ndnempty subset F of X such that dz(F, ®) = 0, Thus we can find a
sequence {un} in LO(X) such that u, = 1 on F and D(un) - 0 as n-» «,
By (C.8), there exists a constant M(F) such that

1/2

1< S lu (01 < MF)[D(u)]"

x€eF
for all n. This is a contradiction. Therefore N is of

hyperbolic type.

Similarly to [11; Theorem 5.1], we have a discrete analogue of

Riesz's decomposition theorem:

Theorem 3.3. Assume that N is of hyperbolic type and let u
be non-negative and superharmonic on X. Then u is decomposed
uniquely in the form: u = Gu + h, where

Gu(x) = 2 g, (x)u(z) with u(z) = - Au(z),

z€X

and h is the greatest harmonic minorant of u.

Corollary. Let v € L+(X). If Av(x) € - ea(x) on X, then

ga(x) < v(x) on X.

Remark 3.2. In order to relate our theory of networks to the
theory of denumerable Markov chains in [3], we remark the following
correspondence of the notation:

o(x) = t(x) and c(x, z) = t(x, z)

for every x, z € X. Note that
c(x, z) = ¢c(z, x) 2 0 for every x, z € X,
c(x, z) = 0 for z ¢ U(x),
a(x) = 2 .y ¢(x, z) = ZZeU(X) c(x, z) > 0,
Thus we have
(3.10) Au(x) = - a(x)u(x) + EZEX c(x, z)u(z).

_12_



In what follows, we use a(x) and c(x, z) instead of t(x) and
t(x, z).

§ 4. The Markov chain associated with a network

Let N = {X, Y, K, r} be an infinite network which is almost
locally finite. The Markov chain P(N) associated with the network
N is defined as a Markov chain {X, Xn, P} with a state space X,
a process {Xn} and a transition matrix (function) P defined by
(4.1) P(x, z) = c(x, z)/a(x)

for every x, z € X (cf. [3; Proposition 9-1251]).

~Since P(x, x) = 0 for all x € X, there is no absorbing state
(cf. [3; p. 81]). By Remark 3.1 and (4.1), we have
(4.2) ZXEX o (x)P{x, z) = a(z) for all z € X,

i.e., the function o is a regular measure (cf. [3; p. 86]), or
equivalently, o is P-regular (cf. [3; Proposition 9-1271). As for
the a-dual matrix (function) P defined by |

P(x, 2z) = a(z)P(z, x)/o(x) (cf. [3; p. 132]),
we see by (3.1) that ﬁ(x, z) = P(x, z), so fhat the Markov chain
P(N) is o-reversible (cf. [3; p. 308]).

Since N is connected and P(x, z) > 0 for all z € U(x), we éee

that, for any a, b € X with a # b, there exists n > 0 such that

n _ n-1
where Po(z, b) = gb(z). Thus all states a and b communicate,
i.e., a~Db (cf. [3; p. 981]). Hence there is a single equivalence
class caused by this equivalence relation "~". k Namely the Markov

chain P(N) is irreducible.

We have by [3; Proposition 9-128]

- 13 -



Theorem 4.1. Let P = {S, Xn, P} be a Markov chain with a
state space S (countable set), a process {Xn} and a transition
probability P such that P(s, s) = 0 for all s € S. Then there

exists a network N = {X, Y, K, r} such that X S and P = P(N) if

and only if its states communicate and it has a positive regular

measure o with respect to which it is a-reversible.

Remark 4.1. In case P(x, z) > 0 and P(z, x) > 0, then there
exist positive numbers o«(x) and a(z) which satisfy (4.3).
Remark 4.2. For u € L(X), define Pu'by

Pu(x P(x, z)u(z),

) = EZGX
if they are well defined. Let I be the identity mapping from
L(X) to L(X), i.e. Iu(x) = u(x) on X. We have by (4.10)

Au(x) = - a(x)[(I - Plu(x)].

§ 5. Transient Markov chains
Let P = P(N) = {X, Xn, P} be the Markov chain associated the

network N = {X, Y, K, r}. By [3; Definition 4-18], we recall

Definition 5.1. A state x is said to be recurrent if the
probability h(x, x) starting in x of returning to x at least one

time is equal to 1; it is said to be transient if h(x, x) < 1.

Since’the Markov chain P is irreducible, we say that P is
recurrent if there exists a recurrent state and that P is transient
if there exists a transient state (cf. [3; Proposition 4-24 and
Definition 4-29]).

Let N(x, z) be the expected number of visits to z starting at

X. By [3; Propositions 4-12 and 4-20 and Corollary 4-21],

- 14 -
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(5.1)  N(x, z) = 35p_, Px, 2);

{e+]
- 2k=1
By [3; Proposition 4-20 and Corollary 4-21], we have

(5.2) N(x, x) (h(x, x)1¥°1.

Theorem 5.1. The Markov chain P is transient if and only if
N(x, X) < =, In this case, we have N(x, z) < « for all x, z € X,
(5.3) N(x, x) = 1/[1 - h(x, x)].

(5.4) N(x, z) £ N(z, z).

To combine the classification of netwofks with the theory of

Markov chains, we shall prove

Theorem 5.2. The Markov chain P = P(N) associated with the
network N is transient if and only if N is of hyperbolic type.

Proof. Assume that P is transient and let u(x) = N(x, a).
Then u is nonnegative. By the monotone convergence theorem,

Pux) = 2y 24ex

u(x) - ea(x),

P(x, 2)P(z, a) = 37_, P""(x, a)

or equivalently,

(5.5) . N(x, a) = Sa(X) + zzeX P(x, z)N(z, a) _
for all a, x € X (cf. [3; Proposition 4-131). By Remark 4.2,
S u(x) = - a(x)[u(x) - Pu(x)] = - a(a)e, (x)
for‘all X € X. Namely, u is a nonconstant positive superharmonic

function on X. Therefore N is of hyperbolic type by Theorem 3.1.

We see by the corollary of Theorem 3.3 that a(a)ga(x) < N(x, a) for

all a, x € X. Next assume that N is of hyperbolic type and let ga
be the Green function of N with pole at a. By Remark 4.2,
- _ -1 _ -1
g, (x) Pg, (x) = - a(x) Aga(X) = a(a) sa(x).

Since ga 1s nonnegative, we have

- 15 -
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-— n+l . & 0 n —
P g, * (I + P + + P )(ga Pga)

i)
|

= n+1 _l L n
=P g, * a(a) (I + P + + P )sa,
and hence
-1<n k
g,(x) = a(a) "2, _4 P (x, a)

1

for all n € Z' and x € X. Therefore ga(x) > a(a) "N(x, a) and the

Markov chain P is transient.
Corollary 1. If P is -transient, then N(x, a) = a(a)ga(x).

Corollary 2. o2(z)N(z, x) = aa(x)N(x, z) for all x, z € X.
We observe that some values of extremum problems which play
important roles in network theory have stochastic interpretations

(cf. [1]).

§ 6. Nonlinear network theory

Before studying more criteria for the recurrence of Markov
chains and the parabolicity of infinite networks, we give some
generalizations of the results concerning networks.

Let p and q be positive numbers such that

i/p + 1/gq =1 and 1 < p < o,
The energy H(w) and the Dirichlet integfal D(u) defined in § 2 can

be generalized as follows:

Hy(w) = Zoey r(3) Iw(y) 1P,
D,(w) = 30y r(y)ldu(y)|P.
The real valued function wp(t) defined by
wp(t) = |t|P lsign(t) for t € R
plays an important role in our study. Note that
to,(t) = 1tIP, To ()19 = 1¢IP and —F¢ 1£1P = pa(t).

For w € L(Y), define wp(W) € L(Y) by (@D(W))(y) = wp(W(y)).
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Let us put
Lp(Y; r) = {w € L(Y); ﬁp(w) < w},
pPl(N) = {u € LX) D, (u) < .
By the relation

D (g,) = Soey r(» ! PlK(a, ¥1,

we see that LO(X) c D(p)(N) if and only if N is p-almost locally

finite. For w € Lq(Y; r), we have

2

vey IK(a, y)wy)l = 2

vey r(y)llde, (y)1w(y)|
1/p 1/a _
< D, (g,) 17" PLH ()19 <
by Holder's inequality, so that the boundary operator d: Lq(Y; r)

— L(X) is defined by 8w(x) = 2 K(x, y)w(y).

yveEY
For u € D(p)(N), we see easily that Hq(@p(du))

D d
p(u) an
wp(du) € Lq(Y; r), so that the discrete p-Laplacian Apu € L(X) is
defined by .

Apu(x) =3 K(x, y)wp(dU(y)) = a[wp(du)].

veY
Note that Apu is nonlinear in u unless p = 2. Let Dép)(N) be the
closure of LO(X) with respect to the norm:

bl = [0+ Juexy) IP1YP (x, € %),
and let HD(p)(N) = {u € D(p)(N); Apu(x) = 0 on X}.

As a generalization of Theorem 2.1, we can prove that every. u
€ D(p)(N) can be decomposed uniquely in the form: u = v + h, where
v € Dép)(N) and h € 1D(P) (\).

We say that N is parabolic type of order p if it is p-almost
locally finite and if the value of the following extremum problem
vanishes for a nonempty finite subset A of X:

(6.1) dp(A, ®) = inf{Dp(u); u € LO(X) and u = 1 on A}.
In case N is not parabolic type of order p but p-almost locally

finite, N is called to be of hyperbolic type of order p.
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Let A be a nonempty finite subset of X and denote by P (N)

A,
the set of all paths from A to the ideal boundary « of N and by
QA’w(N) the set of all cuts between A and the ideal boundary « of N
(cf. [8]). The extremal length ELp(A, «) and the extremal width
EWq(A, =) of N between A and « (of order p and q respectively) are
defined by
(6.2) EL (A, ©) " = inf(H (W) W e E(P, (N},
where E(P, _(N)) is the set of all W &€ L"(Y) such that
EP r(y)W(y) 21 for all P € PA,Q(N).
(6.3)  EW (A, =) " = Inf{H_(W); W e E*(Q, ,(N)},
where E*(QA,M(N)) is the set of all W € L+(Y) such that
ZQ W(y) =21 for all Q € QA’m(N).
By using the limit property in [6], we have
(6.4)  d (A, ®) = EL_(A, =) .
By this fact and by the inverse relation
(6.5) [EL, (A, m)]l/P[qu<A, »)11/9 < g,

which was proved in [6] for p-almost locally finite networks, we

obtain the following result:

Theorem 6.1. Let N be an. infinite network which is p-almost
locally finite. Then N is of hyperbolic type of order p if any
one of the following conditions is fulfilled:

(p) .
(C.l)p 1 ¢ DO (N);
c.2). by # P (wy;

P 0
(C.6)p For any nonempty finite subset F of X, there exists a
constant M(F) such that

2XGF
(C.7)p There exist a € X and w € Lq(Y; r) such that

lu(x)| < M(F)[Dp(u)]l/p for all u € Dép)(N);
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zer K(x, y)w(y) = - g,(x) on X;
(C.8)p ELp(A, ®) < ®;

(C.9)p EWq(A, ) > 0.

Note that (C.7)2 is the criterion of the transience due to
Lyons [4, Theorem, p. 394]. By the same argument as in [12;

Theorems 4.2 and 3.2], we can prove

Lemma 6.1. Assume that N is of parabolic type of order p and
(p) -
let u € D (N). If ZXEX lApu(X)I < », then EXeX Apu(x)-— 0.
Remark 6.1. In case N is of parabolic type of order 2, any

function does not satisfy condition (3.2) by this lemma.

Lemma 6.2. For any w € Lq(Y; r), there exists u € D(p)(N)

such that Apﬁ(x) = 9w(x) on X. N
By means of these lemmas, we have

Proposition 6.1. Let N be p-almost locally finite. Then N
is of hyperbolic type of order p if and only if the following
condition is fulfilled:

(C.lO)p There exists w € Lq(Y; r) such that 2 |aw(x)| < « and

XEX

EXEX [Bw(x)] # O.

Notice that (C.lO)2 is the better test for transience due to
Lyons [4; Theorem, p. 398].

Let 1 < Py < P If N is p,-almost locally finite, then it

9
“is pz—almost locally finite. We see by the same reasoning as [10;
Theorem 5.1] that if N is of parabolic type of order pl, then it is
of parabolic type of order Py- Thus we can define the parabolic

index ind N of N as follows:
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ind N = inf{p > 1; N is of parabolic type of order p}.
As for a geometric meaning of the parabolic index, we refer to [10].
Remark 6.1. In case N is of parabolic type of order 2, any

function does not satisfy condition (3.2) by Lemma 6.1.

§ 7. Random walks

The symmetric random walk RW(d) in d-dimensions is defined to
be a sums of independent random variables process on the lattice of
integer points in d-dimensional Euclidean space. The transition

1

probability from one lattice point to another is (2d) — if the two

points are a Euclidean distance of one unit apart; the transition

probability is zero otherwise. Thus, from each point the process
moves to one of 2d neighboring points with probability (2d)—l.
(cf. [3; p. 84]). It is well-known that RW(d) is one of the

typical examples in the theory of Markov chains. Let N(d) be the
associated network with this random walk RW(d).

Lyons [4] proved by using condition (C.7)2 that RW(d) is
(d)

transient, i.e., ind N z 2. By reviewing his construction of a

flow for this proof, we shall prove that ind N(d) = d.

More precisely, let Z be the set of integers, X(d) = Zd'and

let eid), e, eéd) be the standard base of Rd, i.e., the k-th
component of e§d) is 1 for k = j and 0 for k # j. For a, b € Rd,
let [a, b] denote the directed line segment from a to b. For each
j (=1, +--, d), set-
(d) _ (d),. (d) d
Sj,+ = {[x, x + ej l1; x € X N R+},
S§dz = {[x, x - e§d)]; x € x4 q (- R?)},
(d) _ (d) (d) '
Sj SJ.,+ v Sj,—’ |
where Rg is the non-negative orthant of Rd. We define Y(d)by
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(d) _ d (d)
v =0y 85T

(d) and y = [Xl’ X2] € Y(d)

For x € X , let Kd(x2, y) = 1, Kd(xl, y)

i

0 if x # x, and x # X With r(y) = 1 on

1 2°
r} is a locally finite infinite

= - 1 and Kd(x, y)
¢(@) (@) | 5(d)

(d)
,,Y ’ Kd’
network. It is easily seen that the Markov chain associated with

(d)

this network is RW Hereafter, we omit the superscript (d) in

the notation in case no confusion occurs from the context.
It was shown in [5] that N(d) is of parabolic type of order d

(d)

and ind N £ d by using a geometric criterion in [10]. In case d

= 2, this proof is the same as the proof of the fact in [4] that
RW(d) is recurrent. We shall give another proof of the inequality

ing N

= d.

For u € L(X(d) X X(d)) aﬁd X € X(d), put
) _ <d ' + ad)y N

Jd(u, X) Ej {u(x, x ej ) u(x, x e

(d)
=1 j )}

We begin with a remark on our notation.

d) d)

Lemma 7.1. Let X = X( and Y = Y( and suppose that there
exists a function u with the following properties:
(7.1) u € L(X x X) and u(x, z) = - u(z, x) for all x, z € X.
Then there exists w € L(Y) such that

Zyey KX, ¥Iwly) = - Jq(u; x).

Proof. .Let us identify each (x, z) € X x X with the directed
arc [x, z]. For y € Y, there exists a unique j such that y € Sj’

so we define w(y) by

w(y) = u(x, x + ej) ify =[x, x + ej];

w(y) = u(x, x - ej) ify =[x, x - ej].
Let x = (vl, see vd). If vj > 0, then Y(x) n Sj = {yl, yz} c
Sj,+ with Yy, = [x, x + ej] and Yo = [x - ej, x], so that
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zyesj K(x, y)w(y) = w(y,) - w(yy)
= - u(x, x - ej) - u(x, x + ej).
if vj < 0, then Y(x) n Sj = {yl, y2} C Sj,— with Yy = [x, x - ej]

and Yo = [x + ej, x]), so that

zyesj K(x, y)w(y) = w(y,) - w(y,)

= - X, L) - s - e.).
u( X + eJ) u(x, x J)
If Vj = 0, then Y(x) n Sj = {yl, yz} with Yy = [x, x + ej] € Sj,+
and Yo = [x, x - ej] € Sj,—’ so that
Zyesj K(x, y)w(y) = - w(yy) - w(y,).
= - u(x, x + ej) - u(x, x - ej).
Thus we have

Zyesj K(x, y)w(y) = - u(x, x + e;) - ulx, x - ej),
and hence

Eer K(x, y)wly) = - J4u; x).

Now we recéll the product of flows due to Lyons. Consider
transformations Al = A£k+1) and and A2v= Aék+1) from X(k+l) into X(2
and X% defined by

Bpx = AV mmms Ve Vi) = g )

BgX = Ag(vyy oy Wy Wpyg) = gy s v vy )
The Lyons product f = u*v of u € L(X(z) X X(z)) and v € L(X(k) X
X(k))(k 2 2) is given by:

X % eiz)) X

f(x, x % e£k+l)) = u(Ax, Ay

[V(AX, A,x + eék)) - V(A X, AX - eék))];
f(x, x % e§k+l)) = V(AZX, A2x + e§%i) X

[u(A;x, Ajx + eéz)) - u(A;x, AjX - eéz))]

for 2 < j < k;
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(k+1)

f(x, x = S

) = x2 u(A;x, Ajx % eéZ)) X

1
(k)
V(AZX, A2X * ek ).

If u and v satisfy (7.1), then f does it.

Lemma 7.2. Let u, v and f be the same as above and assume

that Jz(u; a) = 0 and Jk(v; £) 0 for all a € X(Z), a # 0 and £ €

X(k), £ + 0. Then Jk+1(f; Xx) = 0 for all x € X(k+1) such that Alx
# 0 and A2X + 0.

Proof. Let us put

(2)
o, = o, 7 X) = u(A. X, A.X + e, ,
j J(u ) (A 1 j )

_ N _(2)
aj+2 - aj+2(u’ X) = u(Alxy AlX _ej )
for j =1, 2;

_ . _ ‘< (k)

Bj = Bj(v, X) = V(AZX, Azx ej ),
(k))
J

Bj+k = Bj+k(v; X) = V(AZX, A2X - e
for j =1, -+, k. Then

(7.2) Jpa (3 X)) = (a

1t 0:8)(8k - BZk) +
K ‘
zj=2 (Bj_l + B

By our assumption, we have

jo1+k) (X —0y) + 20058y - ZoyBay .

2?21 aj(u; x) = 0 and 2?51 Bj(v; x) =0 _
for x € X(k+l) such that Alx # 0 and A2X + 0. Thus by (7.2)

. - _ K -
Jk""l(f’ X) - (uz a4)2j=l (Bj + Bj+k) - O.

To construct a flow from O to the ideal boundary of N(k), let

us put for k = 2

Cék) = vy, -0, Vi1 n) € Zk; Ivil <n ((i-=1, ---, k - 1)},
- (k)
Qk —‘Unzo Cn .

Let u, € L(X(z) X X(z)) be a function which satisfies

(8.1) and let for n = 0
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1/(2n + 1) for |ul £ n

uy ((u, m), (u, n+ 1)) = { for |ul > n
u,((a, m), (@ + 1, m) = (2u+ D20 - 1)(2n + DI for
0 Lu<xn - 1;
(-~ 2u + 1)0(20 - 1)(20 + 1)1

uy((u, n), (u -1, n))
for - n + 1 < u £ 0;

0 for |ul > n;

Uy ((u, n), (u £ 1, n))
For n < 0, let

u,((u, n), (p, n+ 1)) = u,((u, n), (pw 1, n)) =0
for all u. It is easily seen that Jz(uz; a) = 0 for all a € X(z),

a # 0 and Jz(uz; 0) =1, i.e., J2(u; a) = eo(a). Let w, be the

2
function on Y(z) defined by u, in Lemma 7.1. Then Wo is a flow
from O to the ideal boundary of N(z).

Let U3 = u2*u2 be the Lyons product of u, and u2. Then
J3(u3; Xx) = 0 for all x € X(3) such that Alx # 0 and AZX # 0 by
Lemma 7.2. In case Alx = 0 and A2X # 0,

al = a3 = a4 = 0, az = 1; Bl = 82 = 83 = 64 =0
by our construction, and hence J3(u3; x) = 0. This is true in

case Alx +# 0 and A2X = 0. In case Alx = A2x = 0, we see that x =
0 and J3(u3; 0) = 2 by (7.2). Therefore J3(u3; X) = 280(X).

By our construction, we have

Ug(x, X + eé3)) - 2(2n + 1) 2

2

if x € cé3) (n 2 0);

- . (3) _ - 1.
|u3(x, z)| < B3(2n + 1) if x, z € Cn\ and |x zI3 = 1;

Here B3 is a constant independent of n and lek denotes the
Euclidean distance between x and O in Rk.

US(X’ z) = 0 unless {x, z} ¢ 93.

Let = Ugruy 4 for k = 4, ---, d. Then we see by induction

d+1 (d).

(d), _ ,d-2 - .
ud(x, X + ey ) = 2 (2n + 1) if x € Cn :
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d+1 (d)

if x, z € Cn

Iud(x, z)| < Bd(2n + 1) and |x - Z|d =1,

where Bd is a constant independent of n;

uy(x, z),= 0 unless {x, z} c Q.
By Lemma 7.2 and the fact that uk(x, z) = 0 unless {x, z} c Qk,

we see that Jd(ud; Xx) = 0 for all x € X(d), x # 0. By our

2d—2. (d)

construction, Jd(ud; 0) = Let L be the function on Y

defined by Uy in Lemma 7.1. Then

_ _ ,d-2
Eer K(x, y)wy(y) = - 27 “g,y(x)
for all x € X(d), i.e., L is a flow from 0 to the ideal boundary
of N4 Put
B (d) . (d) (d)
E,(n) = {yre Y5 e(y) nC 77 # 0 and e(y) nC_ 1 # 0},
Ez(n) = {y € Y(d); e(y) c Cr(ld)}.
Then
Card El(n) = (2n + 1)(1—1 and Card Ez(n) = 2n(2n + 1)d"2.
(Here, Card stands for the cardinal.) Let 1 < p < d and 1/p +
1/q = 1. Since wd(y) = 0 unless e(y) c Qd, we have
I q q
<30, 1297%en + 1790 4 1)
Q0 —d+l q d"2
+ 3.0 [Bg(2n + 1) 1% [2n(2n + 1)7 7]

< 2729, 39 5p (v DD g

y ()

since p < d implies (d - 1)(1 - q) < - 1. Therefore is of

hyperbolic of order p, 1 < p < d. Thus ind N(d) = d.
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