超曲面の単純K3特異点

铂波大学数学研究科 米村 崇(Takashi Yonemura)

 \widetilde{E}_{6} : $\chi^{3} + \chi^{3} + \chi^{3} + \chi_{1} \chi \chi \chi \chi , \chi_{1}^{3} + 27 \neq 0 \quad (E^{2} = -3)$

 \widetilde{E}_7 : $\chi^2 + \chi^4 + \chi^4 + \chi^2 + \chi_2 \chi \chi \chi \chi , \quad \chi_2^4 - 64 \neq 0 \quad (E^2 = -2)$

 \widetilde{E}_8 : $\chi^2 + y^3 + z^6 + \lambda_3 \chi y_{Z}$, $\lambda_3^6 - 432 \neq 0$ ($E^2 = -1$)

遊に、非退化な多項式 $f=\Sigma a v Z^{\nu}$ ($a_{\nu} \in \mathbb{C}$) が超曲面の単純 楕円型特異点を定義することと、f o Newton boundary

 $\Gamma(f) = (a_{\nu + 0}(\nu + R_{20}))$ の convex hull of compact face の和) が、点 (1,1,1) を含むような 2次元の face Δ を持っことは 同値な条件であり(渡辺[9])、擬斉次为項式 fo= LiaのZ^ルの weight は前記の3種しか現われないことが容易にわかる。

単純K3特異点は、単純楕円型特異点の3次元版として、 渡辺公夫[3]により定義された。ここでは非退化な狩項式を で定義される単純K3特異点(X,x)に対し、foのweight を分類し、この weight に関する blow-up で得られる写像 $\pi:(\widehat{X},E) \longrightarrow (X,x)$ を調べる。 π は一般に resolution には ならないが、 X, E(Eは正規K3曲面になる)の特異点は、 子がある性質をもてばfoのweight から完全に決定されるこ とがわかる。この morphism たは次の性質を持つ(泊[7])。 すなわち、九は x-E=X-12 を満たす proper morphism で Xの特異点は高っ terminal singularity、さらにKŷはT に関して numerically effective である。以下、この社質を もつ morphism を (X,x) o minimal resolution と呼ぶる とにする。(2次元の場合は、この条件は本来の minimal resolution の定義と同値である。)

2. 単純K3特異点 単純K3特異点を定義するために 必要な事項を以下にまとめる。詳しくは[2],[3],[8],[9]を 参照していただきたい。(X,x)を n 次元正規孤立特異点、 $\pi:(\widehat{X},E) \longrightarrow (X,x)$ を 1 つの good resolution とする。 また必要に応じてXは十分小さなスのStein近傍とする。

<u>定義1. (渡辺[8])</u> 正規孤立符異点 (X, x) に対して、 为重種数 {Sm}meN を次のように定義する。

任意のMEN/に対して Sm=1 となる特異点を純精円型特異点という。

以下 (X,x) は guasi-Gorenstein、するわち X-fxf 上いたる所のにならない正則n形式が存在すると仮定する。このとき、Xの canocical divisor を

 $K\widehat{\chi} = \pi^* K_X + \sum_{i \in I} m_i E_i - \sum_{j \in J} m_j E_j$, $m_i \ge 0$, $m_j > 0$ と表わし $E_J := \sum_{j \in J} m_j E_j$ を π の essential part と呼ぶ。 (X, X) が純楕円型のとき E_J は reduced になる (石井[2])。

<u>定義2(石井[2])</u> 純楕円型特異点 (X,z)が (0,i)-型であるとは、 $H^{n-1}(E_J, O_E)$ が (0,i)- Hodge 成分 $H^{q,i}(E_J)$ から成ることをいう。ただしここで

 $\mathbb{C} \cong \mathsf{H}^{\mathsf{n-1}}(\mathsf{E}_{\mathsf{J}}, \mathcal{O}_{\mathsf{E}}) = \mathsf{Gr}_{\mathsf{F}}^{\mathsf{o}} \mathsf{H}^{\mathsf{n-1}}(\mathsf{E}_{\mathsf{J}}) = \bigoplus_{i=0}^{\mathsf{n-1}} \mathsf{H}^{\mathsf{o},\mathsf{c}}(\mathsf{E}_{\mathsf{J}}) \qquad \text{\tilde{c} as 3.}$

定義-命題3(渡辺-石井[3]) 3次元正規孤立特異点 (X,x)が単純K3特異点であるとは次の同値な2条件が成り立つことをいう。

- (1) (X,x) は Gorenstein かっ (0,2)-型の純楕円型。
- (2) (X,x) は quasi-Gorenstein で、任意の minimal resolution $\pi: (\widehat{X},E) \longrightarrow (X,x)$ に対しEは正規K3曲面。

また超曲面の特異点に関しては次が知られている。

定理4 (渡辺[9]) $f \in C[Z,Z_3,Z_3,Z_4]$ を非退化な多項式で $X = \{f = o\} \in \mathbb{C}^4$ が $\chi = o \in \mathbb{C}^4$ に孤立特異点を持っとする。 P(f) を f の Newton boundary とするとき、

(X,x): 純楕田型 \iff $(1.1.1.1) \in P(f)$

さらに Δ を (1,1,1,1) を相対内部に含む $\Gamma(f)$ の face とすると $(X,\chi): (0,2)- 型 \iff dim_{\mathbb{R}} \Delta = 3$

 $\alpha(f) = (\alpha_1, \alpha_2, \alpha_3, \alpha_4) \in \mathbb{Q}_+^4$, $\stackrel{\triangle}{\succeq}_1 \alpha_2 \nu_1 = 1$ ($\stackrel{\nabla}{\nu} \in \Delta$) とする。特に $\stackrel{\triangle}{\succeq}_1 \alpha_2 = 1$ である。従って単純 K 3 特異点の weight の集合 W_4 は次のように表わすことができる。

 $W':=\left\{ \begin{array}{l} \alpha=(\alpha_{1},\alpha_{2},\alpha_{3},\alpha_{4})\in\mathbb{Q}_{+}^{4}\mid \sum_{i=1}^{4}\alpha_{i}=1 \end{array} \right\}$

とおき、 dをW'に対して

 $T(d) := \{ v \in \mathbb{Z}_{\geq 0}^4 \mid d \cdot v = 1 \}$

と定めるとき

 $W_4 = \{ \alpha \in W' \mid (1,1,1.1) \in Int (convex hull of T(\alpha) in \mathbb{R}^4) \}$ である。 $\alpha \in W_4$ は $\alpha \geq \alpha_2 \geq \alpha_3 \geq \alpha_4 \times \alpha_4 \times \alpha_4 \times \alpha_5 \times \alpha_$

<u>命題5</u> (1) P1+P2+P3+P4=P

- (2) 相異なる i,j, た に対して、 gcd (た, か, pk) = 1
- (3) aij := gcd (Pi,Pj) & to < & aij | p

またWyのweightは、年間はかかるが初等的な方法ですべて求めてしまうことができる。その結果は最後に表15としてまとめてある。分類の過程で次がわかる。

命題5(続き) (4) 井W4 = 95

(5) 任意の えに対して トート または たートト for す

注6. M. Reid氏は論文[5]の中で、ある性質をもった weight の集合 Ax を定義し、それが次のように特徴づけられ 95個の元から成ることを述べている。

 $A_{4}' = \{ d \in \mathbb{Q}_{+}^{4} \mid x \in (*)$ の形に書くときのへ③が成立 $\}$

- 1 P1+P2+P3+P6=P
- ② 任意のiに対(て Pil(p-Pj) for = (i=jでもおい)
- ③ ②ですべての ル=1.2.3% に対しよが同一のものにならないようにとれる。

この③の条件は、命題ちの(2)でおきかえられることが容易に確かめられる。従って Ax=W4 であり、さらに M. Reid 氏の結果により、Wx は命題ちの(1),(2),(5) で特徴づけられることがわかる。

| 神足? 多数の数を一般にNYして W_1 を定義すると、 $W_2 = \{(\pm \cdot \pm \cdot \pm \cdot), (\pm \cdot \pm \cdot \pm), (\pm \cdot \pm \cdot \pm) \}$ で、任意のんに対して $| \xi | \rangle$ が成り立っが、 $| \xi | \rangle$ の場合は命題 $| \xi | \rangle$ も成り立 たなく なる。 すなわち 擬条次 多 頃式では定義できない $| \xi | \rangle$ の 純楕円型 特異点の $| \xi | \rangle$ が存在する。

4. Minimal resolution ここでの minimal resolution とは、1の最後に述べた一般には resolution ではない morphism のこととする。 $f \in C[Z_1,Z_2,Z_3,Z_4]$ を非退化な为項式とし、 $X = \{f = o\} \in \mathbb{C}^4$ が $\chi = o \in \mathbb{C}^6$ に単純 K3 特異点をもつとき、

定理8 (泊[7]) π : (\tilde{X} ,E) \rightarrow (X, χ) を weight χ (f) of filtered blow-up とすると、 π (X, χ) の minimal resolution である。

X,Eの特異点を具体的に記述するため、このmorphism たを torus embedding により構成する。

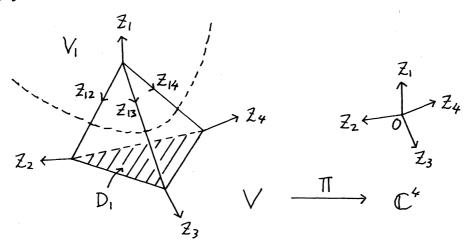
 $X \in W_4$ に対し \mathbb{C}^4 の 原点 O の weight X の blow-up を $\Pi: (V,F) \longrightarrow (\mathbb{C}^4, 0)$

とする。Tは次のように構成される。

 $\sigma_{i} = \langle E_{j}, E_{k}, E_{\ell}, P \rangle$ {i.j. た. ℓ } = {1,2,3,4} に分割し、coneの包含関係 $\sigma_{i} \in \mathcal{F}$ より得られる morphism $V_{i} := Spec \mathbb{C}[\check{\mathcal{F}}_{i} \cap \mathbb{Z}^{\ell}] \longrightarrow Spec \mathbb{C}[\check{\mathcal{F}}_{i} \mathbb{Z}^{\ell}] = \mathbb{C}^{\ell}$

をはり合わせてできる morphism

$$V := \bigcup_{i=1}^{4} V_{i} \longrightarrow C^{4}$$


が丌である。 (ゔはsodual cone を表わす。) 丌の例外集合 Fit weighted projective space $P(P_1,P_2,P_3,P_4)$ である。 Fodivisor D_i を $D_i := F - V_i$ で定義する。

このとき X はかによる X の proper transform であり、

$$T = T|_{X}$$
, $E = T'(x)$

XJ3. Vi o parameter system XL7.

Zi, Zy, Zik, Zie KK (Zij = Zlij, lij = (PiEj-PiEi)/aij KYA3.

fに関する非退化という条件より、X,Eの特異点を調べるには、Vかよび F=P(h,P,P,P,P) の特異点を調べればよいことがわかる。命題ちの(2)を満むす任意の(れたりに関する blow-up に対して次の命題が成り立つ。

<u>命題</u>9 (1) $V_{i} \cap V_{j} \cong \mathbb{C}^{*} \times Spec \mathbb{C}[\mathcal{T}_{ij} \cap \mathbb{Z}^{3}]$ れだし、 $\mathcal{T}_{ij} = \langle (0,1,0), (0,0,1), (a_{ij}, P_{A}, P_{e}) \rangle$ (2) $\{Z_{ij} = 0\}$ in $V_{i} \cong Spec \mathbb{C}[P_{ij} \cap \mathbb{Z}^{3}]$ ただし、 $P_{ij} = \langle (0,1,0), (0,0,1), (P_{i}, P_{A}, P_{e}) \rangle$

特に d ∈ W/ のときは命題5(1),(3)より次を得る。

系10 (1) Spec C[でijn Z³] の特異点は高々 terminal (2) トートト ならば Spec C[řijn Z³] も高々 terminal

また Fの特異点についてはもはり一般に命題5(2) を満んす(Ph.Ph.Ph.Ph)に対して次が成り立つ。Pi=aiacyaikaikaikによって整数 ai を定める。

- (2) $D_c D_f$ の特異点がA型となるための必要十分条件は $P_f | (a_{jk}P_f + a_{je}P_k)$ となることである。このとき特異点は $A_{gaij} 1$ 型になる。よって特に $\alpha \in W_g$ で $P_f | (P-P_c)$ なる

ば Dr-Drの特異点はAB-1型になる。

- 5. Eの特異点 4で準備した命題を用いて Eの特異点を記述する。 fは4と同じでさらに次の条件を放定する。
- (A) 各立に対して、おける まかける まですの形の項を持つ。 命題 5(5) より任意の $\chi \in W_4$ に対して (女) を満たす f で $\chi(f) = \chi$ となるものがとれる。命題 11 および $\Pi[4, Lemma$ 4.8 と その記明] を用いて次の結果を得る。

神題12 (1) Eは Aa_{ij} -/型特異点を冷個持つ。ただし $\chi_{ij} = \#\{ \nu \in \Delta \cap \mathbb{Z}^2 \mid \chi_{ij} = \nu_{ij} = 0 \}$ -1 である。

- (2) fo が zonのの項を持たず、zonがの項を持ては、 Eは Ap-1 型符異点を1個特つ。
 - (3) Eの特異点は上記の(1),(2)のみである。

この補題は Eの特異点が(weight ではなく) Δ の情報、するわち f の Newton boundary P(f) から記述されることを示すものであるが、実は fの M0 を満たす場合には weight さえ同じならば P(f) (從って Δ)が変化しても Eの特異点は変わらない。するわち次が成立する。

<u>定理13</u> E の E の E の E の E か E の E か E の E か E の E か E の E か E の E か E の E か E の E か E の E か E の E の E E の E

Aay-1がty個, Apc-1がの個である。ただしここで、

$$t_{ij} = \#\{v \in T(\alpha) \mid V_A = V_e = 0\} - 1$$

$$\sigma_{i} = \begin{cases} 0 & (|f_i| | p \circ v \neq 1) \\ 1 & (\exists A \lor A \lor A) \end{cases}$$

である。

記明は省くが、その本質的な部分は命題5の(5) にかいて トレーとトレートアン が同時に成立するとき (するりち たが z_{i}^{n} , $z_{i}^{m}z_{j}$ の形の項を同時に含み得るとき)、 $a_{ij}=$ たるり、命題11の(1)と(2)の特異点が共に Aa_{ij} -1型となる点にある。

また定理13においてたに関する条件(本)は必要である。 実際Weight(対対対対)を持つ次の3つの为項式

g。= x*+y*+ z*+ W* (これだけが(A)を満んす。)

91 = xx+ yx+ 2x+ (x2+y2+ 22) W2 + W5

 $g_2 = x^6 + y^6 + z^8 + (x^2W + y^2W + z^3)W + W^5$

を考えると、巨の特異点は順に、なし、A11つ、A21つとする。

6. Eの特異点の rank と fo のパラメータの個数の関係 定理 13 より f が (女) を満たせず &(f) から E の特異点が 決まるから、その rank を r(x) と書く。すなわち

 $Y(x) = \sum_{i \in J} t_{ij} (a_{ij} - 1) + \sum_{i=1}^{k} \sigma_i (p_i - 1)$ $(a_{ij} - 1) + \sum_{i=1}^{k} \sigma_i (p_i - 1)$

また $\alpha(f) = \alpha$ となる分項式 f に対し、 f のは一般に $f(\alpha) := \#T(\alpha)$ 個の項を持つ。 このとき weight α を保っ座標変換 α と α α

 $Z_{i} = \sum_{v \in \mathcal{N}_{i}(d)} \lambda_{i} w^{v}$, $\mathcal{N}_{i}(d) = \{v \in T(\alpha) \mid \sum_{i=1}^{n} y_{i}^{n} = \mathcal{N}_{i} \}$ を適当にとれば、f(w) が $f(\alpha) - n(\alpha) + y$ 個の頃を持つようにでき、そのうちの4つは係数を1にとれる。ただしここで、 $n(\alpha) := \sum_{i=1}^{n} \# N_{i}(\alpha)$ とする。すなわち $f(\alpha) - n(\alpha)$ を $f(\alpha) = f(\alpha)$ ラメータの個数と考えられる。このとぎ次成成り立つ。

系14 $x \in W_4$ に対し、 t(x) - n(x) + t(x) = 19

最後に、Wo に属する 95個の weight X、 fの例、 Eの特異点、 f(d), n(d), r(d) を表にすとめてかく。実は f として擬 育次为頃式 (すなわち f=fo) となるものがとれる。ここでは そのうち項の数が最小になるような f を選んである。

表 15

No.	α	f	Eの特異点	t(d)	n(d)	<u>Y</u> (d)
1	(本文,女,女)	28+ y8+ 28+ W8	なし	35	16	0
2	(す.女.女,な)	23+ 48+ 28+ W6	3A1 + 4A2	15	7	11
3	(すすか)	23+ 43+ 26+ W6	3A ₁	30	14	3
4	(3,3,4,12)	23+ 43+ 28+ W12	3 A ₃	21	11	9
5	(シット, と, と)	$\chi^2 + 4^6 + 2^6 + W^6$	なし	39	20	0
6	(ラ・ま・ま・た)	x2+45+25+W10	5 A,	28	14	5
7	(ラギキキ)	x2+ yx+ 28+ W8	2 A1	35	18	2
8	(ラッタッかた)	x2+ y4+ 26+ W12	2A1 + 2A2	27	14	6
9	(三,女,士,之)	$\chi^2 + 4^k + 2^5 + W^{20}$	A1 + 2A4	23	13	9
10	(专,专,古,古)	$x^2 + y^3 + z^{12} + W^{12}$	A_1	39	21	ı
11	(声,声,花,花)	x2+y3+ Z10+ W15	$3A_1 + 2A_2 + A_4$	18	10	//
12	(文, 支, 专, 十8)	x2+ y3+ 29+ W18	3A, + A2	30	16	5
13	(=, =, 8, =,)	$\chi^2 + \gamma^3 + z^8 + W^{24}$	$2A_2 + A_3$	27	15	7
14	(之,多,力,起)	$\chi^{2} + \Upsilon^{3} + Z^{7} + W^{62}$	$A_1 + A_2 + A_6$	24	14	9
15	(量,炭,生生)	$\chi^{3} + \chi^{3} Z + Z^{5} + W^{5}$	5Az + A3	12	6	13
16	(学,学,学)	$\chi^{3} + \gamma^{3}W + Z^{4} + W^{8}$	A1 + 4Az + A6	9	5	15
17	(多多多多)	23 + 97+ 25 + ZW6	A, + 3A4	14	8	13
18	(学,寺,寺,寺)	x3+ y3+ 2 w + w9	A, + 3A2	23	//	7

<i>No.</i>	ø	f	Eの特異点	£(X)	N(X)	(d)
19	$(\frac{3}{8}, \frac{1}{4}, \frac{1}{4}, \frac{1}{8})$	x24 + yx+ Zx+ W8	4A, + A2	İ	//	
20	(3/3,4,24)	x2Z+ y3+ Z4+ W24	A, + Az + A8	18	10	11
21	(3,5,5,5)	x2y+y5+ 25+ W5	A_1	34	16	1
22	(3, 1, 1)	x2 + y3 + 25 + W15	2A2 + A5	21	11	9
23	(たっちっち)	x2 + y4+ Z6+ W6	6A1 + A4	17	8	10
24	(岩,号,长,台)	$\chi^{2}Z + \gamma^{3} + Z^{6} + W^{12}$	3A, + A4	24	12	7
25	(等, 寸, 有, 中)	x2Z+ y3+ Z9+ W9	A ₃	33	17	3
26	$(\frac{9}{20}, \frac{1}{4}, \frac{1}{5}, \frac{1}{10})$	x2W+ y8+ 25+W10	5A, + A8	13	7	13
27	(岩,寺,寺,古)	2W+43+Z8+W12	3A1 + A10	15	9	/3
1	(号, 寸, 寸, 寸)	$\chi^{2}W + y^{3} + z^{7} + W^{2}$	Aq	24	14	9
29	(立,方,方,是)	22+45+26+4W6	$2A_1 + A_2 + A_3 + 2A_4$	10	6	15
30	(1/2, 1/2, 1/2, 1/8)	x2+ y5+ 25W+W8	A3 + 2A4 + A6	8	6	17
31	(=,54,6,8)	x2+y42+26+W8	2A2+2A3+A4	12	7	14
32	(一, 3, 5, 5)	$\chi^{2} + y^{4}Z + z^{7} + w^{7}$	7A, + Az	19	9	9
	(立,号,台,号)	x2+ y2W+ 26+W9	4A, + 2Az + Az	16	S	//
	(=, =, +, +;)	x2+ yw+ z+ W15	5A1 + A2 + A6	13	7	13
	(专文方是)	x2+ y4+ 27+ ZW18	A1 + A2 + 2A6	/2	8	15
	(一支,支, 是, 10)	22 + 48 + 26W + W10	2A1+ Az + 2A4	16	9	12
	(1/2, 1/2, 1/6, 1/6)	x2+ y4+ Z5W+ W16	A2 + 2A3	24	13	8
38	(2, 1/5, 1/30)	$\chi^2 + y^3 z + z^5 + W^{30}$	A1 + Az + A7	2/	/2	10

No.	ø	f	ヒの特異点	£(&)	n(d)	r (X)
39	(=, =, 6, 18)	x2+y3z+z6+W18	2A2 + A4	24	13	8
40	(之,至,力,旅)	$\chi^{2} + y^{3} + z^{7} + w^{14}$	3 A1 + A3	27	14	6
1	(支, 孝, 专, 七)	x2+ y3Z+Z8+W12	2A1+2A2+A6	16	9	12
42	(= 10, 10, 10)	x2+ y3z+ z10+W10	Az	36	19	2
43	(支,景,寺,左)	22+ 43w+ 29+W12	A1 + 2 A2 + A10	12	8	15
44	(支,卷,长,七)	22+ 43W+ 28+ W16	2A1 + A4	28	15	6
45	$(\frac{1}{2}, \frac{9}{28}, \frac{1}{7}, \frac{1}{28})$	$\chi^{2} + \gamma^{3}W + Z^{7} + W^{28}$	A1 + A8	24	14	9
46	(学,于,荒)	x2+43+2"+ZW12	A1+A2+A6+A10	9	7	17
47	(元,号,元,作)	2+43+427+W14	A1 + 2A2 + A3 + A6	13	ક	14
48	(元,多,态,化)	$\chi^{2} + \gamma^{3} + z^{9} \omega + \omega^{16}$	2A2 + Ax + A7	12	8	15
49	(皇孝, 差, 之)	$\chi^{2} + \gamma^{3} + Z^{3}W + W^{21}$	3 A1 + A4 + A6	15	,9	13
į į	(量,量,产,量)	x2+ y3+ y25+ W30	A1 + A3 + A4	25	14	8
51	(学,景,影,量)	x2+ y3+ 27W+ W36	Ax + As	24	14	9
52	(寺,幸,奇,36)	x3+y4+ x23+ ZW4	Az + A3 + A6 + A7	5	4	18
53	(3, 8, 3, 7)	$\chi^3 + \chi^3 W + \chi Z^3 + W^6$	A1+3A2+A3+A4	10	5	14
54	(号,号,盖,号)	$x^{3} + y^{3}W + yz^{3} + W^{7}$	3 Az + A; + As	9	5	15
55	(20, 3, 4, 6)	$\chi^2 y + y^3 w + z^4 + w^{10}$	3 A1 + A5 + A6	//	6	14
56	(気をすな)	$\chi^{2}y + y^{3}z + z^{5} + W^{6}$	A1 + A7 + A10	6	5	18
57		$\chi^{2}y + y^{6} + \chi^{2}y + W^{6}$	2A1+A2+A8+A8	8	5	16
58	(景,长,长,6)	$z^2 z + y^3 w + z^6 + w^{16}$	A1 + Ax + As	19	10	10

No.	X	f	巨の特異点	£(4)	N(K)	<u>r(u)</u>
59	$(\frac{8}{21}, \frac{1}{3}, \frac{5}{21}, \frac{1}{21})$	$\chi^{2}Z + y^{3} + z^{6}W + W^{21}$	Ax + A7	18	10	11
60	(78, 3, 3, 18)	x2Z+y3+4Z3+W18	A1 + A3 + A6	19	10	10
61	(岩,女,孝,方)	x22+44+24W+W7	2A1 + As + A10	7	5	17
62	(圣,女,士,孟)	22+44+25+4W5	Az + 2A3 + A7	10	6	15
63	(号,3,5,16)	$\chi^{2}Z + y^{3}W + Z^{5} + W^{10}$	2A1+A2+A3	23	11	7
64	(吉,子,七,多)	x2z+y3w+z6+W8	A1 + A6 + A9	10	7	16
65	(紫,支,蒜,什)	x2z + y3+ z6w + W"	A4 + A13	9	7	17
66	(3,3,5,5)	x2 2 + y3W+ 27+W7	$A_1 + A_2$	3/	15	3
67	(孝,孝,孝,孟)	x2Z+y3+Z7+yW7	A1+2A2+A8	14	8	13
88	(学学学)	x2 + y3+ y25+ W10	A1 + A3 + A12	10	7	16
69	$(\frac{7}{16}, \frac{1}{4}, \frac{3}{16}, \frac{1}{8})$	xw+4x+72x+w8	4A1+A2+A6	14	7	/2
70	(号, 高, 台, 寺)	2W+y3Z+Z6+W9	2A1 + A4 + A7	14	8	13
71	(元长方方)	22W + Y'Z + Z5 + W15	A3 + A6	27	12	9
72	(杂号,产,古)	$\chi^{2}W + Y^{3} + YZ^{5} + W^{15}$	A, + A6	26	14	7
73	(一, 去, 益, 元)	22+ y5+ y25+ 2W6	A1 + Ax + A6 + A7	6	5	18
74	$\left(\frac{1}{2},\frac{7}{32},\frac{5}{32},\frac{1}{8}\right)$	22+45W+425+W8	2A3+A4+A6	9	6	16
75	(=,5,7,1,1)	2+ YW+YZ3+ZW+W"	5A1+A3+A5	14	7	12
76	(生,3,5,13)	22+48W+428+W13	& A1 + Ax + As	13	7	13
77	(支,差,盐,盐)	22+ 432+25W+W26	Ax + A6	2/	/2	10
78	$(\frac{1}{2}, \frac{3}{11}, \frac{2}{11}, \frac{1}{22})$	$\chi^{2} + y^{3}z + yz^{4} + W^{22}$	A1 + A3 + A5	22	12	9

No.	α	f	Eの特異点	£(d)	n(K)	r(d)
	$(\frac{1}{2}, \frac{9}{32}, \frac{5}{32}, \frac{1}{16})$	$\chi^2 + y^3 Z + z^6 W + W^{16}$	2A1 + A4 + A8	13	8	14
80	(之,疑,益, 計)	2+ 432 + 28W + W"	A1 + A6 + A12	9	7	17
81	$(\frac{1}{2}, \frac{6}{13}, \frac{3}{26}, \frac{1}{13})$	$\chi^{2} + 4^{3}W + 72^{6} + W^{13}$	3A1+ A2+A9	16	9	/2
82	$(\frac{1}{2}, \frac{7}{22}, \frac{3}{22}, \frac{1}{22})$	$\chi^{2} + \gamma^{3}W + \gamma^{2} + W^{22}$	Az + A6	25	14	8
83	$(\frac{1}{2}, \frac{1}{3}, \frac{5}{54}, \frac{2}{27})$	22+ 43+ 210W+4W9	A1+A3+A6+A8	10	7	16
84	(3, 7, 2, 5, 27)	x3+ y32+ x23+ yw4	Az + As + As + A6	6	۶	17
85	(秦,至,杀,力)	$\chi^{2}y + y^{3}W + \chi z^{3} + W^{7}$	3A1 + A2 + A3 + A4	13	6	12
86	$\left(\frac{9}{25},\frac{7}{25},\frac{1}{5},\frac{6}{25}\right)$	$\chi^{2}y + y^{3}w + z^{5} + zw^{5}$	A3 + A6 + A8	7	5	17
87	(音,音,音,音)	$\chi^2 Z + \chi \gamma^2 + 2^6 \omega + \omega^{13}$	Az + A3 + A4	26	10	9
88	$(\frac{11}{27}, \frac{1}{3}, \frac{5}{27}, \frac{2}{27})$	22+43+25W+XW8	A, + A& + A10	//	7	15
89	(\frac{1}{11}, \frac{2}{11}, \frac{2}{11}, \frac{1}{11})	2W+292+4724+W11	A, + A2 + A4	24	/2	7
90	(之,弘,治,治)	x2+ y2+JW5+25W+ZW7	2A1+A3+A3+A6	P	5	16
9/	(2, 4, 3, 5)	2+42+425+4W6+23W4	A1 + Ax + A+ + A7	7	5	17
92	$(\frac{1}{2},\frac{11}{38},\frac{5}{38},\frac{3}{38})$	2+432+4W9+2W+ZW"	•. –	10	7	16
93	(生, 青, 青, 景)	x2+432+426+4W8+2W10		//	7	15
ł		24 + 432 + 26W+ XW4				
95	(7, 5, 7, 7)	$\chi^{2}Z + \chi y^{2} + Z^{5}W + yW^{6}$				

なか、正規K3曲面Eの特異点に関して、A.R.Fletcher氏の論文[1]に、これと同じ表が存在する。

参考文献

- [1] A.R. Fletcher, Plurigenera of 3-folds and weighted hypersurfaces, thesis submitted for the degree of Doctor of Philosophy at the University of Warwick, 1988.
- [2] S. Ishii, On isolated Gorenstein singularities, Math. Ann. 270 (1985), 541-554.
- [3] S. Ishii and K. Watanabe, On simple K3 singularities (in Japanese), Notes appearing in the Proceedings of the Conference on Algebraic Geometry at Tokyo Metropolitan Univ, 1988, 20-31.
- [4] M. Oka, On the resolution of hypersurface singularities, in Complex Analytic Singularities (T. Suwa and P. Wagreich, eds.), Advanced Studies in Pure Math. 8, Kinokuniya. Tokyo and North-Holland, Amsterdam, New York, Oxford, 1986, 405-436.
- [5] M. Reid, Canonical 3-folds, Journées de Géometrie algébrique d'Angers, (A. Beauville, ed.), Sijthoff and Noordhoff, Alphen aan den Rijn, 1980, 273-310
- [6] K. Saito, Einfach-elliptische Singularitäten, Invent. Math. 23(1974), 289-325.
- [7] M. Tomari, The canonical filtration of higher dimensional

- purely elliptic singularity of a special type, preprint, 1989.
- [8] K. Watanabe, On plurigenera of normal isolated singularities, I, Math. Ann. 250 (1980), 65-94.
- [9] K. Watanabe, On plurigenera of normal isolated singularities, II, in Complex Analytic Singularities (T. Suwa and P. Wagreich, eds.), Advanced Studies in Pure Math. 8, Kinokuniya, Tokyo and North-Holland, Amsterdam, New York, Oxford, 1986, 671-685.