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Selberg inequalty

Masatoshi FUJII

Osaka Kyoiku University

\S 1. Introduction.

Very recently, K. and F. Kubo [4] discussed the Selberg inequality and gave it an elegant

proof by using diagonal matrix which dominatesa positive semidefinite matrix.

The Selberg inequality. Let $x_{1},$ $\ldots,$
$x$ , be nonzero vectors in a Hilbert space $H$ with

inner product $(, )$ . Then, for $\epsilon flx\in H$ ,

(1) $\sum_{:=1}\frac{|(x,x:)|^{2}}{\sum_{i=1}^{n}|(x_{i},x_{j})|}\leq||x||^{2}$.

It is easily seen that the Schwarz inequality $is$ nothing but the case $n=1$ , and the

Bessel one is also the case where $X$ $=\{x_{1}, \ldots, x_{u}\}$ is mutually orthogonal. Therefore it

might be supposed that if the equality in (1) holds, then $x$ is a linear combination of $X$ and

$Xi\epsilon$ mutuaUy orthogonal. Clearly the former is necessary. However, not $\epsilon 0$ is the latter. In

fact, we can easily give counterexamples, one of which is given by

(2) $x_{1}=$ $(\begin{array}{l}10\end{array})$ , $x_{2}=(\begin{array}{l}11\end{array})$ , $x_{3}=$ $(\begin{array}{l}02\end{array})$ ,

and $x=x_{1}+x_{2}+x_{3}$ . Another is as foUows :

(3) $y_{1}=$ $(\begin{array}{l}10\end{array})$ , $y_{2}=(\begin{array}{l}20\end{array})$ , $y_{3}=$ $(\begin{array}{l}01\end{array})$ ,

and $y=y_{1}+y_{2}+y_{3}$ . These are typical examples in our discussion, but are essentially

different as seen in the below. In sucession with them, Furuta [1] posed an elementary proof

of the Selberg inequality and conditions enjoying the equality.

-1-

数理解析研究所講究録
第 743巻 1991年 70-76



71

Theorem A. The equaJity in (1) holds if and only if $x= \sum_{=1}^{n}a;x$ ; for some complex

numbers $a_{1},$ $\ldots,$
$a_{n}$ such that $(x;, x_{j})=0$ or $|a;|=|a_{j}|$ with $(a;x;, a_{j}x_{j})\geq 0$ for all $j\neq j$ .

The purpose of this note is to continue the discussion due to Furuta [1]. To do this, we

consider an operator corresponding to it. This is defined by

(4) $S_{X}= \sum_{j}\frac{x_{j}\otimes x_{i}}{\sum_{j}|(x;,x_{j})|}$ ,

where $(w\otimes w)v$ $=$ $(v, w)w$ for $v,$ $w\in H$ , and it is caJled the Selberg operator for

$X=\{x_{1}, \ldots, x_{n}\}$ . Then the Selberg inequality says that every Selberg operator is apositive

contraction. First of all, we give a refinement to Theorem A by the graph theoretic consid-

eration for given vectors $x_{1},$ $\ldots,$ $x.$ , by which we can see an ammusing relation between the

Selberg inequality and the Schwarz one. That is, if $S_{X}$ is a projection, then the subspace

spanned by $X$ is one dimensional.

\S 2. The Selberg inequality.

Suppose that $x_{1},$
$\ldots,$ $x,$ $\in H$ is given. We consider a graph $G$ with vertices $\{1, 2, \ldots, n\}$

such that

$(i,j)$ is an arc if $(x;, x_{j})\neq 0$ .

In other words, $i$ and $j$ are adjacent if $(x;, x_{j})\neq 0$ . Then $G$ is decomposed into connected

components;

$G=G_{1}\cup\ldots\cup G_{\mathfrak{n}}$

and so we have, by the unicity of the decomposition,

Lemma 1. $X=\{x_{1}, \ldots, x.\}$ is uniquely decomposed into $X_{1},$ $\ldots X_{\mathfrak{n}}$ such that

(a) $X_{1},$ $\ldots X_{n}$ are mutually orthogonal, i.e., for $k\neq l_{l}(v, w)=0$ for all $v\in X_{k}$ and

$w\in X_{l}$ , and

(b) Each $X_{k}$ is not decomposed into nontrivial subsets which are orthogonal. $v\neq w\in$

$X_{k}$ .

-2-



72

Proof. For the completeness, we give a proof. Take another decomposition $\{Y_{1}, \ldots, Y_{\{}\}$ .

For each $x=x;$ , if $x\in X$; and $x\in Y_{k}$ , then we have to show $X;=Y_{k}$ . Suppose that

$Z_{1}=X_{j}\backslash Y_{k}\neq\phi$ and $Z_{2}=X_{j}\cap Y_{k}\neq\phi$ . Since $X$; is decomposed into $Z_{1}$ and $Z_{2}$ , this

contradicts to (b).

Here we $caU\{X_{1}, \ldots, X_{\pi\iota}\}$ the minimal decomposition of $X$ , and $X$ is caUed connected

if the minimal decomposition of $X$ is $X$ itself.

Theorem 2. Notation as in above. Then the equality in (1) holds if and only if $x$ is $Q_{t}$

direct sum of $z_{1},$
$\ldots,$

$z_{m}$ , where each $z$. is of form $\sum a;x_{1}$ such that $x_{i}\in X.$ ,

(5) $(a_{i}x;, a_{j}x_{j})\geq 0$ , and $|a;|=$ I $a;|$ for all $i,j$ .

In particular, if $X$ is connected, then $x= \sum a;x$; and (5) is enjoyed.

Proof. We may assume that $X$ is connected, that is, for each $i,$ $(x;, x_{j})\neq 0$ for some

$j\neq i$ . Following Furuta, if we put $a;=(x, x;)/Cj$ , where $c;= \sum_{j=1}^{l}|(x;, x_{j})|$ , then

$0 \leq||x-\sum a;x;||^{2}$

$=||x||^{2}-2Re \sum a^{*}|(x, x_{i})+\sum_{i,j}(a_{i}x;, a_{j}x_{j})$

$\leq||x||^{2}-2Re\sum a_{i}^{*}(x, x;)+\sum_{i,j}(|a;|^{2}+|a;|^{2})|(x;,x_{j})|/2$

$=||x||^{2}-2R e\sum a^{*}:(x, x;)+\sum \mathfrak{l}^{a_{i}}\mathfrak{l}^{2_{C}}$:
$=||x||^{2}- \sum|(x, x_{i})|^{2}/c;$ .

Therefore the equalty in (1) holds if and only if $x= \sum a;x$ ; and

(6) $\sum_{i,j}2Re(a;x;, a_{j}x_{j})=\sum_{:,;}(|a:|^{2}+|a_{j}|^{2})|(x;,x_{j})|$ .
However, since

$2Re(a;x;, a_{j}x_{j})\leq(|a;|^{2}+|a;1^{2})|(x_{j}, x_{j})|$

is always valid for all $i$ and $j,$ (6) is equivalent to

(7) $2Re(a;x_{r}, a_{j}x_{j})=(|a;|^{2}+|a;|^{2})|(x;, x_{j})|$

for all $i$ and $j$ . For each $i$ , if we choose $j$ adjacent to $i$ , then (7) implies that

(8) $(a;x;, a_{j}x_{j})=|(a:x;,a;x_{j})|\geq 0$ and $|a_{j}|=|a_{j}|$ .
By the connectedness of $X,$ (8) holds true for all $i$ and $j$ .
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Conversely, if (8) is enjoyed for all $i$ and $j$ , then so is (7) and hence the equality in (1)

holds.

RemaIk. As you know, the difference of the examples (2) and (3) is due to connected-

ness. Actually (2) is the connected case, but $\{y_{1)}y_{2)}y_{3}\}$ in (3) is decomposed into $\{y_{1}, y_{2}\}$

and $\{y_{3}\}$ , which is the minimal decomposition. Furthermore (2) shows that a mixed type

of $(x_{1}, x_{2})=0$ and (5) happens even if it is connected. To speak plainly, if $X$ is connected

and the equality in (1) holds, then (5) must be enjoyed nevertheless there are orthogonal

vectors in $X$ , cf. also [1 ; Remark 1].

\S 3. The Selberg operator.

In this section, we shall make an operator theoretic consideration for the Selberg in-

equality. First of all, we remark the following facts : The Schwarz inequality is represented

by a rank one projection $Q$ as follows;

(9) $||Qx||\leq||x||$

for all $x\in H$ , see [3; Solution 2]. Along with this, if $Q$ in (9) is a rank. $n$ projection, then it

corresponds to the Bessel one. Furthermore (9) might be regarded as

(9) $(Qx, x)\leq||x||^{2}$ .
We thus define the Selberg operator $S_{X}$ for $X=\{x_{1}, \ldots, x,\}$ by (4). Noting that every

Selberg operator is a finite rank positive contraction, we have

Theorem 3. Suppose $X=\{x_{1}, \ldots, x.\}$ is connected. If 1 is an eigenvalueof the Sel-

berg operator $S_{X}$ , then it is simple. In other words, the eigenspace for 1 is at most one

dimensional.

Proof. Since $S=S_{X}$ is a positive contraction, its eigenspace $M$ for 1 coincides with

the subspace $\{x\in H;||Sx||=||x||\}$ . Then it follows from Theorem 2 that $M$ is at most one
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dimensional. As a matter of fact, suppose that there exists a nonzero vector $x= \sum a;x;\in M$ .

For any adjacent $j$ to 1, since $(a_{1}x_{1}, a;x_{j})\geq 0$ , we have

$arga_{j}=arg(x_{1},x_{j})+arga_{1}$ .

Moreover, for any adjacent $k$ to $j$ ,

$arga_{k}=arg(x_{j)}x_{k})+arga$ ;

Like this, since $X$ is connected, the ratios of $\{arga; ; i=1,2, \ldots, n\}$ is determined and does

not depend on vectors in $M$ . Therefore $M$ is one dimensional.

From our graph theoretical viewpoint, the Bessel inequality is an extension of the

Schwarz one on the number of connected components. The following corollary means that

the Selberg inequality for connected $\{x_{1}, \ldots, x.\}$ is another extension of the Schwarz one.

Ccrollary 4. Notation as in above. If the Selberg operator $S_{X}$ is a nonzero projection,

then the subspace spanned by $X$ is one dimensional.

Remark. In the Selberg operator $S_{X}$ , the attachment of normalizing constants

$\sum_{j}$ I $(x;, x_{j})|$ is very meaningful. That is actually clarified by the following example ;

$x=(_{1}^{1}t^{3}3),$ $y=(_{(-1-\sqrt{3})}^{(-1+\sqrt{3})}t_{6}^{6})$ and $z=x+y$ .

Then $\{x, y, z\}$ is connected and moreover we have

$x\otimes x+y\otimes y+z\otimes z=1$ .

Selberg operators are not necessarily norm 1:

Corollary 5. If there is a circuit $\{x_{1}, \ldots, x_{k}\}$ in a connected $X$ such that

$arg(x_{1}, x_{2})(x_{2}, x_{3})\ldots(xx)(x_{A}, x_{1})\neq 0$ ,

then there is no nonzero $x$ such that II $S_{X}x||=||x||$ .

A simple example for the above is as follows ;
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$x_{1}=(\begin{array}{l}13\end{array})x_{2}=(\begin{array}{l}11\end{array})x_{3}=(\begin{array}{l}2-1\end{array})$ .

On the other hand, we have II $S_{X}||$ $=1$ in the following case.

Corollary 6. If $X$ is a tree as a graph, then $||S_{X}||=1$ .

\S 4. Generalization.

K. and F. Kubo and Furuta gave a generalization of the Selberg inequality indepen-

dently.

Theorem B. Let $T$ be a bounded linear operator on a Hilbert space $H$ . If $x_{1)}\ldots,x,$ $\not\in$

kernel(T“), then

$\sum_{=j1}^{n}\frac{|(Tx)x_{i})|^{2}}{\sum_{i=1}^{\sim}|(|T^{l}|^{2\beta}x_{i},x_{j})|}\leq|||T|^{\alpha}x||^{2}$

for all $x\in H$ and $0\leq\alpha\leq 1$ , where $\beta=1-\alpha$ .

Furuta also discussed the equality case. So we review it in our situation. Let $T=U|T|$

be the polar decomposition of $T$ . Following them, replacing $|T|^{\alpha}x$ to $x$ and $|T|^{\beta}U$
“

$x$ ; to $x$ ;

in Theorem 2, we have Theorem B. Now we define a graph $K$ with vertices 1, 2, ..., $n$ such

that

$(i,j)$ is an arc if $(|T" |^{2\beta}x;, x_{j})\neq 0$ .

then we obtain the following equivaJent condition to the equaMty case in (1) :

Theorem 7. Assume that $K$ is connected. Then the equalty in (1) holds if and only if

$Tx= \sum a;U|T^{*}|^{2\beta}\prime x;$ , and

$(a;|T^{x}|^{2\beta}x;, x_{j})\geq 0$ and $|a_{i}|=|a_{j}|$

for all $i$ and $j$ .
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