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The adjacency operator of an infinite directed graph
HiroMITSU SASAOKA

§ 1. Introduction. .In the graph theory, an adjacency matrix has been considered
for finite graphs [2]. In (7], Mohar introduced the adjacency operator A(G) for an infinite
undirected graph G and discussed its spectrai radius r(G) = 7(A(G)). One of his main
results is that if a sequence {G, } of subgraphs of a locally finite graph G with bounded
valency converges to G, then r(G,) converges to r(G). Recently Biggs, Mohar and Shawe-
Taylor [1] discussed the relations between structure and the spectral radius of a undirected
graph with a finite isbperimetric constant. Since a graph discussed by them is undirected,
if its adjacency operator is bounded, then it is self-adjoint. From this point, we defined the
adjacency operator for an infinite directed graph in [4], in which the adjacency operator is
not always self-adjoint even if it is bounded.

This report consists of 5 sections;

§ 1. Introduction.

§ 2. Adjacency operators.

§ 3. Classtifications by adjacency operators.
§ 4. Convefgence of graphs.

§ 5. The spectrum of a graph.

In § 2, we memtion some basic definitions on graphs and the definition of the adjecncy
the adjacency operator A(G) of an infinite directed graph G. In § 3, several classes of
adjacency operators are characterized by their graphs. For example, A(G) is normal,
hyponormal, unitary and positive etc.. In § 4, we introduce the numerical radius of a
graph and discuss its continuity.‘ In the final section, we consider the form of the spectrum

of a graph.

§ 2. Adjacency operators. First we state some definitions for a graph. A directed

graph G = (V, E,0%,07) is a system of sets V, E and maps 8% : E — V. An element
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v €V (resp. ¢ € ) is called a vertex (resp. arc). For an arc e € E,0%(e) € V is an initial
vertex and 07 (e) € V is a terminal vertex. For each vertex v € V, the outdegree d*(v)

)

the indegree d™ (v) and the valency (or degree) d(v) are defined by

d*(v) = H{e € B;0%(e) = v}, d™(v) = t{e € B;07(e) = v},

and  d(v) = d*(v) + d " (v),

respectively. A graph is called locally finite if every vertex has finite valency. A graph
has bounded valency if there is a constant M > 0 such that d(v) < M for any vertex
v € V. We introduce common servers and receivers for‘pairs of vertices. If 0% (e) = u and
| 0~ (e) = v for some e € E, then u is a server of v, and v is a receiver of u. A vertex w
1s called a common server of u and v, if w is a server of u and v. Similarly w is called
a common receiver of u and v, if w 1s a receiver of u and v. Denote the number of all
common servers (resp. common receivers) of u and v by d*(u,v) (resp. d™(u,v)). We

define the following subsets of V;

D*(v) = {u € V;u is a receiver of v},
D™ (v) = {u € V;u is a server of v },
D*(u,v) = {w € V;w is a common receiver of v and v}, and

D~ (u,v) = {w € V;w is a common server of u and v}.

Throughout this note, a graph means a locally finite directed graph without multiple
arcs, that is, for any vertices u,v € V there exists at most one arc e € E with 0%(e) = u
and 07 (e) = v. |

Next we define the adjacency operator of an infinite directed graph. Let H be a Hilbert
space £2(V) with the canonical basis {é,,; veV} defined by e,(u) = by, for u,v €V, and
Hg the linear span of {e,; v € V}. Now we consider linear operators Ag and Bp on H with

the dense domain Dom(Ao) = Ho = Dom(By) defined by
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4o (zzvev);z S sueu and Bo (sze,,):Z T s

vev wEV veD~(u) VeV w€V veD*(u)
for ZvEV Tye, € Hg. Since G is locally finite, Ap and By are well-defined. Both operators
are closable and A% D By, B D Ao, where the bar denotes the closure.
Let us define a closed operator A = A(G) with the domain Dom(A) by
Dom(4) = {z = Z T,e, € H; Z | Z z, |*< oo}
vEV W€V  veD—(u)

and

Aw:Z Z Tyey,

ueVveD(u)

for z € Dom(A). We call A = A(G) the adjacency operator of G. Here we remark that
the above definition of A(G) is the transpose of the usual one of G. Then we see that
A D Ay = A%*. Similarly we shall define a closed operator B with the domain Dom(B) by
Dom(B) = {z = Z zye, € H; Z | Z 2, |*< oo}
veEV u€V yeD+(u)

and

Bz = Z Z ZTy€qy
)

u€VyeD+(u

for ¢ € Dom(B).
LEMMA 2-1. Let A be the adjacency operator of G. Then

1 if uweD¥(v), { 1 if uwe D (v),
u) = 2 A* v u) = .
(1) (Aev [ ew) { 0 if not, (2) (A% Jew) 0 if not,

(3) (A*Ae, | ey) = dT(u,v), (4) (AA%e, | ey) = d™ (u,v),

(5) I ey |I= v d*(v), (6) |l A% [l=Vd=(v).

We shall consider a necessary and sufficient condition for adjacency operators to be

bounded and give an upper-bound for the norm. To do this, we put the maximal outdegree
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and indegree of G by

kY = kT (G) = maz{d*(v);v € V},and

k™ = k7 (G) = maz{d~ (v);v € V}.
‘We sometimes regard £ as a subset V' x V, that is, an arc ¢ € E with d%(e) = u and
0~ (e) = v might be denoted by (u, v).

THEOREM 2-2. Let A be the adjacency operator of a graph G.

(1) A is bounded if and only if G has bounded valency. Moreover in this case,

| All< VE-kt.

(2) Assume that G has bounded valency . If there exist k™ vertices {vi,...,v4-} and

A= B* B= A* and

k* vertices {u1,... ,ur+} such that (v;,u;) € E fori=1,... ,k~,j=1,...k%, then

I All=Vkk+

§ 3. Classifications by adjacency operators. We shall classify graphs with
bounded valency by their adjacency operators. A source of a directed graph G is a vertex
v whose d~(v) = 0. A source v is called non-trivial if d*(v) # 0. A sink of G is a vertex v
whose d*(v) = 0. A sink v is called non-trivial if d~(v) # 0. And a graph G is normally
symmetric if d~ (u,v) = d*(u,v) for any u,v € V.

It 1s obvious that the adjacency A is self-adjoint if and only if the graph is undirected

in the sense that (u,v) € Eif (v,u) € E.

THEOREM 3-1. Let A be an adjacency operator of a graph G. Then
(1) A is normal if and only if the graph G is normally symmetric.

(2) If A is hyponormal, then there does not exist a non-trivial sink of G.
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(3) A is compact if and only if G has only finitely many arcs.

REMARK. As in the above (2), if an adjacency operator A is co-hyponormal, then

there dose not exist a non-trivial source of G.

Examprres: The above graph theoretical classification leads us the example of a nor-
mal operator mn I'ig.1. Tor this example, Fig.2 gives us an example whose adjacency
operators is nonnormal and hyponormal. |

It follows from Lemma 2-1 (3) and (4) that A is hyponormal if and only if the operator

given by infinite matrix (d*(w,v) —d™ (u,v))u v is positive. Hence if 4 is hyponormal, then
(0) d¥(u) > d (u) forall uweV

Clearly (0) implies G does not have a non-trivial sink. llowever the condition (0) does not
imply the hyponormality of A. An example of this is posed by Fig.3. As a malter of fact,

A is expressed as a matrix

O o
O OO
_—0 O
OO O

Take a vector z =* (1,0,0,1). Then,we have

\((A*A — AAN)z | z) = =2,

so that A is not hiyponormal. Furthermore we know that A is normaloid, i.e, | A= r(A),

the spectral radius of A, whose related results will be considered after.
v v T -
1 | '

= ' - : : g ﬁ\ ¢ ﬁ)\
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TneoreM 3-2. Let A be an adjacency operator of a graph G.
(1) The [o]]owiﬁg are equivalent. ‘
i) A is a partial isometry.
i) For any vertex v € V,d¥(v) <1 and d™(v) < 1.
iif) The connected components of G are one of the following,
o Q O30 - S 20—0

)
o—0 30 - = - o¢ by ot S e

(2) The lollowing are equivalent.

1) A Is an isometry.
i) Tor any vertex v € V,d*(v) =1 and d”(v) < L.

i) The connected components of G are one of the following,

O— >0 =D }O’)““'" ) """)O——ﬂo———eo——go_)_____

(3).The following are equivalent.

)

i) A is unitary.
ii) For any vertex v € V,d*(v) =1 and d™(v) = 1.

iii) The connecled components of G are one of the lollowing,
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(4) A is a projection if and only if the connected components of G are one of the

0 5

following,

REMARK. As in the case of isometries, the following are equivalent.
i) A is a co-isometry.
ii) For any vertex v € V,d*(v) < 1 and ‘d‘(’v) = 1.

u1) The connected components of a graph are one of the following,

In a directed graph, any sequence of consecutive arcs is called a walk. A walk is
called a.trail if all ils arcs are distinct. Especially a trail whose endvertices coincide is
called a circuil. Let Ni(7,5) denote the number of walks of length & starting at vertex
7 and terminating at vertex i. If we denote A* = agc), then it is known that Ny(¢,j) =

aff).[Q,Theorem 1.9] We can characterize nilpotent operators by the existence of circuits.

THEOREM 3-3. Let G be a finite graph and A be a non-zero adjacency operator.
(1) A is nilpotent if and only if G has no circuits.
(2) If A is idempotent, then G has at least a loop.
_A graph G is called trivial if G has no arcs. A simple undirected graph in which
every pair of distinct vertices are adjacent is called a complete graph. A simple undirected
graph in which if every pair of (not necessa,rﬂy distinct) vertices are adjacent is a super

complete graph.

THEOREM 3-4. Let A be an adjacency operator of a graph G. A is positive if and

only if the connected components of G are finite super complete or trivial.

7



100

§ 4. Convergence of graphs. In [7], one of his main result is that if a sequence
{Gn} of subgraphs of a graph G converges to G, then r(G,) converges to r(G). But
Mohar’s result does not hold for infinite directed graphs. For example, we consider ‘the
shift graph P, whose adjacency operator is a unilateral shift, and the path P, with leng;zh
n as a subgraph of P. Though r(P,) = 0 for any n by A(P,)" = 0, »(P) = 1. We note
that, as an adjacency operator A is Hermitian in his case, the spectral radius r(A) of A
coincides with the numerical radius w(A4) of A. Here w(T) of an operator T on a Hilbert

space H 1s defined by
w(T) = sup{| (Tz,2) |;|| = ||= 1,2 € H},

cf.[6]. So we call w(G) = w(A(G)) the numerical radius of G. By recent work in [3] and [5],
we know that w(P,) = cos 27 and so w(FP;,) converges to 1 = w(P). However we remark
that the numerical radius of operators is not continuous with respect to the strong operator
topology in [6:Prob220], whose counterexamplé is also acceptable for the numerical radius
of graphs.

For another simple example, let E, be the projection onto the subspace spanned by
{ex;k > n}. Then E, converges to 0 strongly and w(E,) = 1 for all n. As a matter of
fact, E,, Is regarded as the adjacency operator of the graph whose vertices are {1,2,...}
and vertex & has only self-loop for & > n.

Nevertheless, we have the following result by assuming a bounded condition, which is

known by the lower semicontinuity.
LEMMA 4-1. Let T, and T be operators on H.
(1) Ifw(T,) < w(T) for all n and T,, converges to T in the weak operator topology,

then w(Ty) converges to w(T). )
(2) If|| Tn ||<|| T || for all n and T;, converges to T in the strong operator topology,

then || T, || converges to || T ||.
- Next we difined the convergence of graphs. For u,v € V, we denote (u,v) € E if there
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is an arc e € F such that 0% (e) = u and 97 (e) = v. Let {G,} be a sequence of graphs and
G a graph. We may assume that V(G,) = V(G) for all n without loss generality. Then G,
converges to G, in symbol, G, = G (n — o0) if for any vertices u, v € V(G) there exists
a number N such that for all n > N, (u,v) € E(G) if and only if (u,v) € E(G,). It means
the convergence of all entries of the adjacencey operator, i.e. (A(Gr))u,v — (A(G))y, o for

any u,v € V(G). We have the following generalization of Mohar’s result.[7:Prop 4.2]

THEOREM 4-2. Let {G,} be a sequence of subgraphs of a graph G. Then the follow-

ing conditions are equivalent:

(1) G, converges to G.
(i1) A(G,) converges to A(G) in.the strong operator topology.

(111) A(G,) converges to A(G) in the weak opera:tor topology.

For 2 = (z,) € £%(V), we denote z > 0 if =, 2 0 for all v and | & |= (| zo |).

- LEMMA 4-3. For a graph G,

w(G) = sup{(A(G)z,z); || = [|= 1,z 2 0}

=sup{(A(@Qy,y);llyll= L,y = Z Yvey > 0 and W Is finite }.
vEW

From the graph theoretical view, the bounded condition in Lemma 4-1 is very natural.

COROLLARY 4-4. If F is a subgraph of a graph G, then w(F) < w(G).
Consequently we have a generalization of a result by Mohar [7].

THEOREM 4-5. Let {G,} be a sequence of subgraphs of a graph G. If G,, converges

to G, then w(G,) converges to w(G).

CoROLLARY 4-6. For a graph G,

Il A(G) ||= sup{|| A(F) ||; F is a finite subgraph of G}.
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CoROLLARY 4-7. If F is a subgraph of a graph G, then || A(F) ||<|| A(G) ||.

THEOREM 4-8. Let {G,} be a sequence of subgraphs of a graph G. If G, converges
to G, then || A(G,) || converges to || A(G) ||. 1

REMARK 4-9. If G is an undirected graph, then 7(G) = sup{r(F); F is a finite
subgraph of G.} by [7]. To the contrary, if G is a directed graph, then it is not true, e.g.
a shift graph because the adjacency operator of its finite subgraph is nilpotent. However
since 7(G) = limpy—oo || A(G)™ ||*, one can prove that if F is a subgraph of a graph G,
then r(G) > r(F).

§ 5. The spectrum of a graph. In this section, we discuss relations between

properties of a graph and its spectrum.

THEOREM 5-1. Let G be a infinite graph. Then the spectra of G is symmetric with

respect to real axis.

A graph is a bipartite graph if the vertices of G can be partitioned into two disjoint

sets V1 and V3 in such a way that every edge has one vertex in ¥} and one vertex in V5.

THEOREM 5-2. Let G be a bipartite graph. Then the spectra is symmetric with

respect to zero.

Next, we define the isoperimetric constant i(G) of a graph G. For a graph G and a
finite subset X of the vertices of G, we define §X to be the subset of arcs of GG incident
with exactly one vertex of X.

| 0X |

i(G) = inf{ X |

; X is a finite subset of V(G)}

A graph is a k-semiregular graph if there exists a constant k such that d™(v) = k or

dt(v) =k for any v € V.
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LEMMA 5-3. If G is an infinite k-semiregular graph such that i(G) = 0,

then r(G) > k.

THOREM 5-4. If G is an infinite graph such that i(G) = 0, then
max{{~, 1} < r(G)

where £~ (resp. £*1) is a minimal number of indegree (resp. outdegree)of G.

COROLLARY 5-5. If G is a k-semiregular graph such that i(G) = 0 and k™ = k1 =k,

then A(G) is normaloid and r(G) = k.
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