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ENTROPY for CANONICAL SHIFTS

Marie CHODA

Department of Mathematics, Osaka Kyoiku University

§1. Introduction.

The notion of the entropy for *-automorphisms of finite von Neumann algebras is intro-
duced by Connes and Stgrmer ([3]). In the previous paper [2], we defined the entropy for
*_endomorphisms of finite von Neumann algebras as an extended version of it. It is possi-
ble to define the entropy for a general completely positive linear map « using results in [4]
by a similar method to one for *-endomorphisms. However, the formula of the definition
of the entropy for o implies that the entropy is apt to be zero if o converges to o when
k tends to infinity. The conditional expectation is a trivial example of such a map «. For
that reason, the interesting completely positive map « for us to discuss the entropy are

those which have the property that of goes away from « as k tends to infinity.

In this paper, we shall study such a class of *-endomorphisms of injective finite von
Neumann algebras.

In §3, we shall introduce, for a *-endomorphism & of an injective finite von Neumann
algebra A, the notion of an n-shift on the tower (4;); of ;inite dimensional von Neumann
subalgebras of A which generates A and we obtain the formula of the entropy H(e) for an

n-shift o.

In the work [8] on the classification for subfectors of the hyperfinite type II;-factor,

Ocneanu introduced a special kind of *- endomorphism which is called the canonical shift
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on the tower of 1elative commutants. The *-endomorphism I' is a generalization of the
comultiphcation for Hopf algebras and also cohsidered as the canonical shift on the string
algebras. In a part, I' has simlar properties to the canonical endomorphism of an inclusion

of infinite von Neumann algebras due to Longo [7].

The canonical shift T' naturally induces a 2-shift for the injective finite von Neumann
algebra A which generated by the tower (A4,); of relative commutants and the entropy

H(T') is determined by the following :

. H(Az)
H(T) = hm ———.
() ook
For a *-endomorphism o of a von Neumann algebra A, the entropy H{s) is a conjugacy
invariant, that 1s, if there 1s an 1somorphism # of A onto a von Neumann algebra B such
that 8o = @8 for a *-endomorphism ¢ of B, then H(s) = H(4). On the other hand, two

conjugate *-endomorphisms & and ¢ of A give two conjugate von Neumann subalgebras

o(A) and ¢(A) under automorphisms of A.

In [9], Pimsner and Popa introduced two conjugacy invariants for von Neumann subal-
gebras. One is the relative entropy H{A | B) for a von Neumann subalgebra B of a finite
von Neumann algebra A, which 1s defined an extended version of one for finite dimensional
algebras due to Connes-Stgrmer [3]. The other is the constant /\(A,B),. which plays a
role like the index for subfactors due to Jones [6]. In fact in the case of factors B C A,
A(A,B)!is Jones index [A : B.

We shall investigate relations among those invariants.

In §4, we restnict our attension to finite dimensional von Neumann algebras. We need
those results later . The Jones index for a subfactor IV of a finite factor M is given as
1/7(e) for the projection e of LZ(M) onto L?(N) where 7 is the trace on the basic extension
algebra of N C M. In the case of finite dimensional von Neumann a,lgebra,s‘, we shall show

that the constant A( , )~! coinsides with Jones index in such a sense.

2
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In §5, it is obtained that in general the following relation holds for an n-shift ¢ :
H(A]o(4)) € 2H(s).

A condition that the equality holds 1s also givén‘

In §6, we shall obtain the relation between H (o) and the constant A(A, o(A)). We shall
define a locally standard tower for an increasing sequence (A4;); of finite dimensional von
Neumann algebras. The tower (A4;); of relative commutants for the inclusion of finite
factors N C M satisfies this condition. If a *-endomorphism & of A is an n-shift on a

locally standard tower which generates A, then we have the following :
H(A|o(4)) <2H(s) <log M4, 0(4)) 7"

In §7, we shall apply the above results to the canonical shift I for the tower of relative
commutants. Let N C M be type II;-factors with the finite index. Considering the
tower (M;); of factors obtained by iterating Jones basic construction from N CM,itis
obtained the increasing sequence(A;); of finite dimensional von Neumann algebras, where
Aj =M’'NM;. The*-endomorphism I is defined on the algebra U,‘ A; as a mapping such
that T(M; N M;) = M;, ,NM;,, forall £ < j. First, we remark that I is extended to the
trace preserving *-endomorphism of a finite von Neumann algebra 4 ={J;(4;)". Then T

has an ergodic property that

(r*(4) =1

k .
and satisfies the conditions of Definition for a 2-shift, except only one. In order that I’

satisfies all conditions for 2-shifts, a condition for the inclusion N C M is necessary. For

example, in the case where N'N M = C1, T 1s a 2-shift and the following relation holds :
H(A|T(A)) <2H(T) < 2log[M : N].
Furthermore, if the inclusion N C M has finite depth ([8], [12]), then we have :

H(M | N) = H(T) =log[M : N]".

3
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In §8, we shall discuss conditions for a *-endomorphism ¢ of a factor M to be extended to
an automorphism 6 of a factor containing M so that H(o) = H(8). If the inclusion N C M
has finite depth, thén I' is extended to an ergodic *-automorphism ® which satisfies the
following :

H(M ! N)=H(®)=H(I') = log[M : N]—l.

§2. Preliminaries.

In this section, we shall fix the notations and terminologies frequently used in this paper.

Throughout this section, M will be a finite von Neumann algebra with a fixed normal
faithful trace 7,7(1) = 1. The inner product < z,y > = 1(zy*) gives M as a vector space
the structure of a pre-Hilbert space. Let ||z]| = 7(2*2)'/? and L?(M, r) the Hilbert space
completion of M. Then M acts on L?(M,7) by the left multiplication. The canonical
conjugation on L2(M,7) is denoted by J = Jas. It is the conjugate unitary map induced
by the involution * on M. For a von Neumann subalgebra N of M, let ey be the orthogonal
projection of L?(M, 1) onto L2(N,7). Then the restriction En of ey to M is the faithful
normal conditional expectation of M onto N.

The letter n designates the function on [0, 00) defined by 7(t) = —tlogt. For each k, we
let Sy be the set of all families (@, iy,....i, )i;en of positive elements of M, zero except for

a finite number of indices and satisfying

Z T i = 1

2.1,...,31‘,...:']‘_-

For z € S;,5 €1,2,..,k and 1; € N, put

F - 2[ . .
Th = Liyin; .., ip.

il)'"y‘j-lx‘]-{‘lr";‘k

Let Ny, Na, ..., Ni be finite dimensional von Neumann subalgebras of M. Then

H(Ni,..,Ni) = Supses,| D, a7(@is,in) = 9 D, m0En, (@),
. ~

t]_,...,ﬂc
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Let ¢ be a 7-preserving *-endomorphism of M and N a finite dimensional von Neumann

subalgebra of M, ithen

H(N,0) = lim %H(N, a(N),...,c*"H(N))

exists by [2]. The entropy H(c) for o is defined as the supremum of H(N, o) for all finite
dimensional subalgebras N of M.
If there exists an increasing sequence (N;); of finite dimensional subalgebras which
generates M, then by [2]
H(s) =}_I_i+n°1° H(Nj, ).
The relative entropy H(M IN) for a von Neumann subalgebra N of M is defined ([10])

as an extension form of one ([3]) by
H(M | N) = Supyes, »_[rn(e:) — rnEn (z.)].

This H(M | N) is a conjugacy invariant for subalgebras of M. Another conjugacy

invariant A(M, N) is introduced in [10] as a generalization of Jones index defined by

A(M,N) = max{X > 0; En(z) > de,z € M, }.

For an inclusion N C M of finite von Neumann algebras, the von Neumann algebra
on L?(M,7) generated by M and e = ey is called the standard basic exte'/psion (or basic
construction) for N C M and denoted by M; =< M,e >. Then by the properties of
J = Jyu and e = ey, we have My =< M, e >= JN'J([6]). If M, is finite and if there is
a trace 7y on My such that 71(ze) = Ar(z) far all z € M, 1:hen the trace 71 is called the
A-Markov trace for N C M. If M D N are factors and there; 1s the A -Markov trace of My
for N C M, then Jones index [M : N] = A~ ([6]).

We shall call an increasing sequence (M;)jen of von Neumann algebras a standard tower
(cf. [5], [9], [18]) if M;_1 C M; C M1 is the basic construction obtained from M;_, C M;

for each 3.
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Let L be a finite factor containing M. We shall call L the a,lgebria,ic basic construction
for the factors N C M if there 15 a non zero projection e € M satisfying :

(1) exe= En(z)eforz € M

and

(11) L is generated by ¢ and M as a von Neumann algebra.

In this case, there is an isomorphism ¢ of M; onto L such tha,f dleny) =€ and ¢(z) ==
for all z € M ([11]).

We shall call such a projection e the basic projection for N C M and a decreasing
sequence (N;)jen of finite factors a standard tunnel (cf. [5], [9], [13]) if Nj_1 D N; D Nj4q

1s the algebraic basic construction for N; D N;i; for each j.

§3. Entropy of n -shift

In this section, we shall give the definition of n-shifts and a formula of the entropy for
n-shifts. Let A be an injective finite von Neumann algebra with a fixed faithful normal
trace 7, with 7(1) = 1. Let (A4;),;=1,2,. be an increasing sequence of finite dimensional von
Neumann algebras such that A = the weak closure of | J; 4; = {4; :j}". Assume that o
is a 7-preserving *-endomorphism of A. Then ¢ is a ultra-weakly continuous, one to one

mapping with ¢(1) = 1.

Definition 1. Let n be a natural number. A r-preserving *-endomorphism o of A is
called an n-shift on the tower (A4;); for A if the following conditions are satisfied:

(1) For all a.ﬁd m, the von Neumann algebra {A4;,0(4;),...,0™(A;)}" generated by
{o*j (4,);5 =0,...,m} is contained in A; 1om.

(2) There exists a sequence (k;)jecn of integers with the properties:

.
lim -2 —¢

and
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za™(y) = o™ (y)z, 7(z0'"(2)) =r(2)7()

foral lE N, z,y € A;, m € k;N and z € {Aj,O’kf(A]'),...,G’(I*l)kj(Aj)}”;
(3) Let Eg be the conditional expectation of A onto a von Neumann subalgebra B of

A. Then foran j>n

EaiBoayy = Bo(ajon)

(4) For each j, there exists a r-preserving *-automorphism or antiautomorphism 8 of

| Anjin such that 6(A,;) = B(A4,;).

Remark 1. The number n of an n-shift depends on the choice of the sequence (4;);.

Every given n-shift can be 1-shift on a suitable tower for the same von Neumann algebra.

Example 1. Let S be the *-endomorphism corresponding to the translation of 1 in the
infinite tensor product R = @), 5 (M;, tr;)of the algebra M; of m x m matrices with the
normalized trace tr; on M; for each + € N. For each j, let 4; = le(M;, tr;). Then for
all n, S* is an n-shift on the tower (4;); for R.

In fact, forann € N, let k; = [3;] + 1. Then (k;); sa.tisﬁ.es the following properties (2’)

which are stronger than (2): /

nk; —j3

lhim
} o0 J

and

za™(y) = o™ (y)e, T(20"(2)) = 7(2)7(2)

for all I €N, z,y € A;, k; < k, m € N and z € {4;,0*(4;), ..., oc*"V(4)}". K is

obvious that another conditions are satisfied by S™.

7
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Example 2. Let (¢;); be the sequence of projections with the following properties for
some natural number k and X € (0,1/4] U {1/(4cos?(n/n);n > 3}:

(a) eieje;=Xde; ifli—jl=k

(b) eie; =eje; H|i—j|#k .

(c) (e;); generates the hyperfinite type LI;-factor R

(d) 7(we;) = Ar(w) for the trace 7 of R and a reduced word w on {1,ey,...,¢_1}.

Let A; be the von Neumann algebra generated by {ey,...,¢;}. Then, by [6], 4, is finite
dimensional. Let o be the *-endomorphism of R such that a(e;) = e;11([1]). Then ¢® is
an n-shift on the tower (4;); of R for all n. In fact, for an n € N, let k; = [Z—J,E-]i] + 1.
Then (k;); satisfies properties (2’) in Example 1. The condition (3) and (4) are satisfied

by using results by [6] and [1]

In §7, we shall show that the canonical shift due to Ocneanu is a 2-shift on the tower of

relative commutant algebras.

Theorem 1. If a r-preserving *-endomorphism & of A satisfies the condition (1) and

(2) in Definition 1 for the tower (4;); of A, then

H(s) = lim H(A“k).

k— o0 k

§4. Finite dimensional algabras.
In this section, M will be a finite dimensional von Neumann algebra and 7 a fixed faithful

normal trace of M with 7(1) = 1. Then M is decomposed into the direct summand:

M=Y @u

leK

where M; is the algebra of d(I) x d(l) matrices and K = Ky is a finite set. Then

the vector dpr = d = (d(1))1cx is called the dimension vector of M. The column vector

8
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tar =t = (t(1))icx has t(l) as the value of the trace for the minimal projections in M;,‘
and 1s called the trace vector of 7. Let N be a von Neumann subalgebra of M with
N = 3 ey DNi. The inclusion matriz [N — M| = (m(k,1))reky,icK, 15 §iven by
the number m(k,l) of simple components of a simple M; module viewed as an N3 module.

Then

N[N & M] =dy and [N — M]ty = ty.

Here we shall give a simple formula for A(M, N).

By the definition of the basic construction of N C M, there is a natural isomorphism
between the centers of N and < M,e > via z — JzJ. Hence there is a natural identification
between the sets of simple summands of N and < M,e >. We put K = Ky = K¢} -

The following theorem assures that in the case of finite dimensional von Neumann alge-

bras, the constant A( . ) plays the same role as the index for finite factors.

Theorem 2. (1) Assume that there is a trace of < M, e > which is an extension of 7.
Then
tn(k)

M< M,e> M) 1= —_—
(< M,e ) [15°3 tem,e> (k)

(2) If the trace 7 of < M, e > has the 7(e)- Markov property, then
M M, e > M)t =1/r(e) =|| [N = M] ||

Definition 2. Let N C M C L be an inclusion of finite dimensional von Neumann
algebras. Then L 1s said to be the algebraic basic construction for N C M if there is a
projection e in L satisfying

(a) L is generated by M and e,

(b) ze = ez for an ¢ € N,
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(c) If z € N satisfies ze =0, then z = 0,
(d) exe = Eny{(z)e forall z € M.
In this case, there 1s a *—iso’morphism’oft.he basic comstruction M; = JN'J onto L.
We shall call N C M C L a locally algebraic basic extension of N .C M if there is a

projection p € L N L' which satisfies that the inclusion M C Lp is the algebraic basic

construction for N C M.

If L DM D N is alocally standard extension of the inclusion M D N, we can identity
the set Ky with a subset of K7 via the equality Ne = eLe. Under such an identification,

we have the following:

Proposition 3. Let L. D M D N be a locally standard extension of M D N. Then

ML, MY ' > max min tN(k).
T T keKyleKy tp (D)

Let
I(M) =" d(Dt(1)1og ‘f—((?“-

e K )

where K = Kpy ,d=dp and t = 3.

proposition 4.
(i) H(M | N) < I(M) - I(N)

(i) H(< M,e >| M) = I(< M,e >) — I(M)
(i11) I(M) < 2H(M) and the equality holds if and only if M is a factor.

§5. H(s) and H(A | 0(A))
In this section we shall investigate a relation between H(o) and H(A | o(4)) for an

n-shift o on the tower (A;); for a finite von Neumann algebra A.

10
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Let {A;); be an increasing sequence of finite dimensional von Neumann algebras. Let
Aj = ZkeK} @4; (k) be such a decomposition as in §4, and d; the dimension vector of 4;.
Then we shall say (4;); satisfies the bounded growth conditions ([2]) if the following two

conditions are satisfied :

() _
sup ———-—-—HA")I < 4o

5 J
and
(i1) For some m, A;41(1) contains at most d;(k) A;(k)- components for all j > m |

where |(K;)] is the cardinal number of K.

For examples, let us consider two towers which are treated in Examples 1 and 2 . Both
of them satisfies the bounded growth conditions ([2]). We shall discuss another example

in §7.

Theorem 5. Let o be a 7-preserving *-endomrphism of an injective finite von Neumann
algebra A with a faithful normal trace 7, 7(1) = 1. If o is an n-shift on the tower {4;),

for A, then
H(A|o(A)) <2H(o).

Furthermore, if the bounded growth conditions are satisfied, for the tower (A,;);
H(A|o(4)) =2H(0).

In order to prove Theorem 5, we need the following:

Lemma 6. Let ¢ be the same as in Theorem 5. If o satisfies the conditions (1), (3)

and (4) in Definition 1 for n, then
H(A l o(4)) = .linolo H(Anj+w | Auj)'
J— )

11
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By considering the standard tower

1’\{‘ C iﬁv{[ C }\/{l C MQ, C v C j\’fn :< i"i’./I;Lﬂ.‘l)eu__i >'C e

obtained from the pair N C M of Ilj-factors with [M : N] < oo by iterating the basic
construction, it is proved in [11] that H (M, | N) = log[M, : N}if H(M | N) = log[M : N].
Since the index has the multiplicative property ([6]), 1t implies that H(M, | N) = nH{M |
NYU H(M | N) = log|[M : N]. Next corollary shows a similar result holds for the pair

o(M)C M.

Corollary 7. Let a *-endomorphism o satisfy the same condition as in Theorem 5.

Then for all n

H(A| o™(A)) = nH(A | o(4)).

§6. H(c) and X(A,o(A)) for n-shift o.
In this section, we shall investigate relations between the entropy H{c) and the constant
A(A, o(A)) for an n-shift ¢ of the tower (4;);en for a finite von Neumann algebra A with

a fixed faithful normal trace 7, (1) = 1.

Definition 3. We shall call an increasing sequence (A;); of finite dimensional von
Neumann subalgabras of a finite von Neumann algebra A with a faithful normal trace 7 a
lacally standard tower for o if there exists a natural number k& which satisfies the following
conditions :

1) For a certain central projection pi(;jy1y of Ag(i) the inclusion matrix [4r —

A +1pi+1] 1s the transpose of [Ag; 1) — Ay4] , for each 7 .

12
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2) If (tg(;—1)(2))i is the trace vector for the restriction of 7 to Ag¢;_1y, then the value of
7 of the minimal projections for Ag(; 1)Pr(j+1) are given by (afy;_1)(2))i for each j .
3)There is an ¢ > 0 such that H(As;) < ¢ —jloga for each j.

We call the number 2k a period of the locally standard tower.

As the examples of locally standard towers , we have followings :

(i). The tower (A;); in Example 1is obviously a locally standard tower for 1/m because
the inclusion matrix in each step are all same.

(ii). The standard tower is a locally standard tower for || T*T =1, because the inclusion
matrix in the j-th step is the transpose of one in the (j — 1)-th step for all § ([6]). Hence
the tower (4;); is also locally standard if A;,, is a locally algebraic basic extension of
A1 CA;.

(iii). The tower (4;); in Example 2 is a locally standard tower for A, because the central
support of e; in A; satisfies the condition (1) and (2) in Definition 3 and the condition (3)
are proved by results in § 4.2 and § 5.1 in [6].

We shall treat another locally standard tower in the next section.

Theorem 8. Let A be a finite von Neumann algebra with a fixed faithful normal trace
7, 7(1) = 1. Let ¢ be an n-shift on the locally standard tower (4;); for @ with a period

2n, then
H(A|o(4)) <2H(o) < —loga <log \(4,0(A)) !

The author would like to her hearty thanks to F.Hiai for pointing out a mistake in the

proof of Theorem 8 in the prelimina,ry version.

Corollary 9. Let A be an injective finite factor with the canonical trace 7 and ¢ an

n-shift of a locally standard tower for A with a period 2n, then

13
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H(A | o(4)) < 2H(c) < loglA : o(4))]

In the case of a factor A, it is obtained in [10] equivalent conditions that H(A | s{A)) =

log[A : 0(A)]. In such a case, we have

H(A|o(A)) =2H(c) =log[d : c(4A)].

For example, the shifts S in Example 1 and o for A > (1/4) in Example 2 satisfy the

equality ([2]). However, the shifts ¢ in Ex&mple 2 have the following relation([2]):
H(R|o(R)) =2H(c) < log|R : o(R)]

i< (1/4).

§7 Canonical shift .

In [9], Ocneanu defined a very nice ®-endomorphism for the tower of the relative com-
mutant algebras for the inclusion N C M of type /];-factors with the finite index. |

At first, we shall recall from [9] the definition and main properties of the canonical shift
on the tower of relative commutants.

Let M be a finite factor with the canonical trace 7 and N a subfactor of M such
that [M : N] < +oco. Then the basic extension My =< M,e > is a [lj-factor with the
X = [M : N]~'- Markov trace ([6]) and there are the family {m;} C M which forms an
”orthonormal basis” in M with respect to the N valued inner product En(zy*)(z,y € M),

that is, each ¢ € M is decomposed in the unique form as the following ([9], [10]):
= ZEN(m:z)m,

14
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Iterating the basic construction from N C M, we have the standard tower
M_1=NCM0=MCM1 =<M0,60 >CM2C

in which, ¢; is the projection of L?(M;,7;) onto L*(M;_1,7j_1), where 7; is the A- Markov

trace for M;. Then from the family v(e,- ); the projection e(n, k) is obtained and
My C My, CMyy =< M, e(n, k) >

is an algebraic basic extension ([9], [11]). Furthermore it is obtained in [9] that the "or-
thonormal basis” in M, with respect to M,_; valued inner product from the family of the
basis in (M;);.

Let A; = M'N M; for all . The antiautomorphism ; of Ag; = M' N Mj; defined by

vi(z) = Jje"J;, = € Ay

is called the mirroring , where J; is the conjugate unitary on L*(Mj, ;). Then for all

x € M' N M,j, the following expression of the mirrorings is given :
7i(2) = [M; - M]3 E(em]z)em,
¢

where E is the conditional expectation of M; onto M, e is the projection of L%(Af;) onto
L*(M) and (m;); a module basis of M, over M. The expression implies that the mirrorings

satisfies the following relation:
Vi1V =i V-1

for all § > 1 on Agj_1. In the view of this relation, the endomorphism I' of | J, An can be
defined by \

I(2) = ¥j41(7; (),

for # € Az;. Ocneanu called the endomorphism I' the canonical shift on the tower of the

relative commutants. In the case of inclusions of infinite factors, similar *-endomorphisms

15
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are investigated by Longo [8]. The mapping I has the following properties ; for any k,n > 0
with n > k&,

I‘(M,Z ﬂMn) - Mk+2' nM,,_}_z.

Now, we shall consider the finite von Neumann algebra A generated by the tower (4;);
and extend I to a trace preserving *-endomorphism of A as follows.

Since N C M are I1-factors with [M : N] < 400, there is a faithful nouﬁal trace
on U,’ M; which extends the canonical trace 7 on M. We denote the trace by the same
notation 7.

Although M; 1 1s defined as a von Neumann algebra on Lz(Mj,Tj), each M; can be
considered as von Neumann algebras on the Hilbert space L?(M, 7). Hence | J 4; and |J M;

can ce considered as von Neumann algebras acting on LZ(M,T). Let
Mo ={JM}", 4a={JA4}"
j i

Then M, is a finite factor with the canonical trace which is the extension of 7. We
denote 1t by the same notation 7. Then A 1a a von Neumann subalgebra of M. Since I
is a ultra-weakly continuous endomorphism of Ui A;, T is extended to a *-endomorphism
of A.

Although, in the case where discussed by Ocneane, for all k, the mirroring -y; 1s a trace
preserving map thanks to the assumption N'NM = C1, in general, the mirrorings are not

always trace preserving . However the canonical shift is always trace preserving :

Lemma 10. For every k, 441 - & is a 7- preserving isomorphism of M' N My onto
Mé n M2k+2.
Furthermore, if E4,(e;) = A ( for example N'N M = C1), then v; is a trace preserving

antiautomorphism of Ay; for all 5.

3

By Lemma 10, the canonical shift ' on the tower of the relative commutants (4;); of

16
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M is extended to a 7-preserving *-endomoiphism of A. We shall call the *-endomorphism
of A the canonical shift for the inclusion M D N and denote it by the same notation I'.

We shall show the canonical shift I' 1s a 2-shift on the tower (A4;); for A.

Lemma 11. Let L be a finite von Neumann algebra with a faithful normal trace 7,

(1) =1. If M is a subfactor of L, then

r(zy) =r(z)r(y) (e €M, ye M'NnL).

Proposition 12. The canonical shift I' for the inclution N C M satisfies the conditions
(1), (2) and (3) for 2-shifts. |
If Ea,(e1) =[M : N]71, then ' is a 2-shift on the tower (4;); for A.

Next, we shall show the entropy H(I') of the *-endomorphism I' of 4 is always dominated

by log[M : NJ.

Lemma 13. Let B = AN N for von Neumann subalgebras A and N of a finite von
Neumann algebra M satisfying the commuting square condition : EpFny = EnE4 = Fp.
Then, | |

H(M|N)> H(A|B), AM,N)<\A4,B).

Let B and C be the von Nenmann subalgebras of A defined by

B= (i nm)), o= (Jminm))”
i J

Theorem 14. Let I" be the canonical shift for the inclusion N C M of type 1[;-factors

with [M : N] < co. Then
) . HMNOM
H(T) = lim —(-——k—-—zﬁ

17



205

If Ba,(e1) =[M :N]71 then

H(A|C)<2H(T) <log MA,C)"* = 2H(M | N) = 2log[M : N].

4

Corollary 15. Under the same conditions as in Theorem 14 | let A be a factor. Then

CH(A|C) < 2H(I) < 2log[A : B] = 21log[M : N].

Corollary 18. Let I' be the canonical shift for the inclusion N C M of type [ -factors

with [M : N] < oco. I N'NM = C1, then

H(T) < H(M | N) =1log[M : N].

For a pair N C M of hyperfinite type Ili-factors with [M : N} < oo, Popa says that
N C M has the generating property if there exists a choice of the standard tunnel of

subfactors (IV;); such that M is generated by the increasing sequence (N; N.M);.

Corollary 17. Assume that N C M has the generating property. If Envapr(eg) = [M :
NJ]~1, then
H(M | N)=H()=log[M : N]"*.

As a sufficient condition that satisfies two a,ssurﬁptions in Corollary 17, Ocneanu [9]
introduced the following notion for a pair N C M with N'NM = C1, and Popa [13]
extended it to general cases. The inclusion N C M of type J[y-factors with [M : N] < 400
1s said to have the finite depth if

sup(k;) < +oo
i

where k; is the cardinal number of simple summunds of M' N M;.

18
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Remark 18. If the inclusion N C M of type Il;-factors with the finte index and
finite depth, then the tower (4;); of relative commutants satisfies the bounded grouwth

conditions.

If an inclusion N C M has the finite depth, then Ennpr(eo) =[M : N]"Pand N C M

has the generating property ([13]). Hence we have :

Corollary 19. Let N C M be type Il;-factors with the finite index and the finite

depth. Let T" be the canonical shift for N C M. Then

H(M|N)= H(I‘) =log|M : N]™1.

Remark 20. In Corollary 18, the shift I" is considered as an *-endomorphism of the
algebra A generated by the tower (A;); of the relative commutants of M. Since N C M
has the finite depth, the shift I' induces a trace preserving *-endomorphism of M which
transpose M onto such the subfactor P that P C N C M 1s the algebraic basis extension

for P C N. Then the *-endomorphism of M has the same property as I'.

In the last of this section, we shall show that the canonical shift has an ergodic property,
which is similar to the canonocal endomorphism in {7]. So that the canonical shift is a

shift in the sense due to Powers [14].

Proposition 21. Let N C M be type I[;-factors with the finite index. Then the

canonical shift I for N C M satisfies that

[(T*(4) = C1.
k

§8 Extension of canonical shift.

19
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In this section, we shall show that the canonical shift T' is extended to an ergodic *-
automorphism © of a certain big von Neumann algebra such that H(I') = H(©).

Let N C M be type [L-factors with [M : N] < ~o. Let
M_1 =N C M =M0 C M] =< M,& >C ... C M} =< M}'*l,ej_l >C ...

be the standard tower obtained from N C M. Let M, be the fimte factor generated by

the tower (M;);.

Proposition 22. Let N C M be type [I;-factors with the finite index and 7 the

L 3

canonical trace of M. Let o be a -1isomorphism of M onto N. Then the following

statements are equivalent :

(1) There exists a *-isomorphism oy of M; onto M such that for all « € M,
oi{z) = o(z).
(2) There exists a projectioﬁ e € M such that
c(N)={e}'NN and En(e)=Xl=[M:N|"L
(3) There exists a projection e € M such that for all y € N,
eye = E,ny(yle , 7ley) = Arly)

and
M 1s generated by N and e as a von Neumann algebra.

(4) There exists an automorphism © on M, such that for all z € M and all j,
O(z) =o(z) and Ofe) € M;.
(5) The decreasing sequence

MDONDe(N)D..Da!(N)D ...

20
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1s a standard tunnel.

Definition 4. Let ¢ be a *—isomorphism of a type II;-factor M onto a subfactor N with
the finite index. If ¢ satisfies the equivalent conditions in Proposition 22, then we call &

basic *-endomorphism for the inclusion N C M.

Let ¢ be the basic *-endomorphism of the inclusion N C M of type II;-factors with
the finite index. Let P; = M No’ (M)'. Then (P;); is an increasing sequence of finite
dimensional von Neumann algebras. Let P be the von Neumann a,lgebra; generated by

(P;);. Then P is a von Neumann subalgebra of M and we have the following :

Proposition 28. Let ¢ be the basic *-endomorphism for the inclusion N C M of thpe

II;-factors with the finite index. Then,

O"k '
(o) = Jim S

Assume that Ennp(e) = [M : N]7! foa a basic projection of (N) C N. Then o™ is a
m-shift on the tower (F;); for P for all even number m and satisfies the following relations.

For all even m,

H(P | o™(P)) < 2mH(0) < log AP, 0™ (P))~t = mlog[M : N]

Corollary 24. Let ¢ be the same as in Proposition 23. Then
9H (o) < iog[M . N].
Fuethermore, if the inclusion N'C M has hinite depth, then
H(M | N)=2Hu(s) =2H(s) = log[M :N];

where Hps (o) is the entropy of & as a *~endomorphism of M.

21
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As an example of a basic *-endomorphism, we have the *-endomorphism ¢ in Example

We shall show that another good example of a basic *-endomorphisms is the canonical

shift on the tower of relarive commutants in §7.

Proposition 25. Let M 3 N be type [l;-factors with the finite index and finite
depth. Then the canonical shift T' for the inclusion M D N is a basic *-endomorphism of

A=(; (M 0 M);)".

In [2], we proved that some kinds of *_endomorphisms are extended to ergodic *-
automorphisms of big algebras with same values as entropies. Here we shall show it also
holds for the canonical shifts. |

Let R be the von Neumann algebra which 1s generated by the standard tower obta,in‘ed
from A D T'(A) . Since I is a basic *-endomorphism of A, there exists a *-automorphism

of R which 1s an extension of I"'. We denote it by ©.

Theorem 26. Let N C M be type II;-factor with finite index. Then the automorphism
© induced by the canonical shift I' for the inclusion N C M 1s ergodic. f N C M has

finite depth

H(M | N) = H(®) = H(I') =log[M : N| .
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