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Part 1

ON INTERIOR REGULARITY CRITERIA FOR WEAK SOLUTIONS
OF THE NAVIER-STOKES EQUATIONS

We are concerned with the behavior of weak solutions of the Navier-Stokes equations
near possible singularities. We shall show that if a weak solution is in some Lebesgue
space or small in some Lorentz space locally, it does not blowup there. Our basic idea is

to estimate integral formulas for vorticity which satisfies parabolic equations.

1. Introduction
This paper studies local interior regularity criteria for weak solutions of the Navier-

Stokes equations:

(1.1) ut—Aﬁ+(u-V)u+V¢=0 in Q
(1.2) Vou=0 inQ
(1.3) uloa = 0, u(z,0) = uo,

where @ = 0 x (0,7,  is a domain in R™(n > 3) with smooth boundary, 0 < T' < co;u =
(')"_, and ¢ denote, respectively, unknown velocity and pressure, while up = (u})2_; is

a given initial velocity. Here external force is assumed to be zero for simplicity. For every
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uo € L2(Q) satisfying compatibility conditions, a global weak solution was constructed by

Leray [Le] (when = R®) and Hopf [Ho]. Their solutions are known to satisfy
(1.4) u € L?*(Q) and Vue L¥*(Q)

where

L»9(Q) = L*(0, T; L* (2)).

However, the regularity of their weak solutions is not known unless n = 2 although some
partial regularity is proved for n = 3 (see [CKN] and references therein).

Serrin [Se] gave a nice local interior regularity criterion (cf. [Oh]). Let us recall
his result. He proved among other results, that a weak solution u satisfying (1.4) is in

L***°(Qpg/») and regular in space variables provided that u satisfies u € Lb’q(Q r) with
(1.5) nfp+2/¢g<1l, n<p<oo.
Here QR = Q}i(mo,to) is a pafabolic ball centered at (zq,%0) € Q:

Qr(zo,t0) = {(z,t) eR" xR; z € Br(zo),—R*<t—1t9 <0}

such that Qg C Q where Bgr(zo) = {z € R*; |z — 20| < R}.

Recently Struwe [St] refined Serrin’s result allowing the case
(16) n/p+2/g=1, n<p< oco.

The global version is known by Sohr [So] and Giga [Gi] when p < co. Indeed, if u € L?9(Q)
solves the initial-boundary problem of the Navier-Stokes equations (1.1)-(1.3) with (1.5)
or (1.6), u is regular in space-time up to the boundary. |

Our goal is to give a new interior regularity criterion for (1.1)-(1.2). We prove among

other results, that there is € > 0 such that

(1.7) sup  |u(z,t)| <e(to—1)"H? for — R*+1to<t<tg
z€BRr(zo)
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implies u € L°*°(Qpg/2). Here ¢ is independent of u, R and (xg,%0). In other words (o, to)
can not be a blowup point if (1.7) holds. Similar results are known for a semilinear heat
equation

—Au—|ufflu=0 for p>1

by Giga-Kohn [GK]. Our basic idea is estimating integrai formulas for vorticity w = curl u.
This idea goes back to Serrin [Se] while Struwe’s proof is based on an energy method. We
will show that our method also recovers Struwe’s interior regularity criterion.i In [St, p.440]
Struwe observed that his results may be obtained by a simple extention of Serrin’s original
method but the details are not explained there. We take this opportunity to present
Serrin’s approach to get Struwe’s result since it is obtained in parallel with our main new
regularity criterion (1.7). Since we avoid to use traces in Sobolev spaces of minus exponents
which appear in [St], our proof simplifies that of [St] in this respect.

The crucial part of our argument is regularity of solutions of a parabolic system
(1.8) wg—Aw+Vbw=0 inQ

with nonregular coefficient b. We state our main results on (1.8) in Section 2 and results

on Navier-Stokes equations in Section 3 including (1.7) where we use Lorentz spaces.

2. Interior Regularity for Parabolic Equations

We consider a parabolic system’
(2.1) wi — Aw+ Vbw =0

in Q =N x(0,7), where Q is a domain in R® with smooth boundary and 0 < T' < 0.

Here
w=(w!,...,w?) with o' =wi(z,t) (i=1,...,d),
: b(m,t)=(b;:k(:c,t)) for1<ik<dand 1< j<mn,and
(2.2) d
Vbw = ZZ -——b" (z,t)w(x,t)
j=lk= 1

i=1
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We shall study a regularity of w under minimal regularity assumptions on b. Let
L?9(Q) denote the space of L?(f2)-valued L? functions on (0,7). The space L?(Q) is
equipped with the norm

| T ' afp /g
Nullze.ac) = [ lullr()(t) ]Lv(o,T)={/o (/ﬂlU(w,i)l”dw) dt} :

Here || -||Lr(q) denotes the space LP- norm, and [ - Jp«(o,7) denotes the time L?- norm.
We do not distinguish the spaces of vector and scalar valued functions.

We say w € L*2(Q) is a weak solution of (2.1) in @Q, if it holds

// (ot + Ap +bVp)w dzdt =0
Q

for any ¢ € C§°(Q) where C§°(Q) is the space of smooth functions with compact sﬁpport
in Q. Here ¢ = (¢')L, and

d
n d \
bV = (Zzbékg%so‘)

j=1li=1

We now state our main results on interior regularity of weak solutions of (2.1).

THEOREM 2.1.  Assume that 1 < p, ¢ < oo satisfies n/p+2/q=1.
(1) Suppose thatb € LP9(Qg) where Qp is given in Section 1. Assume that w € L*?(QR)
is a weak Solution of (2.1) in Qgr. Then there is a positive constant € < 1 such that
16l Lp.e(@r) < € implies
(a) w € L®#(QRry2) for all 2 < B < oo when p > n.
(b) w € L*F(QpRys) for all 2 < &, B < 0o when p = n.
Heree =¢e(n,d,p,B) if p>n and e = e(n,d,a,B) if p=n.’
(ii) Let w € L*2(Q) be a weak solution of (2.1) in Q. :
(a) If p>n and b € LP9(Q), then w € L®P(Q') for all B > 2 with Q' = Q' x (o, T),
where Q' is compact in Q and o > 0. | 5
(b) If b € L™*(Q) and [|b]|pn.c0(q) is sufficiently small, then w € L*#(Q’) for all
2<a,f < .
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REMARK: If n/p 4+ 2/q < 1, Ladyzenskaya, Ural’ceva and Solonnikov [LUS] showed
w € L%*° under more regularity assumptions on w than those in Theorem 2.1, where we

only need w € L22(QR) (cf. [LUS] Chap.5, §2).

We recall Lorentz spaces L9 for 1 < g < oo :
L9(0,T) = {f € L'(0,T); [flr (o) < 0},

where

flewor = S‘;POS(#{t € (0,T);1f(t)] > s})H/e.

8

Here p denotes the Lebesgue measure on R. Although [f] ) (or) is not a norm (the
triangle inequality fails to satisfy), there is an equivalent “norm” in L(9)(0,T) provided
that 1 < ¢ < oo and L(9)(0,T) is a Banach space equipped with this norm (cf. [BL]). It
thus holds |

(2-3) [f + g]L(?)(O,T) < C([f]L(q)(o,T) + [g]L(‘I)(O,T))'

When 0 < T' < 0o, we see

(2.4) Ce[flr—co,r) < [flewor) < [flLeo,m)

for any € > 0, and that t=1/? € L(»)(0,T). We now write
f(z,t) € Lp’(q)(Q) if ”f“LP'(‘I)(Q) = [ “f”LP(Q)(t) }L(‘!)(O,T) < oo.

THEOREM 2.2.  Assume that 1 < p,q < oo satisfies n/p+2/q =1 and p > n. Suppose
that w € L>»%(QR) is a weak solution of (2.1) in Qg. Then there exists a positive constant

€ <1 such that

18llLr @) < €

implies
w € L®?(Qpys) for all > 2.

5 .



44

Here € = e(n, d, p, B).

3. Interior Regularity for the Navier-Stokes Equatidns

As applications of Theorems 2.1 and 2.2, we derive some interior regularity results for
weak solutions of the Navier-Stokes equations. Our results extend those of Serrin [Se] and
Struwe [St].

We say u € L2*(Q) with Vu € L2%(Q) is a weak solution of

ug— Au+(u-V)u+ Ve =0
(3.1) { n Q
V-u=0
if : |
// (pt + A+ (u- V)p)u dadt =0
(3.2) ;

'//Q(u-V)qdmdt=0,

for any ¢ = (¢*)"_, € CL(Q) with V- =0 and 5 € C°(Q).

REMARK: If u is a weak solution of (3.1), we see the vorticity w = curl u is a weak
solution of (2.1) with d = n(n —1)/2 where b, is a linear combination of u'. For example,

if n = 3, applying the operator “curl” to (3.1) yields

(3.3) wy — Aw+ Vbw =0 with b} = v — v’z

THEOREM 3.1.  If u is a weak solution of (3.1) in Q with

u € L**(Q), Vu € L»*(Q) and
{ ||| zr.a(q) < 00 for some p, q such that n/p+2/qg=1,n<p < oo

or ||ul|pr.=(q) Is sufficiently small,
then
u € L*%°(Q') and curlu € L®*(Q')

where ()’ is as in Theorem 2.1.

(By Serrin’s results in [Se], this theorem yields that » is C* in space variables.)

6



THEOREM 3.2.  Assume that u is a weak solution of (3.1) in Qg such that

u € [**(Qg) and v’u € [>*(Qg).

Suppose that 1 < p,q < oo satisfiesn/p+2/q=1and p > n. Then there exists a positive
constant € = ¢(n,p) < 1 such that

(3.4) lullzr.@0r) < €

implies

u € L*(Qprs4) and curl u € L% (Qpy4)-

- REMARK: The condition (3.4) is fulfilled if, for example,

&€
u(t)||Lr(BR(z0)) < G for t € (—R?+1g,t0).

PrOOF THAT THEOREM 2.1 IMPLIES THEOREM 3.1: Applying Theorem 2.1(ii) to (3.3)
we see w € L®#(Q') for any B > 2. Since u € L»*(Q) and —Au = curl@ in ), we obtain
u € L®P(Q?) for any B > 2 by a standard argument (cf. Serrin [Se], P193, Step I1). As in
Serrin [Se], the remark to Theorem 2.1 yields w € L°°’5°(Q3), which implies u € L (Q*?).
Here Q' = Q@ x (0, T), Q' €, o341 >0 for1<i<4and Q' =Q'. 1

PROOF THAT THEOREM 2.2 IMPLIES THEOREM 3.2: If ¢ is sufficiently small, applying

Theorem 2.2 with w := curl u yields
w € Lm’ﬂ(QR/-z) for any 2 > 2.
The proof of Theorem 3.1 now yields

u € L°*(Qpy4) and curl u € L*®(Qprys)- N

7



Part 2

ON A REGULARITY CRITERION UP TO THE BOUNDARY
FOR WEAK SOLUTIONS
OF THE NAVIER-STOKES EQUATIONS

Abstract. We are concerned with the behavior of weak solutions of the Navier-Stokes
system around possible singularities on the boundary. We show that a weak solution

locally belonging to some Lebesgue space can not blowup.

1. Introduction

We consider the Navier-Stokes equations:

((u; — Au+(u-V)u+ Ve =0, in Q =Qx(-T,0),
V-u=0, in @,
(1.1) <
u(z, =T) = uo(z), on {2,
\ ulan = 0)

where Q is a domain in R*(n > 3) with smooth boundary 89, 0 < T < oo; u = (u*)7

i=1
and ¢ denote the unknown velocity and pressure, respectively, while up = (u})™, is a
given initial velocity. Here external force is assumed to be zero for simplicity. Leray [Le]

and Hopf [Ho] constructed global weak solutions in the class
(1.2) u € L2*(Q) and Vue L**(Q)

for ug € L*(Q) where LP9(Q) = LI(=T, 0; LP(2)). It is also known that there exist weak

solutions moreover in the class
(1.3) Vu, ¢ € L070(Q)

for all 1 < rq, 7§ < co such that n/rg+2/rh = n for some smooth initial data (cf. Giga and

Sohr [GS], Sohr and von Wahl [SW]). Serrin [Se] gave a local interior regularity criterion

8
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and Struwe [St] extended Serrin’s result (cf. Takahashi [Ta]). They proved that the weak
solution u in the class (1.2) is in L®*°(Q') and regular in the space variables provided

that u € LP9(Q) for some p, ¢ such that
(1.4) n/p+2/4<1, n<p<oo,

where ' = Q' x (=T",0), € is relatively compact in Q and 7" < T. When Q = R, this
was proved by Fabes, Jones and Riviere [FJR] (See also von Wahl [Wa]).

Although global versions of Serrin-Struwe’s results are available (cf. Giga [Gi], Sohr
[So]), there seems no literature on a local version up to the bounddry. Our goal is to give a
local regularity criterion up to the boundary of Serrin-Struwe type. For simplicity we first
assume that the boundary 01 is flat near a possible blowup point zo € 2. By changing
variables we may assume that zo = 0. We take R so small that Q2N Bgr(0) is flat. Here
Br(0) denotes the ball centered at 0 with redius R. We prove among other results in this
papér that the weak solution u in the class (1.2) and (1.3) satisfying v € L?9(Q N Qr)
with “

(1.5) nfp+2/g=1, n<p<co

implies

u € L®*®(QNQr),

where Qr = Br(0) x (—R?,0), R* < T and R' < R. However, we are not sure whether
the boundedness of u in space-time would imply the smoothness of u up to the boundary
in the space variables, while it is true on the interior probrem (cf. [Se]). Concerning the
interior regularity problem, the vorticity equation has been fully used (cf. Serrin [Se],
Struwe [St] and Takahashi [Ta]). In our case, such a equation is not available, because
we can not specify the boundary value of the vorticity w = curl u locally. Hence we here
analize (1.1) directly. When we localize the velocity, there arises also such a problem that
the localized velocity is no longer solenoidal. We recover this difficulty with a variant of

Bogovski’s lemma which gives a solution of V - v = f with zero boundary condition (cf.

Bogovski [Bol],[Bo2] and Borchers and Sohr [BS]).

9 .
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2. Main theorem
We denote Q} = Bf X (—R2%,0), B = {= G“R"l |z] < R,z, > 0} and L»(QL) =
L1(—R?,0; L*(BR)). S -
We say (u, ¢) in the class
we I*(QE), Vuel*(Q}),
{ u(+,t)|s,=0 =0 for almost every t € (—R?,0),

(2.1)

is a weak solution of
uy — Au+ (u-V)u+ Ve =0,
(2:2) Vou=0, | in QF,
ulg,=0 =0,
if it holds
//Q+{(sot +A<p+(u-V)<p)-u——(¢V-go)}dmdt =0,
4

(2.3)
/ (u-V)pdzdt=0
Q% ,

for all ¢ = (), € C(QF), and for all n € C(QF). Here C§°(Q) is the space of
smooth functions with compact support in Q.
We do not distinguish the spaces of vector and scalar valued functions unless it causes

confusion. We now state our main result.

‘THEOREM 2.1. Suppose that (u, ¢) is a weak solution of (2.2) in the class (2.1) and

, 2 |
(2.4) Vu, ¢ € L"0(Q%) for all 1 < 1o, < oo with ri +o=n
. L]

(a) Assume that 1 < p,q < oo satisfies n/p+2/¢g=1and p> n. Ifu € LP9(QL), then

u € Lw’m(Q;/g),
Vu, ¢ € L“’“'(Q}"{M) for all 2 € a,a' < 0.

b) There exists a positive constant € = g(n) < 1 such that l|ull, .« n+y < € implies that
Lr=(Q}) p

u€ LOO’OO(Q;/s))

Vu, ¢ € L (Q},) forall2< a,0’ <oo.

10
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3. Localization
We denote Bf; = {z € R"| |z| < R, , > 0}. We first assume that R = 1. We cut off
a weak solution (u, ¢>) of (2.2) on Qi"/z to obtain higher regularity in Qf,z. We set

u=utp and p= Py
where ¢ € 030(511 x (—1,0]) satisfies
$=1 in B, x(-1/4,0].

Then (%, p) satisfies

(U — AU+ (u-V)u+ Vp= ¢V + ((u, ), in QF,
V-u=u- -V, in Q,
(3.1) <
u(z,—-1) =0, on B,
. ﬂ‘:v,,:o =0,

where

C(u, ¥) = Yy + AP — 2V(uVy) + (u - Vi)u.

However u may not satisfy the incompressibility condition V - & = 0. We recover this
condition with a variant of Bogovski’s lemma. To state it we prepare some function spaces:

Let D be a bounded domain in R®. Let H’"(D) be the completion of C*(D) with

respect to the norm |- [; ., where [f|} . = 7 [[V*f||;. Here we denote
lal<j

o O\ a \*
v —<5;:) "'(am) ’

for a multi-index a = (a1, - ,0n), |l¢| =01+ + a, and ||f||F = / |f|"de. HZ™(D)
D

is the completion of Cg°(D UT') with respect to |- |; » where I is a closed set on dD. We

denote the support of f by supp f and denote Hf"r (D) by Hg’r (D) if T is empty. We write

0
v,=5;:-:

REMARK: H’" (D) coincides with the usual Sobolev space W:"(D) for such a wider class

of domains D as have Lipschitz continuous boundaries. (See [GT, Section 7.6] and [Ad,

3.18)).

11
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LEMMA 3.1. Assume that D is a bounded Lipschitz domain in R*, T is a closed subset
on &D with smooth boundary 8T and 8D is smooth on T. For any j = 0,1,2,---,
and any r € (1,00), there exist a bounded linear operator K = K;, : HJ (D) —
H{:H’r (D)*NH}"™ (D)™ and positive constants C =C(n,j,r,D)and C' = C'(n,r, D) with
the following properties:

(a) V-Kf=f forall f e HJ (D) with / fdz =0,

(b) |IV'*'Kfll, < C|fl;» forall f € H{;"(%),

(c) if the n — 1 dimensional Hausdorff measure of D\T is positive,
IV K fll, < CIIV/ fll,  for all f € HY (D),

(d) suppKfCDUT if suppfC DUT,
(e) for f € L"(D), we can define K(V;f) € L"(D) (i =1,--+ ,n) such that V- K(V;f) =
V.:f for f € HV"(D) and that

NE(V:if)ll- < C'||fll, for all f € (D).
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