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Hamiltonian formulation of two-dimensional motion of
an ideal fluid and a finite-mode hydrodynamic system

T. Kambe 神部 勉
Department of Physics, University of Tokyo

1 Introduction

The fact that the total kinetic energy is conserved in the motion of an ideal fluid
is a manifestation of the fundamental property of mechanics. However, restricting
to two-dimensional motions, it is well-known that there exist an infinite number of
invariants for the ideal fluid (see \S 2). Computer simulations of the fluid motions are
carried out inevitably by means of finite-mode approximation to the exact infinite
system. In those studies of two-dimensional motion performed so far, the above
property of multiple invariants has not been considered seriously.

Recently, Zeilin [1] proposed a modified dynamical system, based on the $SU(N)$

algeblas studied in the paper by Fairlie&Zachos [2]. This work has established
connection between algebras of diffeomorphisms of the domain occupied by the flow
and $SU(N)$-algebras in the limit $Narrow\infty$ . The Zffllin’s hydrodynamic system of the
$O(N^{2})$-mode truncation in Fourier space can be shown to have $O(N)$ invariants.
Accordingly, as the number of modes increases, the number of invariants increases
arbitrarily.

2 Formulation from the hydrodynamics

2.1 Vorticity equation

Two-dimensional motion of an incompressible fluid in $(x,y)$ plane is described
by a streamfunction $\psi(x,y,t)$ , giving the velocity $v=(u,v)$ as

$u=\partial\psi/\partial y$ , $v=-\partial\psi/\partial x$ , (1)
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which satisfy the solenoidal relation:

$\partial_{x}u+\partial_{y}v=0$ (2)

The vorticity
$\omega=\partial_{x}v-\partial_{y}u=-(\partial_{l}^{2}+\partial_{y}^{2})\psi$ (3)

is governed by the following evolution equation derived from the Euler’s equation
of motion for the velocity field:

$\frac{D}{Dt}\omega=\partial_{t}\omega+u\partial_{g}\omega+v\partial_{y}\omega=0$ , (4)

which may be caUed again Euler equation. The above definition of $u$ and $v$ yiel$ds$

$\partial_{t}\omega=\frac{\partial(\psi,\omega)}{\partial(x,y)}=\{\psi,\omega\}$ , (5)

where the right han$d$ side is the Poisson bracket and the middle is the Jacobian.
Since $D/Dt$ stands for the Lagrange derivative, $i.e$ . mat $e$rial derivative, the equa-
tion (4) represents that the vorticity $\omega$ is invariant with respect to each fluid particle
in motion. The property (4) leads immediately to

$\frac{D}{Dt}\omega^{n}=0$ (6)

for arbitrary integer $n$ .

2.2 Motion on the torus $T^{2}$

Consider a fluid motion on the torus $T^{2}=\{x, y;mod 2\pi\}$ with periodic bound-
ary condition. It is not difficult to show that the equations (6) and (2) yield

$\Omega_{n}=\int_{D}\omega^{n}(x,y,t)dxdy=const$, (7)

where $D:0\leq x,y\leq 2\pi$ . This means that there exist an infinite number of
invariants for a system of infinite number of degree-of-freedom. The total kinetic
energy is given by

$K= \frac{1}{2}\int_{D}(u^{2}+v^{2})dxdy=-\frac{1}{2}\int_{D}\psi\omega dxdy$, (8)

which is an additional invariant.
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2.3 Fourier representation
It is convenient to use the Fourier representation for the analysis on the torus

$T^{2}$ with the Fourier bases,

$e_{k}=exp(ik\cdot x)$ , where $x=(x,y),$ $k=(k_{x}, k_{y})$ ,

where $k_{x}$ and $k_{y}$ are integers. The streamfunction $\psi$ and vorticity $\omega$ are expanded
as

$\psi=\sum_{k}\psi_{k}(t)e_{k}$ , $\omega=\sum_{k}\omega_{k}(t)e_{k}$ .

Then the $e$quations (3) and (5) lead to

$\omega_{k}=k^{2}\psi_{k}$ , (9)

$\dot{\omega}_{k}=\sum_{p+q=k}\frac{1}{q^{2}}p\cross q\omega_{p}\omega_{q}=\frac{1}{q^{2}}p\cross q\omega_{p}\omega_{q}\delta(k-p-q)$ . (10)

where the two expressions on the right hand side ar$e$ understood to be identical.
This is the evolution equation of the vorticity $\omega_{k}$ in Fourier space, here called again
Euler equation. This interesting form of the $e$quation will be reconsidered below.

The integral (7) gives

$I_{n}= \frac{\Omega_{\mathfrak{n}}}{\{2\pi)^{2}}=\sum_{k_{1}}\cdots\sum_{kn}\omega_{k_{1}}\omega_{k_{2}}\cdots\omega_{kn}$ , $(k_{1}+k_{2}+\cdots+k_{n}=0)$ . (11)

In particular for $n=2$ , we have the enstrophy integral,

$\frac{\Omega_{2}}{(2\pi)^{2}}=\sum_{k}|\omega_{k}|^{2}=cmst$ . (12)

The kinetic energy (8) is reduced to

$H= \frac{K}{(2\pi)^{2}}=\frac{1}{2}\sum_{p+q=0}a^{pq}\omega_{p}\omega_{q}$ (13)

where
$a^{pq}= \frac{1}{p^{2}}S(p+q)$ . (14)
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3 Hamiltonian formulation

3.1 Algebraic structure

In order to derive the Euler equation (10) in Fourier space from a Hamiltonian
formalism, let us first define a commutator (Kirillov bracket) by

$\{f, g\}_{K}\equiv c_{pq}^{k}\omega_{k}\frac{\partial f}{\partial\omega_{p}}\frac{\partial g}{\partial\omega_{q}}$ (15)

(the summation convention is understood for repeat$ed$ indices) for two arbitrary
functions of $\omega_{k}$ , where the structure constant $c_{pq}^{k}$ has the two properties:

1) $c_{pq}^{k}=-c_{qp}^{k}$ , (16)

2) $c_{pk}c_{\iota r}^{q}+c_{kr}c_{\iota p}^{q}+c_{rp}^{l}c_{\iota k}^{q}=0$ (17)

The Kirillov bracket provided with these properties is characterized by (i) bilin-
earity with $re$spect to $f$ and $g$ , (ii) antisymmetric relation: $\{f, g\}=-\{g, f\}$ , and
(iii) Jacobi identity:

$\{\{f, g\}, h\}+\{\{g, h\}, f\}+\{\{h, f\}, g\}=0$ (18)

for any three functions $f,g$ and $h$ of $\omega_{k}$ . Hence this forms a Lie algebra. For the
elements like $f=\omega_{k}$ , the bracket (15) takes the form

$\{\omega_{p}, \omega_{q}\}_{K}=c_{pq}^{k}\omega_{k}$ (19)

By this relation and the expression (13) for $H$ , the Euler equation may be written
in the following Hamiltonian form,

$\dot{\omega}_{k}=\{H, \omega_{k}\}_{K}=a^{pr}c_{rk}^{q}\omega_{p}\omega_{q}$ (20)

Let us introduce the structure constant defined by

$c_{pq}^{k}=(p\cross q)\delta(k-p-q)$ , (21)

where the boldface indices $p,$ $q$ and $k$ stand for 2-vectors with two integer compo-
nents, $e.g$ . $p=(p_{1}, p_{2})$ . Using the definition (14), we recover the Euler equation
(10):

$\dot{\omega}_{k}=\frac{1}{p^{2}}\delta(p+r)r\cross k\delta(q-r-k)\omega_{p}\omega_{q}=\frac{1}{q^{2}}p\cross q\omega_{P}\omega_{q}S(k-p-q)$ . (22)
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3.2 Matrix formulation

The dynamical system has a matrix representation with some set of basis ma-
trices $L_{i}$ , satisfying the following commutation relation,

$[L_{p}, L_{q}]=(p\cross q)L_{p+q}$ . (23)

Then the Euler equation $m$ay be rewritten in the matrix form:

$\dot{W}=[W, \Psi]$ (24)

where
$W=\omega_{i}L_{i}$ , $\Psi=a^{1m}\omega_{1}L_{-m}$ . (25)

In fact, substituting (25) into (24), one obtains

$\dot{\omega}_{i}L;=a^{1m}\omega_{k}\omega_{1}[L_{k}, L_{-m}]=\frac{1}{l^{2}}k\cross 1\omega_{k}\omega_{1}\delta(i-k-1)L_{i}$ . (26)

This is equivalent to (10). From the matrix equation (24), it is readily shown that
Trace $(W^{n})$ is conserved for any integer $n$ (Casimir functions) :

$I_{n}= Tr(W^{n})=\sum_{k_{1}}\cdots\sum_{kn}\omega_{k_{1}}\omega_{k_{2}}\cdots\omega_{kn}$
, $(k_{1}+k_{2}+\cdots+k_{n}=0)$ . (27)

3.3 Finit-mode analogue
An attempt ot construct a finite-mode system closely connected with (10) has

been made by Zeitlin [1]. This is based on the fact that there exists a special basis
for $SU(N)$-algebras [2] in which the commutator takes the form,

$[L_{p}, L_{q}]=-2i \sin\frac{2\pi}{N}(p\cross q)L_{p+q|modN}$ . (28)

Here $L_{p}$ is a set of special $N\cross N$ matrices defined by

$L_{p}=\alpha^{p_{1}p_{2}/2}G^{p_{1}}H^{P2}$ ; $L_{-P}=L_{p}^{*}$ , (29)

where the superscript *denotes taking the complex conjugate. For odd $N,$ $\alpha$ is
given as $e^{i4^{r}\kappa/N}$ which is a primitive $Nth$ root of unity. The 2-vector $p$ is $(p_{1},p_{2})$

with $p_{1}$ and $p_{2}$ being integers. A basis for the $SU(N)$ algebras is built from the
following two unitary unimodular matrices:

$G=(\begin{array}{llll}1 0 0 00 \alpha 0 00 0 \alpha^{2} 00 0 0 \alpha^{N-1}\end{array})$
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$H=(\begin{array}{llll}0 1 0 00 0 1 00 0 0 11 0 0 0\end{array})$ (30)

$G^{N}=H^{N}=1$ , $HG=\alpha GH$

The formula of $m$atrix multiplication defined by

$L_{p}L_{q}=\alpha^{\frac{1}{2}pxq}L_{p+q|modN}$

leads to the commutation relation (28). Renormalizing the generator $L_{p}$ and taking
the limit $Narrow\infty$ , the commutator (28) reduces to the relation (23).

The matrix $W=\omega;L_{i}$ is a hermitean traceless matrix, hence there are $N-1$
functionally independent invariants Tr $W^{n}$ (Casimir invariants) for $n=2,$ $\cdots,$

$N$ :

$I_{\mathfrak{n}}^{(N)}= Tr(W^{n})=\sum_{k_{1}+\cdots+kn=0|modN}\omega_{k_{1}}\cdots\omega_{kn}Tr(L_{k_{1}}\cdots L_{kn})$
(31)

3.4 Examples

Let us illustrate the above results by two lowest-mode systems.

$(A)N=3$ system

Minimal system is the $su(3)$ -system in which $\alpha=e^{i4\pi/3}:(i)$ take eight points on
the plane with coordinates $k_{1},$ $k_{2}$ taking the values $(- 1,0, +1)$ ; (ii) assign to each
point except the origin $(0,0)$ the compl$ex$ quantity $\omega_{k}$ ; (iii) identify $\omega_{-k}=\omega_{k}^{*}$ . As
a result, we have three integrals of motion:

$H= \frac{1}{2}\sum_{k\neq 0}\frac{1}{k^{2}}|\omega_{k}|^{2}$ (kinetic energy) ,

$I_{2}^{(3)}= \frac{1}{2}\sum_{k\neq 0}|\omega_{k}|^{2}$ ,

$I_{3}^{(3)}= \sum_{p,q\neq 0}\cos\frac{2\pi}{3}(p\cross q)\omega_{P}\omega_{q}\omega_{-P-q|mod3}$
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$(B)N=5$ system

Difference from the $N=3$ system is to tak$e24$ points on the plan$e$ with
coordinates $k_{1},$ $k_{2}$ taking the values $(- 2,- 1,0, +1, +2)$ , and $\alpha$ is $e^{i4\pi/5}$ instead of
$e^{*4\pi/3}$ . There exist fiv$e$ invariants: energy integral $H$ and $I_{n}^{(5)}(n=2, \cdots, 5)$ , where

$I_{n}^{(5)}= \sum_{n}\omega_{k_{1}}\cdots\omega_{kn}Tr(L_{k_{1}}\cdots L_{kn})k_{1}+\cdots+k=0|mod5$

For example, $I_{3}^{(5)}$ has the same form as (32) except for 3 being replaced by 5.

A numerical test has been $pe$rformed, in which only three modes of $k=$

$(0,1),$ $(1,2),$ $(2,2)$ and their complex conjugate counterparts (hence 6 modes
out of 24 modes) are given nonzero initial values. A double-precision calculation
has shown that the relative errors of the values of the five invariant functions with
respect to the initial values are

$1.3\cross 10^{-15}(H)$ , $1.2\cross 10^{-15}(I_{2}^{(5)})$ , $17.3\cross 10^{-15}(I_{3}^{(5)})$ ,

$0.4\cross 10^{-15}(I_{4}^{(5)})$ , $4.4\cross 10^{-15}(I_{5}^{(5)})$ .
Figures 1 and 2 illustrate how the energy $H$ and the fifth invariant $I_{5}^{(5)}$ stay at
constant levels. Figure 3 shows the streamlines at the initial $(t=0)$ and final
$(t=10)$ time.

The author wishes to acknowledge Mr. Y. Hattori for the computer calculation
of the numerical test.
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