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Hamiltonian formulation of two-dimensional motion of

an ideal fluid and a finite-mode hydrodynamic system

T. Kambe mzm
Department of Physics, University of Tokyo

1 Introduction

The fact that the total kinetic energy is conserved in the motion of an ideal fluid
is a manifestation of the fundamental property of mechanics. However, restricting
to two-dimensional motions, it is well-known that there exist an infinite number of

" invariants for the ideal fluid (see §2). Computer simulations of the fluid motions are
carried out inevitably by means of finite-mode approximation to the exact infinite
system. In those studies of two-dimensional motion performed so far, the above
property of multiple invariants has not been considered seriously.

Recently, Zeilin [1] proposed a modified dynamical system , based on the SU(N)
algeblas studied in the paper by Fairlie & Zachos [2]. This work has established
connection between algebras of diffeomorphisms of the domain occupied by the flow
and SU(N)-algebras in the limit N — oo. The Zeilin’s hydrodynamic system of the
O(N?)-mode truncation in Fourier space can be shown to have O(N) invariants.
Accordingly, as the number of modes increases, the number of invariants increases

arbitrarily.

2 Formulation from the hydrodynamics

2.1 Vorticity equation

Two-dimensional motion of an incompressible fluid in (z,y) plane is described
by a streamfunction ¥(z,y,t), giving the velocity v = (u,v) as

u=09/8y, v=-0%/0z, - (1)



79

which satisfy the solenoidal relation:

Bu+8,v=0 . | | (2)
The vorticity _ :
w=0v—0u=—(2+&) (3)

is governed by the following evolution equation derived from the Euler’s equation
of motion for the velocity field:

D .
ﬁwzatw—}-ua,w—{—vaywzﬂ ) ) (4)

which may be called again Euler equation. The above definition of u and v yields
_0(#,w) _
6tw - a(z,y) - {¢,W} b (5)

where the right hand side is the Poisson bracket and the middle is the Jacobian.
Since D/Dt stands for the Lagrange derivative, i.e. material derivative, the equa-
tion (4) represents that the vorticity w is invariant with respect to each fluid particle

in motion. The property (4) leads immediately to

D ]

for arbitrary integer n.

2.2 Motion on the torus T2

Consider a fluid motion on the torus T? = {z,y; mod 27} with periodic bound-
ary condition. It is not difficult to show that the equations (6) and (2) yield

2, = Lw (z,y,t) dzdy = const, (7)

where D: 0 < 2,y < 27. This means that there exist an infinite number of
invariants for a system of infinite number of degree-of-freedom. The total kinetic
energy is given by

_ 1 2, .2 _1
K—z‘/D(u +v)dmdy—2L¢wdzdy, (8)

which is an additional invariant.



80

2.3 Fourier representation

It is convenient to use the Fourier representation for the analysis on the torus
T? with the Fourier bases,

ex = exp(tk -x),  where x = (2,y), k= (kz, k) ,

where k, and k, are integers. The streamfunction 4 and vorticity w are expanded

as

Y= Z’lﬁk(t) €k w = Zwk(t) ek -
k k ’

Then the equations (3) and (5) lead to

wk = k% ¢, (9)
. 1 1
W= Y, —-ipxquwq:-;ipxquwq6(k—p—q). (10)

P+q=k
where the two expressions on the right hand side are understood to be identical.
This is the evolution equation of the vorticity wy in Fourier space, here called again
Euler equation. This interesting form of the equation will be reconsidered below.
The integral (7) gives
2,

Inz W:kzn.g:wklwkz.”wkn’ (k1+k2++kn=0) (11)
1 n ’

In particular for n=2, we have the enstrophy integral,

-(2072)2 = Ek: | wk [>= const . ' - (12)
The kinetic energy (8) is reduced to
H= (2175)2 = %p-§=0 a®lwp wq (13)
where 1
aPd = 7 §(p+aq) . | (14)
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3 Hamiltonian formulation

3.1 Algebraic structure

In order to derive the Euler equation (10) in Fourier space from a Hamiltonian
formalism, let us first define a commutator (Kirillov bracket) by

of Og
{f) Q}K = C wkawp awq (15)

(the summation convention is understood for repeated indices) for two arbitrary
functions of wy, where the structure constant c’;q has the two properties:

1) k= —ck ) (16)
2) chct + el t byl =0 . ()

The Kirillov bracket provided with these properties is characterized by (i) bilin-
earity with respect to f and g, (ii) antisymmetric relation: { f, g} = —{y, f}, and
(iii) Jacobi identity: ,

{{f, g}, b} +{{g, b}, 7} +{{h, F}, 9} =0 (18)

for any three functions f,g and h of wx. Hence this forms a Lie algebra. For the
elements like f = wy, the bracket (15) takes the form

{wp, wolk = c:q,‘"k . (19)

By this relation and the expression (13) for H, the Euler equation may be written
in the following Hamiltonian form,

wr = {H, wp}x = o cf, wpw, . (20)
Let us introduce the structure constant defined by
=(pxq)é(k-p-a), (21)

where the boldface indices p, q and k stand for 2-vectors with two integer compo-
nents, e.g. p = (p1, pz). Using the definition (14), we recover the Euler equation
(10):

. 1 1
wk=F6(p+r)rxk6(q—r—k)wpwq=?pxquwqé(k—p—q) . (22)



82

3.2 Matrix formulation

The dynamical system has a matrix representation with some set of basis ma-
trices L;, satisfying the following commutation relation, '

[Lps Lg] = (P X Q) Lpiq - (23)
Then the Euler equation may be rewritten in the matrix form:
= [W, ¥] ' (24)
where |
W=uwLl, V= PLL A ' (25)
In fact, substituting (25) into (24), one obtains

1 . \
‘l—z'kX1wkwl5(l"k—l) L; . (26)
This is equivalent to (10). From the matrix equation (24), it is readily shown that
Trace (W™) is conserved for any integer n (Casimir functions) :

& Lt = a™wyw [Lx, L_m] =

In=TI'(W")IZ"'Ewklwkz"'wkn, (ki+ka+---+k,=0). (27)
k;, kn

3.3 Finit-mode analogue

An attempt ot construct a finite-mode system closely connected with (10) has
been made by Zeitlin [1]. This is based on the fact that there exists a special basis
for SU(N)-algebras [2] in which the commutator takes the form,

. . 2w |
(Lp, Le) = ~2i sin 2%(p x ) Lpiaqpmean - (28)
Here Ly is a set of special N x N matrices defined by

Lp = aP1P2/2GPL P2 i Lp =L

P> (29)

where the superscript * denotes taking the complex conjugate. For odd N, a is
given as e™/¥ which is a primitive Nth root of unity. The 2-vector p is (p;,p)
with p; and p, being integers. A basis for the SU(N ) algebras is built from the
following two unitary unimodular matrices:

10 0 --- O

0O a 0 --- 0
G=|00 a*> --- 0

0 0 O aN-1
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010 - 0
001 0
H = : (30)
000 1
100 0

GN=H"=1, HG=aGH

The formula of matrix multiplication defined by
Ly Lq= a3Pxd Ly qjmodN

leads to the commutation relation (28). Renormalizing the generator Ly and taking
the limit N — oo, the commutator (28) reduces to the relation (23).

The matrix W = wj L; is a hermitean traceless matrix, hence there are N — 1
functionally independent invariants Tr W" (Casimir invariants) for n = 2,---, N :

IM =T (W") = 3 wi
kl +.--+kn=0|modN

1---wknTr(Lk1---Lkn) (31)

3.4 Examples

Let us illustrate the above results by two lowest-mode systems.

(A) N = 3 system

Minimal system is the su(3)-system in which a = e**/3: (i) take eight points on
the plane with coordinates ki, k, taking the values (-1,0,+1); (ii) assign to each
point except the origin (0,0) the complex quantity wy ; (iii) identify w_x = wg. As
a result, we have three integrals of motion:

1 1
H= 3 > — |wk|? (kinetic energy) ,

k#£0

1
=5 lwl®,
k#£0

27
I§3) = Z cos —é—-(p X q) wp wq W_p-qlmod3 -
P:‘I#O '
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(B) N =5 system

Difference from the N = 3 system is to take 24 points on the plane with
coordinates k;,k, taking the values (-2,-1,0,41,+2), and « is €***/% instead of
€*4™/3. There exist five invariants: energy integral H and I{®) (n = 2,---,5), where

17(‘5) = Z Wk, "'wknTr(Lkl oo Lyg) -
k1+---+kn=0[mod5

" For example, I§5) has the same form as (32) except for 3 being replaced by 5.

A numerical test has been performed, in which only three modes of k =
(0, 1), (1,2), (2,2) and their complex conjugate counterparts (hence 6 modes
out of 24 modes) are given nonzero initial values. A double-precision calculation
has shown that the relative errors of the values of the five invariant functions with
respect to the initial values are

1.3x107% (H), 12x107% (7)), 173x107* (1{?)),

04x1071 (I), 44x10 (I®).

Figures 1 and 2 illustrate how the energy H and the fifth invariant Iés) stay at
constant levels. Figure 3 shows the streamlines at the initial (¢ = 0) and final
(t = 10) time.

The author wishes to acknowledge Mr. Y. Hattori for the computer calculation
of the numerical test.
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