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Matched Asymptotic Expansion Method to Integral Formulations

of Wing Theories.
AKIARKL KEEEZ  (Teruhiko Kida)
Summary

In various wing theories, governing reiétions are formed as
an integral equation. They contain in general a small\parameter
such as thickness or camber of an aerofoil, inverse 6fﬁaspect
ratio of three dimensional wing, and jet momentum coefficient of
a thin jet-flapped aerofoil, when we consider them as a
perturbation theory. Then if we wish to solve them, we have some
questions on the perturbation problem : how do we know whether
this equation is singular or regular, and how do we obtain an
asymptotic solution if it is singular. To answer these questions,
we treat a first kind of the linear Fredholm integral equation
whose kernel contains a small parameter and discuss the
asymptotic behavior of its gblution witﬁout knowledge of explicit
representation of the solﬁtion. As a consequence of this study,
provided that the integral operator does not have any significant
local operator, this problem becomes regular. The necessary
condition that this problem is singular is that the transformed
operator of the degeneration of the integral operator to the
significant local region is contained in the significant 1local
operator. A method how to obtain an asymptotic solu?ion on the

singular case is proposed and its rationality is proved on the

overlapped hypothesis.
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1. Introduction.

The study of functions which are implicitly defined as
solutions of a differential equation containing a small parameter
and satisfying some supplementary conditions, such as boundary
conditions or initial conditions, is carried out in detail in
Eckhaus (1). Further, in Van Dyke (2], Kevorkian and Cole (3], et
al., a lot of problems confronted by engineers, physicists and
applied mathematicians are treated and Qe can find a wealth of
techniques and results in them.

Integral equations have been applied to various physical and
engineering problems. In them, there are many cases : their
kernel contains a small parameter, e.g., high aspect lifting
surface problem and slender body problem (4,5), which are also
treated as a perturbation problem on a differential equation
(section 9.2 in Van Dyke (2], section 4.3.1 in Kevorkian and Cole
(3)). Comparing the above works (4,5) with (2,3), it ﬁay be seen
that a perturbation approach of an integral equation has some
merit, but the study of an integral equation whose kernel
contains a small parameter on perturbation problems has not been
carried out in detail, as long as the present author knows. In
this paper, the first kind of a linear Fredholm integral équation

which appears often in wing theories is treated :
A 1
st = ‘f K(z,yse)flys;g)dy = glzig) (1)
Jg .

where a given function g(zs;g) 1is continuous in z€[0,1] and
86(0,80]. If an asymptotic expansion of f(z:g) is obtainéd with
some given small order sequences in any x€[0,1]1 , then we call

this problem " a regular perturbation problem ". If the above
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asymptotic expansion breaks down in some subdomain, we call it
"a singular pertufbation problem" and its domain is called
"significant local region".

In the section 2 of this article, we describe the
def;hitions of integral operators which we will use in this
article,vand we show main theorems. When Eé.(l) is regular, we
show in Theorem 2.1 that the first approximation satisfies the

following relation :

Kofo =9, in z€l0,1] (2)

where KO is the degeneration of the integral operator KS' When
Eq. (1) is singular in the first approximation, Kefo does not
exist for some z€[0,1]1. Then we have questions : will the first
order regular approximation fo be able to be governed by Eq.(2),
and is it possible to know that this problem is singular without
solving Eq.(2). For the latter question, we show in Theorem 2.2
the necessary condition that this problem is singular : The
degeneration K: of the significant local operator of K8 on some
local region contains the ‘degeneration of the transformed
operator of Ko to the same region. 1n the singular pertufbation
problem, there arises further gquestion besides the former
question :‘which equation is’the significant local solution
governed by. Theerem 2.4 of this paper shows a set of integral
equations which must be governed by the regular and singular
asymptotic solutiens respectively, provided that the significant

local region is near z=0.
+

1 A
f K (x,y)f (y)dy = g _(z) + 3 £ iz P (3)
0 © o o pel



‘ -
é;%p(/\x)x P (4)

C % * .
fO KO(X,n)fo(n)dn = gO(X) + El

p
where X is the significant local variable, integfal signs fé[ 1dy
and f;[ 1ldn indicate the finite part of iiig fi[ 1dy and
lig fé/A[ l1dn , respectively. Functions, ﬁp(A) and QP(AX), are
-

;glynomials in A (=1n %) and//\X (=1n X), and ég, é;o are
constants which wili be determined from the matching principle.

In section 3 of this article, we prove the above theorems.

2. Definitions and main theorems.

We consider the first kind of linear Fredholm infegral
equation given by Eq.(l). We assume that a solution f(z;g) exists
and g(z3€)} is continuous in z€I[0,1] and SG(O,SO] where 80(>0) is
a small parameter. We further require that g(z;g) converges
uniformly to go(m) on z€[0,1]1 as €-0, which is not identically
zero. In the present paper, the uniform behavior of Definition
1.3.2 in Eckhaus (1) is taken as a measure of order of magnitude
of functions. In this section, we suppose that the significant

local region is near z=0 if it exists.

Definition of degeneration : The degeneration of K8 is an

integral operator KO, not identically =zero, such that for all
test function 9($)€C: on z€[0,1]1, independent of &, for which KSG
exists and is not identically zero and for some order function
8 (g), we have } lim K_6/56_ = K _@.

(o} £-0 g€ O 8]

Definitions of transformed operator and local operator : Let

define a continuous one to one transformation from £ to the local

variable X, z=¢X, where ¢-0 as €-0. The transformed operator, TX'
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is defined as changing the variable z to X ; TXf = f(¢X;g). The

local operator, KZ, is defined by

1/¢
* % Lg%
KX0*- Io 8T, T K-0%dn

where N is also the local integral variable , n=y/¢, and 9* is a

test function of X in Xe€[0,») .

Definition of operator F : Let ¥ be a large positive number

independent of €. The operator F is defined as

N
FK*e* = | k*0™dn
€ 08

where K: is a kernel of K: ; K;=¢TXTnK'

1) *(2)

*
Definition of contained operator : Let KO( and K be the

degenerations of the local operator of K8 to the same 1local

region, which are respectively defined by the continuous mapping

. . | x(1,2)
; $—¢1X1 and $—¢2X2, where ¢l#¢2 and ¢1,¢2'*0as €-0. LetKO

*(2) is contained in K*(l)
o o

:(1’2)6*exists

be{TX K:(l). We shall say that K if

2
for all function 6% independent of € for which FK
and is not identically zero and for some order function §, one
has 1lim FK:(l’z)G*/é = FKZ(Z)G*.

e~0

Definition of significant local operator : Suppose that there

exists degeneration of the local operator K:. Let us define a set
of #, say S, of the continuous one to one mapping ; z=¢X, where
¢-0 as €20. Let K:(¢) be the degeneration' of the local operatér'
due to ¢. If there exists some mapping ¢OGS such that K:(¢o)

would not be contained by any other K:(¢) ($€S), K;(¢O) is called
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the significant local operator.

In the present paper, we suppose that the integral operator

K8 of Eg.(l) is degenerated by K8= 60K0 + Kp where 60 is some

order function of €. Then we have for any test function GGCE in

z€[0,11 , which is independent of & : lim K 9/80 =0 . If we
£-0

further assume that the adjoint integral operator RP of Kp

exists, we have : lim er/éo = (0. We state our main theorems in

g-0
this section and their proofs will be stated in the next section.

The following Theorem 2.1 says that the first approximation is

governed by K fo=gO in a regular perturbation problem.
o

Theorem 2.1. Suppose that there exists a function fo(z) such that

lim & f(zig) = fo(x) uniformly in [0,1] and K f exists as a
O 0

g-0
continuous function. Then we have Kofo = 90 in [0,1] .

We suppose that the region near =0 is only significant if
the significant local region exists and that the local operator

*
K8 which is given by the local variable X=z/¢ where ¢-0 for g-0

. *
is degenerated by K* = 5*K* + K, 11n;E'K*9*/5* = 0:
€ 0o 0 P *8-)0 P O

some order function of 8} and 8 1is a test function of X. We

*x
where § is
0

M * * %
define the local functions f (X;g) and g (X;€) by f (X;g) = TXf'
*
g (X:g) = Txg.Then the following theorem shows the necessary
*
condition that fo(x) does not converge to fO(X) uniformly with

fixed X€l0,«).

* %* ¥* ¥ %*
Theorem 2.2. We assume : (1) f (X;S)*fo(X) and g (X;e)ﬂéégo(X)

uniformly with fixed X (e[OJ/Q]) for €20, where Q is an
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arbitrary € -independent small parameter with 0<Q<1. (2) K f. and
(O o]
g () are continuous in z€ld,1]1, where d is an arbitrary €-
o)

. . L% % *
independent small parameter with 0<{d<1. (3) Kofo and gO(X) are

A
also continuous in Xe€i{0,1/d}. (4) We have for g-0,
1/¢
* *
f (T K)Y (X.n) - K (X,.m)1IT f dn = o(d )
{ /4 X 0o 0 no . o)

where ¢ is a small parameter with -0 and ¢/y-»0 for &-0, and
(TXKO)O(X,n) is the kernel of the integral operator (TXKO)O‘,
which is the degeneration of TXKO (i.e.,TXKO=6Z(TXKO)O+(TXKO)p).
The necessary condition that fo(x) does not converge to f:(X)

uniformly with fixed X (€[0,»)) for €-»0 is that (TXKO)O is

. . %
contained in KO.

This theorem is extended easily to arbitrary domain D
independent on €. Let us consider that K8 has a significant local
operator K; to some local region D; for some local variable X.
Then the degeneration of TXKO must be contained in the
significant local operator K;. From this theorem, we may see both
the significant 1local region and the significant 1local
transformation to this region, i.e., the significant 1local
variable. The proof of this theorem is based on the following

Extension Lemma whose proof will be stated in the next section.

Lemma 2.1. Let an integral operator K8 be definéd by
1 K
KSG =‘[1 K(x,y,S) 8(y)dy, K8 = 6OKO + Ky

where 86(0,801 , @ is a test function on [0,1], and d is an €~

independent parameter with 0<{d<1. Assume that Kee is continuous
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on [O,l]x(o,go] for any d. Then there exists - an order function

d(g)=0(1) such that
{ : 1
J’ Klz,y:e)0(yldy = & f K (z,9)0(y)dy + o(86 ) in [8.11
d o by O O

where function K 1is the kernel of K .
0 0

Let an integral operator K: be defined by
1 /¢

* %
K.8" = I K*(X,Q:S)G*(n)dn
€ 0 3
where ¢(g) is a positive monotonic function such that ¥(g)-0 as
g-0. Assume that FK;G* is continuous on (X,g)e[D,N]x(O,SO] for
any N which is large, positive, andg-independent. Let FK; be the

degeneration of FK; : FK* = SZFK: + FK; . Then there exists an

g
order function @(8)=o(1) such that
1/8 | 1/%
f K (X,n:)8%(n)dn = 6% f K(x,n8%dn + o0(8%) in [0,1/81
0 € O 0 O 0

where KZ is the kernel of KZ.

In the singular case, we have to consider which relations
should govern the regular and significant 1local solutions. We
here assume that the significant local region is near z=0. Then

we have :

Theorem 2.3. We assume : (1) The same condition as of Theorem

2.2 is satisfied. (2) The kernel is expressed by

. - A
K(z,yie) = 6 [ S A (y:e)P (Mz P+ S A yie)P _arx P
o, P P peo P P
for é(g)<<y<<z<<1
| . _ (5)
Hp “Hp
K(z,yie) = 6 [ S B (y;6)Q Mz P + 3B (y;e)0 Mz P
0 g P P poy P P

for ¢ (g)<<z<<y<K<1
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+, % +
' .I L] ’ )9
where 0<1p<1p and 0<n <up for p<p PP(A) ﬁp(A) QP(A and

QP(A) are polynomials in A (=1n &), and the set of p such that

Ap ’ ﬁp, Bp, and @p for €20 are not identically zero is infinite.

(3) Operators K8 and K: are expressed by

_ N N Xy, %
Ko = 8 K, + 8, K + .., Ke = 8 K, + 8K

where 61(8) and 6?(8) (i=0,1,..) are order functions. (4) The

given functions, g(z;g) and g*(X;g), are expressed by

glx; s) = 3 Jo () + 3 9, (z) + ..-g*(X;e) = 3*9*(X) + ﬁ*g*(X) +
1 ! o0 i

Aits) and @i(g) (i=0,1,..) are order functions, which are

where %

. . A **
= d = .o ee) s
satisfied by gm-iai gmso an 5m 15 ﬁm o (i=0,1,..,m;m=0,1,..)

Then f, f" are given by

flzsg) = (% f (z) + 3 f () + .. ]/6O

*

Xxie) = %*f*(X) + %lfI(X) TR V2 3

and there exist integers 8., (i=1,2,3,4) such that for a pre-

i

assigned order 5(r) and 5*(r) ;
m .l %1 . -l
f Ko(x,y)fm(y)dy = gm(z) - 2 K (z, y)f (y)dy + > CpPp(A)m
0 p=10 p=0
S5 N
+ Cmﬁ Mz P+ osT 6)
p [ PP
) 53 p_+
f K*(X,n)f;(n)dn = g;(X) - 2 K (X, n)f pnydn + 3 c*mo L (AX P
0 p=1“0 p=0
S -
4 xm “Hp %(r) (7)
M (AX + 0(8 )
b2 P TP X

where 1 ém *m and *M are constants, A,(=1ln X).
Cpl pI Cp ép 4 X

Theorem 2.4. In the same assumptions as in Theorem 2.3, some
regular and significant local expansions of f(x;g) are the

solutions of Egs. (6) and (7) respectively, if they exist.
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The constants, Cm, C*m, ém and é*m. are determined if f (x)
, p P P p m
*
and fm(X) are obtained. We first assume these coefficients are
*
unknown and second we obtain fmizl, fm(X) from Egs.(6) and (7).
Finally we determine them by using the matching principle (cf.
Van Dyke (2)]). Thus, the asymptotic expansions are obtained. This

approach is the same proposed by the present author with his

coworker (4,6,7).

Theorem 2.5. We suppose : (1) The overlap hypothesis and the same

conditions as in Theorem 2.3 are satisfied. (2) The given
function, g(z:;g), is expressible as a composite form. (3) The
regular and significant lécal solutions of Egs.(6) and (7) are
obtained under the assumption that Cg, ég, C:m, and é;m are
'unknown, and (4) these coefficients are determined from the
matching cdndition. Then their composite form is one of an

asymptotic solution of Eq. (1l). .
3. Proofs of Theorems and Lemma 2.1.
In this section, we show the proofs of Theorem 2.1-2.4 and

Lemma 2.1.

Proof of Theorem 2.1. We consider the inner product for a test

function 8. Then Eq. (1) is identically expressed by (st,9)=60(Ko
f,0)+ (Kpf,e). Introducing the adjoint operators Ro and RP of KO
and respectively, we have : ,0)= , Y+ (f, . Since
Ko pe y (K f.0)=5 (] K 0r+(s Rpe)
Rp9/50+0 and f(m;g)efo(m)/ao uniformly as g-0, we have
(K F.8) - (fo,Roe) = (K f,.8) as € » 0

We have also ; (g,8) - (90,6) as €-0, because g%x;g)ego(x)

10
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uniformly as €-0. Further, go(m) and Kofo are continuous from

the condition of theorem, so we conclude : Kofo =9, in [0,11.

Proof of Theorem 2.2. We assume at first that fo(m) converges to

fz(X) uniformly with fixed any X€[0,») for €+0, and we show
finally to arrive at the contradiction. We introduce the inner
product for a test function G*GCZ in [0,») such that T;KOG* and
*x % . ~ * o *
exist where and are adjoint of and
K36 T, K, j T.K, K
respectively. Then we have in [0,N] where N is arbitrary, large,

positive, and &-independent ;
J1N x 1/¢
ING TXQ dX = I 0 dXI TXK f dy = 09 deO ¢ TnTXKO'Tnden -
1/¢ v 1/¢
5 I Tafotn] (TxKq)o? *ax = 8> e dxf TyK ) Tof odn

From this result and Lemma 2.1, there exists a small parameter ¥
( y»0 as g-0) such that

17y x 1 % 1/¢ x 1/¢
[ e%ax[ Ty 7oy » 8 [ e ax[ " (YK (T, £ odn

0 0 * 90 %9 0 n

On the other hand, since KZfé:g;, we have

1 /¥ " w 1% Ly
f 0%gax = f e*dxf K3r¥dn = f G*dXI KX 7 %dn
0 0

0 0 0

1/¢ 1/¢ 17¢ 1/7¢ * 1/¢ * %

R f o%ax[ " Kifran + [ 76 dxf Kiran - [ 7 o0 ax[ " Kifean

17§ 0 1/¢ 0 0 ’

1% . o1/ :

+ f e*dxf K:f:dn as g€ » 0
0 1/¢ ’

SinceT 95 5ogoand Txfoaf: uniformly as €-0, we must satisfy the

following relation :

1% 73 19 1 /%
Io 0 dxf TyK) o Tpf odn = Io 0 dxf KT, £ odn

11



1 /¢ * 1/¢ x
. fo 0 dxf1/¢nxo - (TyK ) 1T, f dn as £ » 0

O

If (TXK ) T _f dn exists for any large positive N, we have from
N c ono

the above relation and condition (4) of theorem

VIR, ‘i i .
| . A
fo 0 dxfo [(TyK)y - KEIT fodn = 0 as e

Therefore, we arrive at T%KOQ* - KZQ* ~as €20, provided that the

following relation does not satisfy ;

1/y N
IO [(TXKO)O - KO]Tnden - 0 (%)

This means that TXKOQ*aKZG* as €20, so that‘KZ is contained in

[eo]
TXKO. This is a contradiction because KZ is significant. If f
H

does not converge 5:g:

(TyK ) Tnfodn does not exist, Txgo

X"0o’0
uniformly, so that this is contradiction. If the relation (%) is
satisfied, then we can not say alway that this problem becomes

singular.

Proof of Lemma 2.1. We define ®(z;g3d) and @O(mzd)by

1 : 1
d(zig:d) = 1 f Klzx.y;e)8(y)dy , ¢ (x:d) = f K (z,y)08(y)dy
3% d o d ©

where 6 is a continuous test function such that & and ¢O exist
and are continuous in z€[d,1]. Then we have from the definition :
lim 1®-d | = 0. We define g(g;d) for 0<d<1 by

-0 (0] .

g(e;d) = sup I®-®OI

z€ld, 1] .

Then g(g;d)<g(e;d*) for d'<d and g(g;d)-»0 as €-»0. Therefore, the
first part of this lemma is proved from Lemma 2.2.1 in Eckhaus

(1). For the second part, we define ¢(X;:;g;d) and ¢O(X;d), and g(g

;d) for 0<d|<l1

12
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17d
d(X:g:d) = 1 f K:(X;n;s)g*(n)dn
0

1 /d - x
& (X:d) = f - K (X:in)8 {(n)dn
0 0 o)

glgid) = sup lo-d |
Xel0.1/d1 ©

Then we can also prove the second part of the present theory by

using Lemma 2.2.1 in Eckhaus (1).

Proof of Theorem 2.3. Taking into account that k(x,y;g)

satisfies the expansion form of this theorem, we may see from
Lemma 2.1 that there exists a parameter & such that for «>8 with
8>¢ we have :

5 -1_ 8
f K(z,y;e)f(yse)dy = 6§ [ 2 P_(MNzx P f A_(y;e)fly;ge)dy
0 O p=1 P o P

+ -
by d -
+ 2 ﬁ Mz P I ﬁ (y;e)fly:eldyl = 8 [ 2 P_(Nz Pc (g)
-n P P 0 4 P P
p=0 0 p=1 ‘
+
b Mz PE |
+2 Pz L))

p=0
where notation } is the Hardy's notation which is defined in

Eckhaus (1), and -

8 5
C (g) = f A (y;e)f(y;e)dy. é (g) = f ﬁ (y;€)f(y;gl)dy
P 0 P r P 0 P

From the definition of Kn' the kernel, Kn(z,y), of Kn is also
expressible as the same expansion form as K(z,y:;g€). Therefore, we

have

—lp;\,
aotp§1 PP(A)x cp(e)

m y
pE_o IOKP.(x.y)fm_p.(y)dy

+

A
+ 3 Bz PE e
p=0 P P
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where 5p(8) and ép(e} are determined if fn(z) is given.
From substituting these relations and asymptotic expressions of
f(x) and g(x) into Eg. (1), we may have Eg.(6) for a pre-assigned

order 6(r). From the similar steps we may have Eqgq. (7).

Proof of Theorem 2.4. If a regular expansion and a significant

local expansion exist, it may be seen from the derivation of
Egs.(6) and (7) in the proof of Theorem 2.3 that they satisfy

these equations, respectively.

(m) as does in

(r)

Proof of Theorem 2.5. Let us define operator E
Eckhaus (1). Then there exists an integer m such that for 5
which is any element of a pre-assigned ordered sequence of order

functions ; for ze€ld, 1] ’

(r)

flzie) E(m)f + o3 "), glzig) = E(m) (P))

g + o(8
where d is an arbitrary small €-independent parameter with 0<{d<l1.

From Extension Theory 2.2.3 given in Eckhaus (1), there exists

(r)

some order function 5p(e) (6p*0 as e€-0) for given 6 such

(r)

that f(zig)= E;m’f +o(a‘r’) g($:8)=E;m’ +0(3,")in [5,,11. From

Lemma 2.1, there exists some order function § (8) (s »0 as &-0)

(r)

and we can choose integers m, 8 and 8, for any element of 5k

1’ 2
such that from Eq. (6)
1 (m) (m) o1 Ap
f Kz, yiE™ray = EMg + 5 13 " M)z
y X PP
) p=1
q
S +
2 am *p (r)
+3 6 ﬁ Mz P11+ oYy in 15,11
2 o K p

We define §(g) (60 as €-20) by a lower order function between 5q

and.ap. Then we have

14
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1 1 -
f Kiz,y:e)EMfay = EMg v 5 1S ¢ _am)z P
y X O _y PP
o p=1
i m k; (r) '
+ S " Mz P1o+ocs ) in [8,1] (8)
p=g PP K .

Following similar steps on Eq.(7), there also exist integers, m,

83, and 84 for 6ir) such that
178 3 M
f KX, n:e) EXM p*an = EMg* 4 6% S ¢*Mo*(ax P
n o “_.’p “p "X
0 _ p=0
54 _u" .
+ 3 FMA* A yx P1 o+ o™y in 10,1731 (9)
o=1 P P X K

where § is an order function of € with §+0 as €-0. On the other

hand, we easily see that there exist functions F(g:;g) and ?(X:S)

such that
S - S +
1 - 2 X )
5, LS ¢z P+ 3 W Mz P1 - f K(z,y:e)F(y;e)dy
_ P P -n P P
p=1 p=0 0
+ oslTy in 5,11 (10)
k . IS
S + 5 -
3 il 4 - 1/¢ x
s;0 3 XN Ax P e 3 TN (x Pl = f _ K (X.nserFnieddn
O p=g P P p=1 P P 178 &
+ o(8£r)) in [0,1/81 (11)

We note that these functions F and ﬁ\are unknown because Cg, ég,
C;m, and G;m are unknown. From Egs.(9) and (11), we have

$/8 o .
f Kz, yie)T EXW i*ay = TE{™Mg® 4 f Kiz,y:e)T fdy
yY XX ~ , y
0 6/
+ o(&ir)) in [0,8/31 (12)

Noting that from assumption (1) of theorem, ¢/§}6, we

consider the left hand side of Eq.(8) :

ol $/5 ol | $/3
f Kz,y;e)E{™ fay = tf +f Kz, yieE fdy = f K(z,yie)E™
3 y 3 $/8 5

fdy
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+

+8 [3x pQ (A)f By S)E(m)fdy + Sz pQ (A)I B _wy; e)E‘m’fdy]
© p=0 $/3 p=1 $/3 P

in (58,4731
The right hand side of Eq.(8) is related by Eg. (10) . Therefore,

we have on Z€[$§, /81

6/8 5 ‘
f K(z,y;e)E‘m’f E(m)g + 8,03 Py Mz P I\A (yie)F(yie)dy
y P’
d . ( | p=1 0
Appd, | “; 1 (m)
+ 3 P (A)m Iﬁ (y;€)F(yseldyl - 6‘0[ 2 QP(A)m f Bp(y,e)E fdy
p=0 P oP 2 p=0 /3
¢S & (Mz P B (s e)E‘m’fdyJ + o(&ér)) (13)
p=t P ¢/ P
Following similar steps, we have by using Eq. (12)
~ +
/5 : u 1
f Kz, yie)T E(m’f* = T E(m’g + 8 s Q, Mz P f Byvie)T JFdy
5 » p=0 ¢/a P

©3 X Mz I¢/a@ (yie)T Fayl - 5 ot 2 Py Mz f A (vie)T E(m)f ay

v+ 3 bz p f A (yie)T E‘m’f dyl + otair) (14)

p=0 P

Since the matching principle is satisfied, there further exists

an integer m for a pre-assigned order 6;r) such that

$/3
f K(z,y; e)[E(m)f - T E;m)f*]dy = o(sﬁr’) (15)

3

Let us consider the case where‘x;=u;. If we take ﬁ=max(m,ﬁ) and
we define m as m again, there exist some integers 8y (i=1,2,3,4)

from Egs.(13), (14), and . (15) ;-
S - s . -
| t) . 4 -x
3 Pp(A)m pf A vie) (Fyie) + TEM™ ™ ay - 3 & oz P

f B (s e)[E‘m’f + T ﬁ]dy = 0(5§r))
é

/8 P
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+

2 by
2 Q (M2 pf B w5 e)I[T, 3 E}(,m)f]dy - 3 ﬁp(mx P
pP= /8 p=0
Bﬁ (m) % (r)
Therefore, wé have :
. - - (m) % (r) - _pim (r)
Fizig) = -TE 7™ + o8, ") Txﬁ E,VF + ot )

A Ia} A
Because there is a set of p such that P #Q , A ¢B ' ﬁ zQ ; O
P P ~

2 #B , since Eqg. (1) is assumed to be singular. If A #u or A #u
P p PP PP’

then we arrive at the above relations also. Therefore, wefhave

1 (m) *
f Kz,y;e) [EMM s & T EMg* _ pUME X34y = E‘m’g + T Ey
0 y y X y X

EVE™ ™ + 06"y in 10,13
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